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Abstract. We generalise statements known about Springer fibres associated to
nilpotents with two Jordan blocks to Spaltenstein varieties. We study the geometry
of generalised irreducible components (i.e. Bialynicki-Birula cells) and their pairwise
intersections. In particular, we develop a graphical calculus that encodes their structure
as iterated fibre bundles with ��1 as base spaces, and compute their cohomology. At the
end, we present a connection with coloured cobordisms generalising the construction
of Khovanov (M. Khovanov, A categorification of the Jones polynomial, Duke Math.
J. 101(3) (2000), 359–426) and Stroppel (C. Stroppel, Parabolic category O, perverse
sheaves on Grassmannians, Springer fibres and Khovanov homology, Compositio
Mathematica 145(4) (2009), 954–992).
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1. Introduction. For a given nilpotent endomorphism N of �n, the Springer fibre
is a subvariety of the variety of full flags given by the flags fixed under N. If we take
partial flags instead of full ones, we get Spaltenstein varieties.

In 1976, Spaltenstein [16] showed that the irreducible components of the Springer
fibre are in bijective correspondence with standard tableaux of shape given by the
sizes of the Jordan blocks of N. He then deduced for the Spaltenstein varieties a
bijection between its irreducible components and a certain subset of the standard
tableaux.

In general, the geometry of the irreducible components is not well understood.
In 2003, Fung considered two special classes of Springer fibres [6], including the one
where the endomorphism N has at most two blocks. In this case, he gave an explicit
description of irreducible components of the Springer fibre and showed that they are
iterated fibre bundles with ��1 as base spaces. In addition, he used cup diagrams to
describe the structure of irreducible components.

Stroppel and Webster [20] expanded the use of cup diagrams for the description
of components of two-block Springer fibres. Moreover, they introduced what we
call generalised irreducible components for Springer fibres. Generalised components
are the closure of fixed-point attracting cells for a certain torus action (namely,
the 2-dimensional torus of all diagonal matrices commuting with N). The set of
generalised components contains the set of irreducible components. They computed the
cohomology of generalised components and their pairwise intersections and showed
that the intersections are iterated fibre bundles, in particular, smooth. Furthermore,
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they defined a non-commutative convolution algebra structure on the direct sum
of cohomologies

⊕
(w,w′) H∗(Yw ∩ Yw′) over all pairs of irreducible components or

attracting cells. They used the cup diagram calculus to recover geometrically (using
irreducible components) Khovanov’s arc algebra [11], which was used in the original
construction of Khovanov homology and (using generalised irreducible components)
a slightly larger algebra appearing naturally in the Lie theoretic version of Khovanov
homology [19].

In this paper, we consider the special case of two-block Spaltenstein varieties
and generalise the theorems already known in the Springer fibre case. We develop a
diagram calculus (dependence graphs and generalised cup diagrams) that describes
the geometry in this case and enables us to compute diagrammatically the spaces⊕

(w,w′) H∗ (̃Yw ∩ Ỹw′). To describe an associative non-commutative algebra structure,
we have to develop the ideas of Khovanov [11] and Stroppel [19] further by introducing
the notion of coloured cobordisms (Definition 10.1) and realising

⊕
(w,w′) H∗ (̃Yw ∩

Ỹw′) as the image of a monoidal functor (‘coloured’ 2-dimensional TQFT) from the
category of coloured cobordisms to vector spaces. As in the original construction of
Khovanov, coloured cobordisms can be used to define an algebra structure on

⊕
(w,w′)

H∗ (̃Yw ∩ Ỹw′).
We first use results from Spaltenstein’s paper [16] to get a bijective correspondence

between irreducible components of Spaltenstein varieties and certain standard tableaux
in Section 3. Then, in Section 4, we consider the theorem of Fung [6] which explicitly
describes the irreducible components of two-block Springer fibres and generalise it to
Spaltenstein varieties.

In Section 5, we define and study generalised irreducible components that
results in a description (Theorem 5.6) of these generalised components similar to
[20, Theorem 15]. After that, we give a bijective morphism from the generalised
irreducible components of Spaltenstein varieties to those of certain Springer fibres
(Theorem 5.8).

Subsequently, in Section 6 we generalise the cup diagrams appearing in [6, 20]
by what we call dependence graphs. These dependence graphs consist of labelled and
coloured arcs. These describe the structure of generalised irreducible components Ỹw

of Spaltenstein varieties visually (Theorem 6.19):

THEOREM A. Ỹw consist of all N-invariant flags satisfying the conditions of the
dependence graph for w.

We then extend this to pairwise intersections (Corollary 6.24).
Next, we use coloured circle diagrams as in [19] to give a condition for the

intersection of the generalised irreducible components to be empty in Section 7.
In Section 8, we show that the generalised irreducible components and non-empty
pairwise intersections of those form iterated fibre bundles, giving a proof that uses
cup diagrams. From this we compute the cohomology of the generalised irreducible
components and their non-empty intersections using a spectral sequence argument in
Section 9.

Finally, in Theorem 9.5 we combine the above to see that we can calculate the
cohomology of intersections of the generalised irreducible components Ỹw, Ỹw′ by
counting the number of circles of a certain colour in the circle diagram CC(w,w′)
associated to the corresponding pairs of row-strict tableaux.
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THEOREM B. The following diagram commutes:

pairs of row-strict tableaux
(w,w′)�→F(CC(w,w′))

��

��

vector spaces

id

��
pairs of Ỹw

(Ỹw,Ỹw′ )�→H∗(Ỹw∩Ỹw′ )
�� vector spaces

In the last section we bring the above theorem in connection with coloured
cobordisms and show in Theorem 10.6:

THEOREM C. There is an associative algebra structure on
⊕

w,w′ H∗ (̃Yw ∩ Ỹw′) given
by coloured cobordisms.

2. Spaltenstein varieties and first properties. We fix integers n and k with n ≥ 2k ≥
0. Let V be an n-dimensional complex vector space and let N : V → V be a nilpotent
endomorphism of Jordan type (n − k, k). Explicitly, we equip V with an ordered basis
{e1, . . . en−k, f1, . . . fk} with the action of N defined by N(ei) = ei−1, N(fi) = fi−1, where
by convention, e0 = f0 = 0.

DEFINITION 2.1. A partial flag of type (i1, . . . , im) (where 0 < i1 < · · · < im = n)
consists of subspaces Fil of V with dim Fil = il and Fi1 ⊂ Fi2 ⊂ · · · ⊂ Fim . The partial
flags of type (i1, . . . , im) form a complex algebraic variety which we denote by
Fl (i1, . . . , im).

A partial flag is called N-invariant if NFil ⊂ Fil−1 holds for all l = 1, . . . , m, where
Fi0 := {0}.

The variety of N-invariant partial flags of type (i1, . . . , im) is called the Spaltenstein
variety of type (i1, . . . , im) and denoted Sp (i1, . . . , im).

LEMMA 2.2. For an N-invariant flag of type (i1, . . . , im) we have

dim Fil ≤ dim Fil−1 + 2,

hence il − il−1 ≤ 2.

Proof. This follows from the rank-nullity theorem (dim W = dim ker + dim im )
and the fact that N has two Jordan blocks. �

REMARK 2.3. Let F• = (Fj1 ⊂ · · · ⊂ Fjr ) be an N-invariant flag. Let {j1, . . . , jr =
n} ⊂ {i1, . . . , im}. Then F ′

• = (F ′
i1 ⊂ · · · ⊂ F ′

im ) with F ′
s = Fs if s = jl = il′ and F ′

s
arbitrary otherwise is an N-invariant flag as well.

DEFINITION 2.4. Let (i1, . . . , im) ∈ �m with 0 < i1 < · · · < im = n. A tableau of
shape (n − k, k) of type (i1, . . . , im) is a Young diagram of shape (n − k, k) filled with
(il − il−1)-times the entry il for l = 1, . . . , m, where i0 := 0.

In the following, all tableaux will be of shape (n − k, k) unless stated otherwise.
A row-strict tableau of type (i1, . . . , im) is a tableau of type (i1, . . . , im) with strictly

decreasing entries in the rows.
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A standard tableau of type (i1, . . . , im) is a row-strict tableau of type (i1, . . . , im)
with decreasing entries in the columns.

REMARK 2.5. This is similar to the usual definition of semi-standard tableaux.
However, we work with (strictly) decreasing instead of (strictly) increasing rows and
respective columns.

EXAMPLE 2.6. Here is an example for a row-strict tableau w and a standard tableau
S, respectively, of type (1, 3, 4, 5) and shape (n − k, k) for n = 5, k = 2:

w = 4 3 1
5 3

S = 5 3 1
4 3

REMARK 2.7. Note that because of strictly decreasing rows, every number appears
at most twice in a row-strict tableau and also in a standard tableau since we only have
two rows. Consequently, we get il+1 − il ≤ 2. Note that this is the property that was
proven in Lemma 2.2 for indexing set of the Spaltenstein variety.

3. Reduction to Springer fibres.

DEFINITION 3.1. A Spaltenstein variety of type (1, . . . , n) is called Springer fibre.

In the following, let Y be the Springer fibre and let S be the set of all standard
tableaux of type (1, . . . , n) and shape (n − k, k).

In [16] Spaltenstein constructed a map π : Y → S (see also Vargas in [21]) and
showed the following:

THEOREM 3.2. (Spaltenstein–Vargas) The set S of standard tableaux of type
(1, . . . , n) is in natural bijection with the irreducible components of the Springer fibre
Y via σ �→ π−1(σ ) =: Yσ .

This theorem holds even for N of arbitrary Jordan type. In general, it is complicated
to calculate the closure π−1(σ ). But in our special case, where we only have two Jordan
blocks, Fung [6] explicitly determined how the irreducible components associated with
a standard tableau look like.

THEOREM 3.3. ([6, Theorem 5.2]) Let N be a nilpotent map of Jordan type (n − k, k),
and let σ be a standard tableau of shape (n − k, k). Then the component Yσ of the Springer
fibre Y consists of all flags whose subspaces satisfy the following conditions:

• for each i

Fi ⊂ N−1(Fi−1)

• if i is on the top row of the tableau σ and i − 1 is on the bottom row, then

Fi = N−1(Fi−2),

• if i and i − 1 are both in the top row of σ , then
• if Fi−1 = N−d(Fr) where r is on the bottom row, then

Fi = N−d−1(Fr−1),
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• if Fi−1 = N−d( im Nn−k−j) where 0 ≤ j < n − 2k1, then

Fi = N−d( im Nn−k−j−1).

(Here 0 is thought of being in the top row, {0} = F0 = im Nn−k)

We want to generalise Fung’s theorem to Spaltenstein varieties. For this purpose,
we first generalise Spaltenstein’s theorem.

DEFINITION 3.4. Let Ỹ be a Spaltenstein variety of type (i1, . . . , im). Let F• =
(Fi1 ⊂ · · · ⊂ Fim ) ∈ Ỹ . We call the set

X = X(F) := {
F ′

• = (F ′
1 ⊂ F ′

2 ⊂ · · · ⊂ F ′
n) : dim F ′

i = i, F ′
il = Fil ∀l = 1, . . . , m

}
the set of the full flags associated with the partial flag F .

DEFINITION 3.5. ([16, p. 455]) Let I ⊂ {1, . . . , n − 1}. Then a subspace of type I is
a set of flags in the flag variety of the form{

(F1 ⊂ · · · ⊂ Fn) : Fj is fixed for all j ∈ {1, . . . , n} \ I
}
.

We call Z an I-variety if it is a union of subspaces of type I .

EXAMPLE 3.6.
(a) Let F• be a partial flag in the Spaltenstein variety Ỹ of type (i1, . . . , im). Then

the set X of full flags associated with the partial flag F• is a subspace of type
I = {1, . . . , n − 1} \ {i1, . . . , im} in the Springer fibre Y .

(b) For σ a standard tableau, let Iσ = {i|σi ≤ σi+1}, where σi is the number of the
column of σ which contains the entry i. Spaltenstein showed in [16, S. 455]
that Yσ is an Iσ -variety and Iσ is maximal with respect to inclusion with this
property.

LEMMA 3.7. Let Y be the Springer fibre.
(a) Let U be a subspace of type I = {1, . . . , n − 1} \ {j1, . . . , jr} in the Springer fibre

Y. Then we have NFjl ⊂ Fjl−1 for every F• = (F1, . . . , Fn) ∈ U.
(b) Let U be a subspace of type I in Y. Then there are no consecutive numbers in I.

Proof. Let a > b ∈ {1, . . . n} \ I and assume all intermediate numbers are in I . Then
for all F• = (F1 ⊂ · · · ⊂ Fn) ∈ U we have that Fa and Fb are fixed and all possibilities
for Fa−1, . . . , Fb+1 with Fa ⊃ Fa−1 ⊃ · · · ⊃ Fb+1 ⊃ Fb appear. Since F ∈ U ⊂ Y , we
have NFa ⊂ Fa−1 for all possible choices of Fa−1, thus NFa lies in the intersection of all
Fa−1. Since the subsets between Fb and Fa−1, including Fa−1, are all not fixed, we have

Fb =
⋂

Fa−1:Fa⊃Fa−1⊃···⊃Fb

Fa−1 ⊃ NFa.

Consequently, we get (a). On the other hand, we conclude

dim Fb ≥ dim NFa ≥ dim Fa − 2, (3.1)

1There is a typing error in Fung’s paper: If we have k < a ≤ n − k and then replace a by n − k − j, we get
for j the inequality n − 2k > j ≥ 0 and not k > j ≥ 0.
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where the last inequality holds, as in Lemma 2.2, because N is of Jordan type
(n − k, k). If we have a > b + 2, we get dim Fa > dim Fb + 2, which contradicts (3.1).
Thus, (b) holds. �

LEMMA 3.8. ([16, p. 455]) Let Y be the Springer fibre. Any subspace of type I
contained in Y is contained in an irreducible component which is an I-variety.

The following theorem is stated in [16] in slightly different notation and without
proof, so we recall it here.

THEOREM 3.9. Let Ỹ be a Spaltenstein variety of type (i1, . . . , im). Let I :=
{1, . . . , n − 1} \ {i1, . . . , im}, let S be the set of standard tableaux of type (1, 2, . . . , n)
and Iσ = {i|σi ≤ σi+1} for σ ∈ S, where σi is the column number of σ containing i. Then
there is a canonical bijection

{
irreducible components of Ỹ

} 1:1←→ SI := {σ ∈ S|I ⊂ Iσ }.

Proof.
� The map

pr : Z :=
⋃
I⊂Iσ

Yσ → Ỹ

(F1 ⊂ · · · ⊂ Fn) �→ (Fi1 ⊂ · · · ⊂ Fim )

given by forgetting the subsets of full flag with indices in I is well defined.
Let F• = (F1 ⊂ · · · ⊂ Fn) ∈ Z, so F• ∈ Yσ for a σ with I ⊂ Iσ . By Example 3.6 (b)
Yσ is an Iσ -variety, thus F• is contained in a subspace of type Iσ . By Lemma 3.7 (a)
we have NFjl ⊂ Fjl−1 for l = 1, . . . , r and Iσ = {1, . . . , n − 1} \ {j1, . . . , jr}. Because
of I ⊂ Iσ , we have {j1, . . . , jr} ⊂ {i1, . . . , im}, and by Remark 2.3 (Fi1 ⊂ · · · ⊂ Fim ) =
pr (F) is an N-invariant flag.

� pr is surjective:
Let F• ∈ Ỹ and let X be the set of associated full flags. By Example 3.6 (a) X is a
subspace of type I in Y . Hence, by Lemma 3.8, there exists an irreducible component
Yσ with X ⊂ Yσ , where Yσ is an I-variety. Therefore, we have I ⊂ Iσ because of the
maximality of Iσ . So we have

F ∈ pr (X) ⊂ pr (Yσ ) ⊂ pr

(⋃
I⊂Iσ

Yσ

)
.

� Using [10, Section 21.1], we get that pr is a morphism of varieties mapping Yσ with
I ⊂ Iσ to an irreducible component pr (Yσ ) of Ỹ . Since Yσ is an I-variety, we have
pr −1( pr (Yσ )) = Yσ , thus the pr (Yσ ) are distinct.

Altogether, there is a 1-1 correspondence between the irreducible components of Ỹ
and the set {Yσ |I ⊂ Iσ }, thus also between the irreducible components of Ỹ and the
set {σ ∈ S|I ⊂ Iσ } = SI . �

The bijection from Theorem 3.9 will be made explicit in the next section.
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4. Explicit description of irreducible components.

DEFINITION 4.1. Let S be a standard tableau of type (i1, . . . , im). We associate with
S a standard tableau as follows: By definition, in a standard tableau of type (i1, . . . im)
there are at most two entries ij for all j. If there are two entries ij, then they have to be
in different rows. Hence, we can associate a unique standard tableau of type (1, . . . , n)
with a standard tableau of type (i1, . . . , im) by changing the entry ij in the lower row to
ij − 1 whenever there are two such entries in the tableau. This is possible because if ij
is a double entry, then there is no ij − 1 in the tableau.

In this way we get an injective map

ϕ : {standard tableaux of type (i1, . . . , im)}
↪−→ {standard tableaux of type (1, . . . , n)}.

EXAMPLE 4.2. For n = 8 and k = 3 the standard tableau 8 6 4 3 1
7 6 3

of type

(1, 3, 4, 6, 7, 8) is mapped to 8 6 4 3 1
7 5 2

by ϕ.

To summarise, we obtain a bijection between irreducible components and standard
tableaux of type (i1, . . . , im) as follows: Every irreducible component of Ỹ is the image
of an irreducible component Yσ via pr for σ ∈ SI . To Yσ we assign a standard tableau
σ of type (1, . . . , n) via the Spaltenstein–Vargas bijection from Theorem 3.2. As shown
in the following theorem, σ is in the image of ϕ and thus corresponds to a standard
tableau S of type (i1, . . . , im).

THEOREM 4.3. The irreducible components of the Spaltenstein variety of type
(i1, . . . , im) are in natural bijection with the standard tableaux of type (i1, . . . , im) and
shape (n − k, k).

Proof. We have

SI = {σ ∈ S|σi ≤ σi+1∀i ∈ I}
= {σ ∈ S|i occurs in the bottom and i + 1 in the top row of σ resp. ∀i ∈ I}.

Since I = {1, . . . , n − 1} \ {i1, . . . , im}, we get i ∈ I if and only if i = ij − 1 for ij a double
entry. Thus, SI = im ϕ and the theorem follows by the comments above. �

DEFINITION 4.4. We denote by ỸS the irreducible component of the Spaltenstein
variety Ỹ corresponding to a standard tableau S of type (i1, . . . , im) by Theorem 4.3.

REMARK 4.5. From the proofs of Theorems 3.9 and 4.3 we particularly get the
following: If F• ∈ ỸS, then all full flags associated with F• are in Yϕ(S), i.e. pr −1(F•) ⊂
Yϕ(S). On the other hand, for a full flag F ′

• with F ′
• ∈ Yσ such that I ⊂ Iσ we know that

the projected partial flag lies in Ỹϕ−1(σ ).

REMARK 4.6. For il is a double entry in S we have Fil = N−1Fil−1 because of the
rank-nullity theorem.

We formulate as a first result a generalisation of [6, Theorem 5.2].
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THEOREM 4.7 (Explicit description of irreducible components). Let S be a standard
tableau of type (i1, . . . , im). Then the irreducible component ỸS of the Spaltenstein variety
Ỹ of type (i1, . . . , im) consists of all flags, whose subspaces satisfy the following conditions:

• for each l

Fil ⊂ N−1(Fil−1 )

• if il is on the top row of the tableau S and il − 1 is in the bottom row and il − 1 is not
a double entry, then

Fil = N−1(Fil−2),

• if il and il − 1 are both in the top row of S, then
• if Fil−1 = N−d(Fr) where r is in the bottom row and not a double entry, then

Fil = N−d−1(Fr−1),

• if Fil−1 = N−d( im Nn−k−j) where 0 ≤ j < n − 2k, then

Fil = N−d( im Nn−k−j−1).

(Here 0 is thought of being in the top row, {0} = F0 = im Nn−k)

Proof of Theorem 4.7. Let F• ∈ ỸS and let F̂• ∈ X(F•) be an associated full flag.
By Remark 4.5, we have F̂• ∈ Yϕ(S), so F̂• meets the conditions of [6, Theorem 5.2]. By
comparing the different cases and taking Remark 4.6 into account, we see that only
the above conditions remain.

Conversely, let F• ∈ Ỹ be a partial flag satisfying the above conditions. Let F̂• be a
full flag associated with F•. By considering all possible cases, we see that the conditions
of [6, Theorem 5.2] are satisfied with respect to ϕ(S), thus F̂• ∈ Yϕ(S), so by Remark
4.5 we have F• = pr (F̂•) ∈ ỸS. �

DEFINITION 4.8. If for all flags satisfying the conditions, the subset Fil is specified as
Fil = N−j(Fis ) for some j > 0 or Fil = N−j( im Nt) for some j ≥ 0, it is called dependent.
If a subset is not dependent, it is called independent.

5. Torus fixed points and generalised irreducible components.

REMARK 5.1 (Origin of the �∗-action). Let T ∼= (�∗)n be the torus of diagonal
matrices in the basis given by the eis and fis. T acts on the partial flag variety
Fl (i1, . . . , im) via its action on the eis and fis.

For t ∈ T acting on the Spaltenstein variety as well, it has to commute with N. For

t =
(

λ1 ...
λn

)
we have Nt = tN if and only if λ1 = · · · = λn−k and λn−k+1 = · · · = λn.

Therefore, the part of T commuting with N is isomorphic to (�∗)2.
Now we choose the co-character

�∗ → (�∗)2

t �→ (t−1, t)

and get an action of �∗ on Sp (i1, . . . , im).
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LEMMA 5.2. For this �∗-action on Sp (i1, . . . , im) we get a natural bijection

{row-strict tableaux of type (i1, . . . , im)} 1:1←→
�

{fixed points of the action}
w �→ F•(w),

where F•(w) the partial flag with Fil (w) = 〈{ej, fr|j ≤ til , r ≤ bil }
〉
, where ts is the number

of indices smaller than or equal to s in the top row and similarly for bs in the bottom row.

Proof. The �∗-action is explicitly given by t.ei = t−1ei, t.fi = tfi.
By writing an element ofFil (w) in the basis, one can directly see thatF•(w) is a fixed

point under the action. By construction we have NFil (w) ⊂ Fil−1 (w), so F•(w) ∈ Ỹ .
� is injective, since F•(w) = F•(w′) implies Fil (w) = Fil (w

′) and hence til = t′il and
bil = b′

il . Inductively we get w = w′.
The surjectivity follows by inductively showing that because of being a fixed point

each Fil has to be of the form 〈e1, . . . , er, f1, . . . , fs〉 for some r, s and constructing
an associated row-strict tableau by putting a number in the top or the bottom row
depending on whether a er or a fs was added to construct Fil out of Fil−1 . �

DEFINITION 5.3. Let w be a row-strict tableau of type (i1, . . . , im). Let w∨ be the
set of numbers in the bottom row of the tableau, w∧ the set of numbers in the top row
and w× the set of double entries.

We consider the sequence a = a1a2a3 . . . an, where ai−1 = ai = × if i ∈ w× and
otherwise ai = ∧ if i ∈ w∧ and ai = ∨ if i ∈ w∨, and call it the weight sequence of w.

Associated with w is a cup diagram C(w) as follows: We consider the weight
sequence and build the diagram inductively by adding an arc between any adjacent
pair ∨∧ (ignoring all ×s), and then continuing the process for the sequence ignoring
the already connected pairs. After that we match all the remaining adjacent ∧∨-pairs
and again ignore all ×s and the already connected points.

Now several row-strict tableaux of type (i1, . . . , im) have the same cup diagram.
Among all the row-strict tableaux that have the same cup diagram as w, there is
one standard tableau. This standard tableau can be constructed by putting every
left endpoint of an arc in the cup diagram in the bottom row, every right endpoint
or unmatched point in the top row and then inserting the double entries. Call
this S(w).

EXAMPLE 5.4.

w = 5 3 1
6 4 3

S(w) = 6 5 3
4 3 1

w∧ = {1, 3, 5}, w∨ = {3, 4, 6}, w× = {3} = S(w)×,

S(w)∧ = {3, 5, 6}, S(w)∨ = {1, 3, 4}
weight sequence of w: ∧ × × ∨ ∧∨, weight sequence of S(w): ∨ × × ∨ ∧∧

C(w) =
1 2 3 4 5 6××

= C(S(w)).

https://doi.org/10.1017/S0017089512000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000110


458 GISA SCHÄFER

DEFINITION 5.5. Let P = 〈e1, . . . , en−k〉, Q = 〈f1, . . . , fk〉 and let Ỹ be a Spaltenstein
variety of type (i1, . . . , im). For each flag F• in Ỹ , we can obtain a flag (with no
longer necessarily distinct spaces) in P by taking the intersections Pi = Fi ∩ P, and

similarly in Q by taking Qi = α(Fi/(Fi ∩ P)) with α : V/P
∼=→ Q. We can define the

new flag F ′
• by putting F ′

i := Pi + Qi ⊂ P ⊕ Q = V . Let Ỹ0
w be the subvariety of partial

flags F• in Ỹ with the property that F ′
• = F•(w) holds. Let Ỹw = Ỹ0

w be its closure. If
(i1, . . . , im) = (1, . . . , n), we write Yw instead of Ỹw. In the following, we call the Ỹw

generalised irreducible components, even though this is not a standard terminology.
But as one can see in the next theorem: the set of generalised irreducible components
contains the set of irreducible components.

THEOREM 5.6. Let w be a row-strict tableau of type (i1, . . . , im). Then Ỹw is the
subset of ỸS(w) containing exactly the flags F• which satisfy the additional property: if
i ∈ (w∧ ∩ S(w)∨) � w×, then Fi = Fi(w).

In particular, for any standard tableau S, we have ỸS = ỸS.

Proof. First we confirm that these relations hold on Ỹ0
w (and thus on Ỹw, since they

are closed conditions).
Consider first the case where (i1, . . . , im) = (1, . . . , i − 1, i + 1, . . . , n) for some i:

We use the map ϕ from Definition 4.1 for row-strict tableaux as well. This is possible
since in row-strict tableaux the double entries also appear in different rows.

Let F• ∈ Ỹ0
w. Since (F1 ⊂ · · · ⊂ Fi−1 ⊂ Fi+1 ⊂ · · · ⊂ Fn) is N-invariant (F1 ⊂ · · · ⊂

Fi−1 ⊂ Fi ⊂ Fi+1 ⊂ · · · ⊂ Fn) is also N-invariant for each possible Fi.
Hence, by [20, Theorem 15] we have (F1 ⊂ · · · ⊂ Fn) ∈ YS(ϕ(w)) and Fj =

Fj(ϕ(w)) for all j ∈ ϕ(w)∧ ∩ S(ϕ(w))∨ = (w∧ ∩ S(w)∨) \ {i + 1}. So by Remark 4.5 and
Ỹϕ−1(S(ϕ(w))) = ỸS(w) we get the relations.

On the other hand, let F• ∈ ỸS(w) with Fj = Fj(w) for j ∈ (w∧ ∩ S(w)∨) � {i + 1}.
For F̂• a full flag associated with F• by Remark 4.5 and S(ϕ(w)) = ϕ(S(w)), we get F̂• ∈
YS(ϕ(w)). Since ϕ(w)∧ ∩ S(ϕ(w))∨ = (w∧ ∩ S(w)∨) \ {i + 1}, F̂• satisfies the conditions
of [20, Theorem 15], and F̂• ∈ Yϕ(w) follows. In particular, we have F• = pr (F̂•) ∈ Ỹw.

For general (i1, . . . , im), the reasoning is analogous, since the proof only uses
properties of Fi−1 and Fi+1. �

DEFINITION 5.7. Let w be a row-strict tableau of type (i1, . . . , im). Let I be the
set {1, . . . , n} � {i1, . . . , im} =: {j1, . . . , jr}. We associate with w a row-strict tableau
of type (1, . . . , n − 2r) as follows: We delete the boxes with double entries, i.e. those
with jl + 1, l = 1, . . . , r. Then we replace the entries a ∈ {jl + 2, . . . , jl+1 − 1} by a − 2l
for l = 1, . . . , r. The result is still a row-strict tableau, which contains the entries
1, . . . , n − 2r only once.

Thus, we get a map

p : {row-strict tableaux of type (i1, . . . , im) of shape (n − k, k)}
→ {row-strict tableaux of type (1, . . . , n − 2r) of shape (n − k − r, k − r)} .

For example

p
(

6 5 4 3
7 3 1

)
= 4 3 2

5 1
.
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We define π : Ỹw → Yp(w) by

(F1 ⊂ · · · ⊂ Fj1−1 ⊂ Fj1+1 ⊂ · · · ⊂ Fj2−1 ⊂
· · · ⊂ Fjl+1 ⊂ · · · ⊂ Fjl+1−1 ⊂ · · · ⊂ Fn)

�→ (F1 ⊂ · · · ⊂ Fj1−1 ⊂ NFj1+2 ⊂ · · · ⊂ NFj2−1 ⊂
· · · ⊂ NlFjl+2 ⊂ · · · ⊂ NlFjl+1−1 ⊂ · · · ⊂ NrFn).

THEOREM 5.8. The map π from above is an isomorphism of varieties.

Proof. Since p as well as π are compositions of maps that only forget one index, it
is enough to consider (1, . . . , i − 1, i + 1, . . . , n) with I = {i}. In this case, the maps p
and π are of the following form:

p : {row-strict tableaux of type (1, . . . i − 1, i + 1, . . . n)}
→ {row-strict tableaux of type (1, . . . n − 2) of shape (n − k − 1, k − 1)}

is the map that sends a tableau to another one by deleting the boxes with i + 1 in it
and replacing the numbers i + 2, . . . , n by i, . . . , n − 2; and

π : (F1 ⊂ · · · ⊂ Fi−1 ⊂ Fi+1 ⊂ · · · ⊂ Fn) �→ (F1 ⊂ · · · ⊂ Fi−1 ⊂ NFi+2 ⊂ · · · ⊂ NFn).

Since dim ker N|Fj = 2 for j ≥ i + 1, we get that (F1 ⊂ · · · ⊂ Fi−1 ⊂ NFi+2 ⊂ · · · ⊂
NFn) is a full flag. The subset relations are clear or follow from Remark 4.6. In addition,
for a N-invariant flag (F1 ⊂ · · · ⊂ Fi−1 ⊂ Fi+1 ⊂ · · · ⊂ Fn) we have that (F1 ⊂ · · · ⊂
Fi−1 ⊂ NFi+2 ⊂ · · · ⊂ NFn) is N ′-invariant, where N ′ = N|NV .

Let (F1 ⊂ · · · ⊂ Fi−1 ⊂ Fi+1 ⊂ · · · ⊂ Fn) ∈ ỸS for S a standard tableau. By
considering different possible cases we deduce from Theorem 4.7 that (F1 ⊂ · · · ⊂
Fi−1 ⊂ NFi+2 ⊂ · · · ⊂ NFn) satisfies the conditions of [6, Theorem 5.2], so (F1 ⊂ · · · ⊂
Fi−1 ⊂ NFi+2 ⊂ · · · ⊂ NFn) ∈ Yp(S). Since this holds for every standard tableau, it
holds in particular for S(w).

Let (F1 ⊂ · · · ⊂ Fi−1 ⊂ Fi+1 ⊂ · · · ⊂ Fn) ∈ Ỹw for w a row-strict tableau. From
Theorem 5.6, we get F ′

j−2 = NFj = NFj(w) = Fj−2(p(w)) for j ∈ (w∧ ∩ S(w)∨) � w×.
Since p(w)∧ ∩ S

(
p(w)

)
∨ = p

(
(w∧ ∩ S(w)∨) � w×

)
, the conditions of [20, Theorem 15]

are satisfied and (F1 ⊂ · · · ⊂ Fi−1 ⊂ NFi+2 ⊂ · · · ⊂ NFn) ∈ Yp(w) follows.
Now we consider the map π ′ : Yp(w) → Ỹw given by(

F ′
1 ⊂ · · · ⊂ F ′

n−2

) �→ (
F ′

1 ⊂ · · · ⊂ F ′
i−1 ⊂ N−1F ′

i−1 ⊂ · · · ⊂ N−1F ′
n−2

)
.

Analogously, to the above calculation one can compute that it is well defined, and it is
an inverse to π .

By considering Ỹ as subset of Gr(1, �n) × · · · × Gr(i − 1, �n) × Gr(i + 1, �n) ×
· · · × Gr(n, �n) one can show that π is a morphism of varieties. Similarly, π ′ is a
morphism of varieties. �

6. Generalised irreducible components via dependence graphs. In this section,
dependence graphs are used to visualise the description of the irreducible components
and generalised irreducible components from the last sections. The proofs consist of
combinatorial arguments. For more details see [14].
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6.1. Dependence graphs describing irreducible components.

DEFINITION 6.1. Let S be a standard tableau of type (i1, . . . , im). The extended
cup diagram for S, eC(S), is defined as follows: We expand the weight sequence from
Definition 5.3 by adding n − 2k ∨s on the left, i.e. a = ∨ . . . ∨︸ ︷︷ ︸

n−2k

a1a2a3 . . . an. Then we

connect the ∧∨-pairs as before. If a cup is starting at one of the newly added ∨s, we
colour it green. (Green lines are represented by dashed lines for the black and white
version.)

EXAMPLE 6.2. n = 7, k = 3, n − 2k = 1, S = 7 5 4 3
6 3 1

, a = ∨ ∨ × × ∧ ∧ ∨∧.

eC(S) =

EXAMPLE 6.3. If n = 2k, the extended cup diagrams coincide with the cup
diagrams, for example n = 4, k = 2. Then we have the following two standard tableaux
of type (1, 2, 3, 4):

S1 = 4 3
2 1

and S2 = 4 2
3 1

.

eC(S1) = 1 2 3 4
eC(S2) = 1 2 3 4

DEFINITION 6.4. Let S be a standard tableau of type (i1, . . . , im). The dependence
graph for S, depG(S), is defined as follows:

We have m + (n − 2k) + 1 given nodes, numbered −(n − 2k) to 0 and i1 to im. We
label the nodes with Fj for j ∈ {i1, . . . , im} and with {0} for the node 0; the remaining
nodes are left unlabelled.

If is is labelled with × in the extended cup diagram, then in the dependence graph
we connect is − 2 and is and label the resulting arc with N−1.

Now, if i < j are connected in the extended cup diagram, then in the dependence
graph we connect the nodes i − 1 and j by an arc of the same colour. We label the black
arcs with N−l for l = 1

2 (j − (i − 1)) and the green ones with el.

REMARK 6.5. Note that l is an integer always. We constructed the extended cup
diagram by connecting adjacent nodes after an even number in between them is deleted.
Thus, i and j have different parity and i − 1 and j have the same parity.

EXAMPLE 6.6. S = 7 5 4 3
6 3 1

eC(S) =
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depG(S) =

DEFINITION 6.7. Let B be an arc in depG(S). Then we denote by s(B) the number
of the left endpoint of the arc and by t(B) the number of the right endpoint. (Here,
by number we mean the number of the node as defined in Definition 6.4 and not its
position.) We define the width b(B) via b(B) = 1

2 (t(B) − s(B)).
An arc B′ is nested inside B if we have s(B) ≤ s(B′) < t(B′) ≤ t(B). Note that B

is nested inside B. An arc sequence from a to b is given by arcs B1, . . . , Br with
s(B1) = a, t(Br) = b and t(Bi) = s(Bi+1) for i = 1, . . . , r − 1. For G a green arc let g(G)
be the number of green arcs nested inside G.

REMARK 6.8. In this notation, by the definition of the dependence graph, the
labelling of an arc B in depG(S) is given by N−b(B) or eb(B).

PROPOSITION 6.9.

(a) Let B be a black arc in the dependence graph with width b(B) > 1. Then there is
a black arc sequence from s(B) + 1 to t(B) − 1.

(b) Let B be a green arc in the dependence graph with b(B) > 1. If there is no green
arc nested inside B, then there is a black arc sequence from 0 to t(B) − 1. If
there is a green arc nested inside B, then there is a black arc sequence from the
rightmost endpoint of the green arcs nested inside B to t(B) − 1.

Proof.

(a) By the construction of B from the extended cup diagram we have t(B) ∈ S∧.
Since b(B) > 1, we get t(B) − 1 ∈ S∧. Since by construction the arcs do not
intersect, there has to be a black arc B1 nested inside B with t(B) − 1 = t(B1)
and s(B1) > s(B). If B1 is not the desired arc sequence, we consider s(B1).
If s(B1) ∈ S∨ and not a double entry, then there would be an arc A nested
between B and B1, which is a contradiction. Thus, we have s(B1) ∈ S∧ and as
above there is a black arc B2 with t(B2) = s(B1) and s(B2) > s(B). We repeat
this argument until s(Bn) = s(B) + 1.

(b) We use the same argument as in (a), but we have to stop with the repetition if
s(Bn) = 0 or s(Bn) = t(G) for G a green arc. Note that arcs A are green if and
only if s(A) < 0.

�

DEFINITION 6.10. Let S be a standard tableau of type (i1, . . . , im). A flag (Fi1 ⊂
· · · ⊂ Fim ) satisfies the conditions of depG(S) if the following holds

(1) if the node labelled Fi (i > 0) is connected to a node labelled Fj with i < j via a
black arc labelled N−l, then Fj = N−lFi.

(2) if the node labelled Fi is the endpoint of a green arc labelled el, then Fi =
Fi−1 + 〈el〉.
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THEOREM 6.11 (Graphical description of irreducible components). Let S be a
standard tableau of type (i1, . . . , im). Then the irreducible components ỸS consist of all
N-invariant flags satisfying the conditions of the dependence graph for S.

The space Fj, j > 0, is independent in ỸS if and only if the node labelled Fj is the
node at the left end of a black connected component of the dependence graph for S, where
a node without arcs is also a component.

Proof. This follows from Theorem 4.7, first by induction on b(B) for black arcs
using Proposition 6.9 (a) and after that by induction on g(G) for green arcs using
Proposition 6.9 (b). For details see [14]. �

REMARK 6.12. The nodes in depG(S) at the left end of a black connected component
of the dependence graph for S coincide with the nodes that are at the left end of a
black cup in the extended cup diagram.

This holds because k is the left end of a connected component if and only if there is
no arc B in depG(S) such that k = t(B). By the construction of the dependence graph,
this is equivalent to k /∈ S∧, i.e. k ∈ S∨ and k is not a double entry, which means that
k is the left end of a cup.

Therefore, by Theorem 6.11 the number of independents in ỸS is the same as the
number of black cups in eC(S).

6.2. Dependence graphs describing generalised irreducible components.

DEFINITION 6.13. Let w be a row-strict tableau of type (i1, . . . , im). The extended
cup diagram for w, eC(w), is defined as follows: We add n − k ∨s on the left and k
∧s on the right of the weight sequence, i.e. a = ∨ . . . ∨︸ ︷︷ ︸

n−k

a1a2a3 . . . an ∧ . . . ∧︸ ︷︷ ︸
k

. Then we

connect ∨∧ as usual until all of the nodes 1, . . . , n are connected. After that we delete
the remaining ones of the added ∨s and ∧s. If an arc is starting at one of the newly
added ∨s or ending at one of the newly added ∧s, we colour it green.

EXAMPLE 6.14. w = 6 5 4 3
7 3 1

, a = ∨ ∨ ∨ ∨ ∨ × × ∧ ∧ ∧ ∨ ∧ ∧∧.

eC(w) =

EXAMPLE 6.15. If n = 2k, the extended cup diagrams for a row-strict tableau, which
is not a standard tableau, do not coincide with the normal cup diagrams.

Let n = 4, k = 2. Then, in addition to the two standard tableaux of type (1, 2, 3, 4),
there are the following row-strict tableaux of type (1, 2, 3, 4):
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w1 = 2 1
4 3

, w2 = 3 1
4 2

, w3 = 3 2
4 1

and w4 = 4 1
3 2

.

eC(w1) = eC(w2) =

eC(w3) = eC(w4) =

DEFINITION 6.16. Let w be a row-strict tableau of type (i1, . . . , im). The dependence
graph for w, depG(w), is defined as follows: We have m given nodes, numbered i1 to im.
To the left of these we add one node more than there are nodes in eC(w) to the left of
node 1 and number the new nodes by . . . ,−1, 0. Analogously, to the right we add one
node more than there are nodes in eC(w) to the right of the node n and number the
new nodes by n + 1, n + 2, . . . . We label the nodes with Fj for j ∈ {i1, . . . , im} and {0}
for the node 0; the remaining nodes are left unlabelled.

If is is labelled with × in the extended cup diagram, then we connect is − 2 and is
and label the resulting arc with N−1.

Now, if i and j with i < j ≤ n are connected in the extended cup diagram, then in
the dependence graph we connect the nodes i − 1 and j by an arc of the same colour.
We label the black arcs with N−l and the green ones with el, where l = 1

2 (j − (i − 1)).
If i and j with i ≤ n < j are connected in the extended cup diagram, then we

connect i and j + 1 with a green arc and label it with fl, where l = k + 1 − 1
2 (j − i).

We use the notation of Definition 6.7 in this case as well.

EXAMPLE 6.17. w = 6 5 4 3
7 3 1

depG(w) =

DEFINITION 6.18. Let w be a row-strict tableau of type (i1, . . . , im). A flag (Fi1 ⊂
· · · ⊂ Fim ) satisfies the conditions of depG(w) if the following holds

(1) if the node labelled Fi (i > 0) is connected to a node labelled Fj with i < j via a
black arc labelled N−l, then Fj = N−lFi,

(2) if the node labelled Fi is the endpoint of a green arc labelled el, then Fi =
Fi−1 + 〈el〉,

(3) if the node labelled Fi is the starting point of a green arc labelled fl, then
Fi = Fi−1 + 〈fl〉.
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The next theorem connects, similarly to the one before, the dependence graphs with
the generalised irreducible components.

THEOREM 6.19 (Graphical description of generalised irreducible components).
Let w be a row-strict tableau of type (i1, . . . , im). Then Ỹw consist of all N-invariant
flags satisfying the conditions of the dependence graph for w. The space Fj, j > 0, is
independent in Ỹw if and only if the node labelled Fj is the node at the left end in a black
connected component of the dependence graph for w.

Proof. Let W1 = (w∧ ∩ S(w)∨) \ w×, W2 = (w∨ ∩ S(w)∧) \ w×.
By Theorems 5.6 and 6.11 we only have to show that for N-invariant flags the

conditions of depG(w) are equivalent to the conditions of depG(S(w)) together with
the additional condition Fi = Fi(w) for i ∈ W1. By comparison of the constructions
we get that depG(w) and depG(S(w)) agree except for black arcs B in depG(S(w))
with s(B) + 1 ∈ W1 and t(B) ∈ W2 and green arcs G in depG(w) with t(G) ∈ W1 or
s(G) ∈ W2.

Inductively, by using Proposition 6.9 (b) one can see that for green arcs in depG(w)
with t(G) ∈ W1 the conditions of depG(w) agree with those of depG(S(w)) together
with the additional condition. Then one can inductively show the same for green arcs
in depG(w) with s(G) ∈ W2 by using Proposition 6.9 (a) and the situation the arcs are
in:

Here the black arc B is the one in depG(S(w)) with s(B) + 1 ∈ W1 and t(B) ∈ W2. The
green arcs are in depG(w). For details see [14]. �

REMARK 6.20. The nodes at the left end of a black connected component of
the dependence graph for w coincide with the left ends of black arcs in eC(w).
This follows in the same way as in Remark 6.12. Therefore, by Theorem 6.19
the number of independents in Ỹw is the same as the number of black cups
in eC(w).

6.3. Dependence graphs for intersections.

DEFINITION 6.21. Let w and w′ be row-strict tableaux of type (i1, . . . , im). The
dependence graph for (w,w′), depG(w,w′), is constructed by reflecting the dependence
graph for w′ across the horizontal axis and putting it on top of the dependence graph
for w.
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EXAMPLE 6.22. Let again w = 6 5 4 3
7 3 1

and let w′ = 7 5 4 3
6 3 1

(which is the S

from Example 6.6).

depG(w,w′) =

DEFINITION 6.23. Let w,w′ be row-strict tableaux of type (i1, . . . , im). A flag (Fi1 ⊂
· · · ⊂ Fim ) satisfies the conditions of depG(w,w′) if the following holds

(1) if the node labelled Fi (i > 0) is connected to a node labelled Fj with i < j via a
black arc labelled N−l, then Fj = N−lFi,

(2) if the node labelled Fi is the endpoint of a green arc labelled el, then Fi =
Fi−1 + 〈el〉,

(3) if the node labelled Fi is the starting point of a green arc labelled fl, then
Fi = Fi−1 + 〈fl〉.

COROLLARY 6.24. Let w and w′ be row-strict tableaux of type (i1, . . . , im). Then
Ỹw ∩ Ỹw′ consists of all N-invariant flags satisfying the conditions of the dependence
graph for (w,w′). The space Fj, j > 0, is independent in Ỹw ∩ Ỹw′ if and only if the node
labelled Fj is the node at the left end in a connected component of the dependence graph
for (w,w′).

Proof. F• is in Ỹw ∩ Ỹw′ if and only if the conditions of Ỹw and the conditions of
Ỹw′ are satisfied. But these conditions are given by the associated dependence graph. If
the dependence graphs are put on top of each other, then both conditions are satisfied
simultaneously. �

7. Circle diagrams. Our next goals are Theorems B and C. While dependence
graphs describe the structure of generalised irreducible components, we need extended
cup diagrams and circle diagrams to describe the cohomology of generalised irreducible
components or their intersections.

Following [19, Section 5.4], we construct circle diagrams out of cup diagrams and
colour them.

DEFINITION 7.1. Let w,w′ be row-strict tableaux. We define CC(w,w′), the circle
diagram for (w,w′), as follows: We reflect eC(w′) and put it on top of eC(w). If there
are more points in eC(w) than in eC(w′) or vice versa, we connect in eC(w′) the ones
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on the right with the ones on the left via an green arc in the only possible crossingless
way. The construction up to here is called eC(w,w′). If there is at least one green arc in
a connected component, we colour the whole component green. If there is more than
one left outer point, i.e. a point p with p < 1, or more than one right outer point, i.e.
a point p with p > n, in a connected component, we colour the whole component red.
(Red lines are represented by thick lines for the black and white versions.) From now
on we also use the term circle for connected component.

EXAMPLE 7.2. w = 6 5 4 3
7 3 1

, w′ = 7 5 4 3
6 3 1

, w′′ = 7 6 5 3
4 3 1

CC(w,w′) =

CC(w,w′′) =

REMARK 7.3. The nodes at the left end in a black connected component of the
dependence graph for (w,w′) coincide with the left points of the black circles in
CC(w,w′). This follows from the same argument as in Remarks 6.12 and 6.20.

Therefore, by Corollary 6.24 the number of independents in Ỹw ∩ Ỹw′ is the same
as the number of black circles in CC(w,w′).

In the following section, the theorems often have the assumption Ỹw ∩ Ỹw′ �= ∅. The
first question when considering the pairwise intersection of generalised irreducible is
whether the intersection is empty. The following theorem gives an equivalent condition
for this in terms of circle diagrams.

THEOREM 7.4. Let w,w′ be row-strict tableaux of type (i1, . . . , im). Then we have
that Ỹw ∩ Ỹw′ = ∅ if and only if there is at least one red circle in CC(w,w′).

Proof. In the following, we call a green arc G a left green arc if t(G) ∈ {1, . . . , n}
and a right green arc if s(G) ∈ {1, . . . , n}. We denote

r(G) =
{

t(G), if G is a left green arc

s(G), if G is a right green arc
.
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An extended arc sequence in eC(w,w′) or depG(w,w′) is a sequence of arcs B1, . . . , Bl

in depG(w,w′) such that for 1 ≤ i ≤ l − 1 exactly one of the following conditions hold:

t(Bi) = s(Bi+1), t(Bi) = t(Bi+1), s(Bi) = s(Bi+1), s(Bi) = t(Bi+1).

Assume CC(w,w′) contains a red circle. Consider this circle in eC(w,w′), i.e. when
the colours are the colours from eC(w) and eC(w′).

By considering different connection possibilities one can show that there are two
green arcs H1 and H2 in this circle in eC(w,w′) such that both H1 and H2 are left green
arcs or right green arcs, they both are above x-axis or below and are connected by an
extended black arc sequence.

This results in a black extended arc sequence from r(G1) − 1 to r(G2) and one
from r(G1) to r(G2) − 1, where G1 and G2 are the images of H1 and H2, respectively, in
depG(w,w′). But then the two conditions that depG(w,w′) imposes on Fr(G2) contradict
each other. Thus, Ỹw ∩ Ỹw′ = ∅.

Conversely, we assume that CC(w,w′) contains only black and green circles.
Analogous to [20, Lemma 19] we construct a row-strict tableau w′′ such that
F•(w′′) ∈ Ỹw ∩ Ỹw′ :

In CC(w,w′) we mark all points with j ≤ 0 by ∨ and j > n by ∧. Now we assign
a ∧ or a ∨ to all j ∈ {1, . . . , n} \ w× as follows:

If we have a black circle, we mark one point arbitrarily and then we follow the
circle and alternatingly mark the points where we meet the x-axis by ∧ or ∨ such that
each arc has a ∧ at one end and a ∨ at the other. For green circles, we start with a point
already marked and go on as for black circles.

Now we define a row strict tableau w′′ by the fact that j ∈ w′′
∧ if and only if j is a

double entry or marked by ∧ and j ∈ w′′
∨ if and only if j is a double entry or marked

by ∨.
In Lemma 5.2 we have already shown that F•(w′′) is N-invariant. Furthermore,

one can calculate that F•(w′′) satisfies the conditions of depG(w,w′). �
REMARK 7.5. In the proof one can see a fact similar to [20, Lemma 19]: If there

are no red circles in CC(w,w′), the number of fixed points contained in Ỹw ∩ Ỹw′ is at
least 2x for x is the number of black circles in CC(w,w′). Indeed, there are two possible
choices for every black circle and only one for every green circle.

8. Iterated fibre bundles. By [7], to each complex projective variety X we can
associate a topological Hausdorff space Xan, the associated analytic space with the
same underlying set. If the projective variety is smooth, Xan is a complex manifold.

Following [6], we consider iterated fibre bundles.

DEFINITION 8.1. A space X1 is an iterated fibre bundle of base type (B1, . . . , Bl)
if there exist spaces X1, B1, X2, B2, . . . , Xl, Bl, Xl+1 = pt and maps p1, p2, . . . , pl such
that pj : Xj → Bj is a fibre bundle with typical fibre Xj+1 = Fj. Here fibre bundle means
topological fibre bundle in the sense of [9].

The following theorem is the main theorem of this section. It generalises [6], [20].

THEOREM 8.2. Let w,w′ be row-strict tableaux of type (i1, . . . , im) and assume Ỹw ∩
Ỹw′ �= ∅. Then (̃Yw)an and (̃Yw ∩ Ỹw′)an are iterated bundles of base type (��1

, . . . , ��1),
where there are as many terms as there are independent nodes in the associated dependence
graph.
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For the rest of the section, we drop the an from the notation and always work with
the analytic spaces.

For the proof of Theorem 8.2, we first take a look at two important special cases.

EXAMPLE 8.3. Let n = 4, k = 2. As mentioned in Example 6.3, in this case there

are two standard tableaux of type (1, 2, 3, 4): S1 = 4 3
2 1

and S2 = 4 2
3 1

.

For these we have the following associated extended cup diagrams:

eC(S1) = 1 2 3 4
eC(S2) = 1 2 3 4

(1) Firstly, we consider YS2 : As one can see, for example, from the associated
dependence graph, we have

YS2 = {F1 ⊂ N−1({0}) ⊂ F3 ⊂ N−2({0})}.

We define p : YS2 → �(N−1({0})) = ��1 via(
F1 ⊂ N−1({0}) ⊂ F3 ⊂ N−2({0})) �→ F1.

This is a trivial fibre bundle with fibre as a component of a smaller Springer

fibre, namely the one with associated cup diagram
1 2

.
Let N1 := N|〈e1,f1〉 and let N2 be the map induced by N on �4/ ker N →
�4/ ker N. We take as trivialising neighbourhood the whole base space and
get the following trivialisation:

{F1 ⊂ N−1
1 ({0})} × {G1 ⊂ N−1

2 ({0})} → p−1({F1 ⊂ N−1({0})})(
F1 ⊂ N−1({0}), G1 ⊂ N−1

2 ({0})) �→ (
F1 ⊂ N−1

1 ({0}) ⊂ N−1
1 ({0}) + G1

⊂ N−1
1 ({0}) + N−1

2 ({0}) = �2 ⊕ �2 = �4)(
F1 ⊂ N−1

1 ({0}), F3/ ker N ⊂ �4/ ker N
) ← �

(
F1 ⊂ N−1({0}) ⊂ F3 ⊂ �4).

This is a homeomorphism and commutes with the projections.
(2) Now we consider the space YS1 = {F1 ⊂ F2 ⊂ N−1(F1) ⊂ N−2({0})}. Again,

we define p : YS1 → �(N−1({0})) = ��1 via(
F1 ⊂ F2 ⊂ N−1(F1) ⊂ N−2({0})) �→ F1.

We choose the standard covering of ��1:

U1 := {(x : y)|x �= 0} and U2 := {(x : y)|y �= 0}.

We consider (1 : λ) ∈ U1. With our identifications, this corresponds
to 〈e1 + λf1〉 ⊂ 〈e1, f1〉. We have N−1 〈e1 + λf1〉 = 〈e1, f1, e2 + λf2〉 =
〈e1 + λf1, f1, e2 + λf2〉 and therefore we obtain N−1 〈e1 + λf1〉 / 〈e1 + λf1〉 =
〈f1, e2 + λf2〉. We denote the isomorphism �2 → 〈f1, e2 + λf2〉 given by
mapping the standard basis to f1, e2 + λf2 by αλ. We get the following
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trivialisation for U1:

U1 × {L ⊂ �2} → p−1(U1)(
(1 : λ), L ⊂ �2) �→ ( 〈e1 + λf1〉 ⊂ 〈e1 + λf1〉 + αλ(L) ⊂ N−1(〈e1 + λf1〉) ⊂ �4).
This map commutes with the projections, and it is a homeomorphism with
inverse

p−1(U1) → U1 × {L ⊂ �2}(
〈e1 + λf1〉 ⊂ F2 ⊂ N−1(〈e1 + λf1〉) ⊂ �4

)
�→ (

F1 ⊂ N−1({0}))
×

(
α−1

λ (F2/ 〈e1 + λf1〉) ⊂ α−1
λ (N−1(〈e1 + λf1〉)/ 〈e1 + λf1〉) = �2

)
.

For U2 we get an analogous trivialisation. Altogether, YS1 is a non-trivial fibre
bundle with fibre as a component of a smaller Springer fibre, again the one

with cup diagram
1 2

.

DEFINITION 8.4. We define the cup diagram decomposition as follows:
If C is a cup diagram with all cups nested inside a single cup C′, we say C is in nested
position. If C is in nested position, then the cup diagram decomposition is C = C′ ∗ D
where D is C with C′ removed and numbering adjusted.

If this is not the case, then the cup diagram decomposition is C = D ∗ D′, where D
consists of the cup B with s(B) = 1 and of all the cups nested inside B and D′ consists
of the remaining cups with the numbering adjusted.

For an extended cup diagram C, let |C| be twice the number of cups.

EXAMPLE 8.5.

1 2 3 4 5 6 7 8

= 1 2 ∗
1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

= 1 2 3 4 ∗
1 2 3 4 5 6 7 8

DEFINITION 8.6. For n even, by Y n
S we denote the irreducible component of the

Springer fibre associated to a standard tableau S of type (1, . . . , n) and shape ( n
2 , n

2 ).

Note that we can associate a unique standard tableau S of type (1, . . . , n) and
shape ( n

2 , n
2 ) to each cup diagram C consisting of black cups such that eC(S) = C by

writing the numbers on the right ends of the cups in the bottom line and the other ones
in the top line.

LEMMA 8.7. Let n be even and Y n
S be a component of the Springer fibre such that eC(S)

is not in nested position and let eC(S) = eC(R) ∗ eC(T) its cup diagram decomposition.
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Let r = |eC(R)| and t = |eC(T)|. Then Y n
S is the total space of a trivial fibre bundle with

base space Y r
R and fibre Y t

T .

Proof. We have

Y n
S = {(F1 ⊂ · · · ⊂ Fr ⊂ Fr+1 ⊂ · · · ⊂ Fn) = F•|F• is N-invariant

and satisfy the conditions of depG(S)}.

From the conditions of depG(S) we know that Fr = N− r
2 {0}, thus it is a fixed subspace

of �n. Now we consider the map

p : Y n
S → Y r

R

(F1 ⊂ · · · ⊂ Fn) �→
(

F1 ⊂ · · · ⊂ Fr = N− r
2 {0}

)
.

Analogous to Example 8.3 (1), this is a trivial fibre bundle with fibre Y t
T . �

LEMMA 8.8. Let n be even and Y n
S be a component of the Springer fibre such that

eC(S) is in nested position and let eC(S) = C ∗ eC(T) its cup diagram decomposition.
Let t = |eC(T)|. Then Y n

S is the total space of a non-trivial fibre bundle with base space
��1 and fibre Y t

T .

Proof. Again, we consider the map

p : Y n
S → ��1

(F1 ⊂ · · · ⊂ Fn) �→ (
F1 ⊂ N−1{0}) .

As in Example 8.3 (2), this is a non-trivial fibre bundle with fibre Y t
T . �

REMARK 8.9. The results stated in Lemmas 8.7 and 8.8 are shown in wider
generality in [5] and in [4]. In the latter reference, they are combined to define a family
of smooth components of Springer fibres which contains the two-block components
as a subfamily.

DEFINITION 8.10. We call an iterated fibre bundle of base type (��1
, . . . , ��1︸ ︷︷ ︸

l

) an

l-bundle.

LEMMA 8.11. Let E = B × F be a trivial fibre bundle and let B be an l1-bundle and
F be an l2-bundle. Then E is an (l1 + l2)-bundle.

Proof. Let B = B1, . . . , Bl1 , Bl1+1 = pt be the total spaces of the iterated fibre
bundles for B and let F = F1, . . . , Fl2 , Fl2+1 = pt the ones for F . Then E is an iterated
fibre bundle with total spaces E, B2 × F, . . . , Bl1 × F, pt × F = F, F2, . . . , Fl2 , pt and
the associated maps. �

Since the cup diagram decomposition just works for diagrams with only black
cups, we need the following proposition to reduce to this case. It connects a generalised
irreducible component to an irreducible component associated to a cup diagram that
arises from the one of the generalised component by deleting all green cups.

PROPOSITION 8.12. Let w be row-strict tableau of type (1, . . . , n) of shape (n − k, k)
and let n′ be twice the number of black cups in eC(w). Then there is a standard tableau
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S of type (1, . . . , n′) and shape ( n′
2 , n′

2 ) such that we have an isomorphism of varieties
Yw → YS.

Proof. Let S be the standard tableau corresponding to the cup diagram that arises
from eC(w) by deleting the green cups. In depG(w) let

J1 := {j ∈ {1, . . . , n}|j = t(G) for G a green arc} and

J2 := {j ∈ {1, . . . , n}|j = s(G) for G a green arc}.

Let J := J1 ∪ J2. We define V1 := 〈
eb(G)|t(G) = j for some j ∈ J1

〉
and V2 :=〈

fk+1−b(G)|s(G) = j for some j ∈ J2
〉
. Furthermore, let α : �n → �n/(V1 ⊕ V2) be the

projection.
Now we define

ϕ : Yw → YS

(F1 ⊂ · · · ⊂ Fn) �→ (
α(Fj1 ) ⊂ · · · ⊂ α(Fjr )

)
,

where {j1, . . . , jr} = {1, . . . , n} \ J.
Then we have α(Fjr ) = α(Fn) = �n/(V1 ⊕ V2) = �n′

.
Let N ′ : �n′ → �n′

be defined by N ′e′
i = e′

i−1 and N ′f ′
j = f ′

j−1 for i, j = 1, . . . , n′
2 ,

where

{e′
1, . . . , e′

n′ } = {e1 + (V1 ⊕ V2), . . . , en−k + (V1 ⊕ V2)} \ {ej + (V1 ⊕ V2)|ej ∈ V1}
and the same for the f ′

j ’s.
Since (F1 ⊂ · · · ⊂ Fn) is N-invariant and satisfies the conditions of depG(w) and

N ′ acts in the same way as N acts on the subspaces associated to black arcs, (α(Fj1 ) ⊂
· · · ⊂ α(Fjr )) is N ′-invariant and satisfies the conditions of depG(S).

Furthermore, the map given above is a morphism of varieties by an argumentation
analogous to the one in the proof of Theorem 5.8.

Analogously, we can construct an inverse map by defining the subspaces associated
to a green cup as given by depG(w), which is also a morphism of varieties. �

Proof of Theorem 8.2. First we assume n = 2k and show the theorem for standard
tableaux S of type (1, . . . , n), i.e. for irreducible components in the Springer fibre. We
do induction on n:

If k = 2, then by Example 8.3 in both cases we get two bundles by including
��1 id→ ��1 where the fibre is just one point.

Now we consider YS with |eC(S)| = 2k. If eC(S) is in nested position, then by
Lemma 8.8 YS is the total space of a fibre bundle with base space ��1 and fibre YT

with |eC(T)| = 2k − 2, where eC(T) arises from the cup diagram decomposition. By
induction YT is a k − 1-bundle, thus YS is a k-bundle.

In the other case, by Lemma 8.7 YS is the total space of a trivial fibre bundle with
base space YR and fibre YT , where |eC(R)|, |eC(T)| ≤ 2k − 2 and |eC(R)| + |eC(T)| =
2k. By induction, YR and YT are |eC(R)|

2 - or |eC(T)|
2 -bundles, respectively. Now the

assertion follows from Lemma 8.11.
By the above, for S a standard tableau of type (1, . . . , n) and n = 2k, YS is an

iterated fibre bundle with ��1 as base spaces, hence it is smooth as variety by [8,
Section III. 9, 10]. Hence, by Proposition 8.12, for w a row-strict tableau of type
(1, . . . , n) and shape (n − k, k) with n − k > k, Yw is also an iterated fibre bundle and
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smooth. Thus, by Theorem 5.8, for w a row-strict tableau of type (i1, . . . , im), Ỹw is an
iterated fibre bundle and smooth.

So by Theorem 5.8, we can restrict ourselves to generalised irreducible components
in Springer fibres, i.e. to those associated to cup diagrams without ××. By Proposition
8.12 it suffices to consider irreducible components associated with standard tableaux
with equally long rows, i.e. those associated to cup diagrams with only black cups.
Therefore, by the above discussion, the assertion is shown for generalised irreducible
components of Spaltenstein varieties. The assertion about the number of independents
is transferred, since by Remark 6.20 the number of independents is given by the number
of black cups and this stays the same in the reduction process.

Now we consider intersections of generalised irreducible components. Again, we
only have to consider the ones with eC(w,w′) just consisting of black circles. This
reduction is possible, since analogously as above with Theorem 5.8, we can restrict
ourselves to intersections of generalised components in Springer fibres. Then we can
delete the green circles by the analogon of Proposition 8.12. These analogons can be
shown by computations similar to the ones above.

After that, we distinguish whether there is a circle in eC(w,w′) that contains all the
others or not, and work with a decomposition of circle diagrams analogously to the one
of the cup diagrams above. In the case where there is a circle containing all the others,
we get an analogon to Lemma 8.8 and in the other case an analogon to Lemma 8.7.
Then the assertion follows inductively as above. The assertion about the number of
independents is also true, because by Remark 7.3 the number of independents is given
by the number of black circles. �

9. Consequences and cohomology.

REMARK 9.1. In the proof of Theorem 8.2 we showed that the Ỹw are smooth as
varieties, hence (̃Yw)an or (̃Yw ∩ Ỹw′)an are complex manifolds.

Since the dimensions of manifolds in a fibre bundle add up, by Theorem 8.2 we get
that the dimension of (̃Yw)an or (̃Yw ∩ Ỹw′)an is given by the number of independents in
the associated dependence graph. Since by [15] the dimension of X as variety coincides
with the dimension of Xan as complex manifold, the same holds for Ỹw and Ỹw ∩ Ỹw′ .
For Ỹw, by Remark 6.20 the dimension coincides with the number of black cups in
eC(w).

In particular, this holds for ỸS = ỸS. Thus, all the irreducible components of
the Spaltenstein variety have the same dimension. This is true because for a standard
tableau S the number of black cups in eC(S) is exactly the number of entries in S∨ � S×
which is always k − #S×. For irreducible components of the Springer fibre with possibly
more than two blocks this was already shown in [16]. The equidimensionality for
general Spaltenstein varieties is also mentioned in [16] and proved in wider generality
in [17, Proposition II.5.16].

In the following, H∗(X ; �) denotes singular cohomology with coefficients in �.

LEMMA 9.2. Let (F → E → B) be a fibre bundle with F connected, dim� Hn(F ; �)
and dim� Hn(B; �) finite for all n, B simply connected, paracompact and Hausdorff.
Assume that H∗(F ; �) and H∗(B; �) are concentrated in even degrees and Hr(F ; �) = 0
for r ≥ s and Hr(B; �) = 0 for r ≥ t.
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Then H∗(E; �) ∼= H∗(B; �) ⊗� H∗(F ; �) as vector spaces. Furthermore, dim� Hn(E; �)
is finite for all n, H∗(E; �) is concentrated in even degrees and Hr(E; �) = 0 for r ≥ s + t.

Proof. By [18, Section 2.7] a fibre bundle with paracompact and Hausdorff base
space is a fibration. The system of local coefficients is simple because π1(B) = 0.
Thus, by [13, Proposition 5.5] we have Ep,q

2
∼= Hp(B; �) ⊗k Hq(F ; �) in the Leray-Serre

spectral sequence. Because of the concentration of cohomologies in even degrees, the
spectral sequence collapses at level 2 and we have Ep,q

∞ ∼= Hp(B; �) ⊗� Hq(F ; �). Since
the spectral sequence converges to H∗(E; �) and � is a field, we have,

Hl(E; �) ∼=
⊕

a+b=l

Ea,b
∞ ∼=

⊕
a+b=l

Ha(B; �) ⊗� Hb(F ; �).

The rest follows from H∗(E; �) = ⊕
l Hl(E; �). �

In the following, we write H∗(X) for H∗(Xan; �).

COROLLARY 9.3. Let w,w′ be row-strict tableaux of type (i1, . . . , im) and assume
Ỹw ∩ Ỹw′ �= ∅. Then

H∗ (̃Yw) ∼= (
�[x]/(x2)

)⊗u
,

H∗ (̃Yw ∩ Ỹw′) ∼= (
�[x]/(x2)

)⊗v

as vector spaces, where u and v are the number of independents.

Proof. By Theorem 8.2 we know that (̃Yw)an and (̃Yw ∩ Ỹw′)an are l-bundles. In
each of the iterated fibre bundles the fibre is connected, since the fibres themselves are
iterated fibre bundles.

��1 is simply connected, paracompact and Hausdorff and H∗(��1; �) ∼=
�[x]/(x2), in particular H0(��1; �) = � = H2(��1; �) and Hl(��1; �) = 0 for l = 1
or l ≥ 3.

Now the claim inductively follows from Lemma 9.2 starting with H∗(pt) = �, since
the lemma also states that the conditions for the next step are fulfilled. Therefore, for
the total space E of an l-bundle we have

H∗(E; �) ∼= �[x]/(x2) ⊗� · · · ⊗� �[x]/(x2)︸ ︷︷ ︸
l

⊗�� ∼= (
�[x]/(x2)

)⊗l
.

�

DEFINITION 9.4. Define F : {circle diagrams} → {vector spaces over �} as follows:
Let C be a circle diagram consisting of b black circles, g green circles and r red circles.
Then,

F(C) := �[x]/(x2) ⊗� · · · ⊗� �[x]/(x2)︸ ︷︷ ︸
b

⊗� � ⊗� · · · ⊗� �︸ ︷︷ ︸
g

⊗� 0 ⊗� · · · ⊗� 0︸ ︷︷ ︸
r

.

The concept of this definition will be made clear using coloured TQFTs in the next
section.
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THEOREM 9.5. The following diagram commutes:

pairs of row strict tableaux
(w,w′)�→F(CC(w,w′))

��

��

vector spaces

id

��
pairs of Ỹw

(Ỹw,Ỹw′ )�→H∗(Ỹw∩Ỹw′ )
�� vector spaces

Proof. This follows from Theorem 7.4, Remark 7.3 and Corollary 9.3. �

10. Coloured cobordisms. Let Cob be the category of 2-dimensional cobordisms.
By [12] this monoidal category is generated under composition and disjoint union by
the cobordisms

Furthermore, these generators are subject to an explicit list of relations (see e.g. [12])
saying that the image of the circle under a symmetric monoidal functor should be a
commutative Frobenius algebra.

Now we consider coloured cobordisms, i.e. the boundaries of the generators are
coloured black, green or red.

DEFINITION 10.1. Let ColCob be the monoidal category generated under
composition and disjoint union by

subject to the relations for ColCob. The relations for ColCob consist of all the fitting
colourings of the relations for Cob, i.e. if the cobordisms of a relation can both be
coloured such that the basic cobordisms they consist of are in the list and the boundaries
are coloured in the same way, then the relation exists in this colouring. For an explicit
list of the relations see [14, A.2].
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EXAMPLE 10.2. An example for an object in ColCob:

An example for a morphism in ColCob:

LEMMA 10.3. ColCob is a symmetric monoidal category.

Proof. This holds analogously to Cob, since the twist relations exist in all possible
colourings. �

THEOREM 10.4. Let V = �[x]/(x2), let B be the black circle in ColCob, R the red one
and G the green one and let Vect be the monoidal category of vector spaces with ordinary
tensor product. There exists a symmetric monoidal functor FC = FColCob : ColCob →
Vect is given by

FC(B) = V, FC(G) = �, FC(R) = 0,

FC(generator) = map from table below.
(10.1)

https://doi.org/10.1017/S0017089512000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000110


476 GISA SCHÄFER

Proof. For FC to be a monoidal functor, it is enough to define it on the generators
of the monoidal category, hence there is a unique functor (if it exists) satisfying (10.1).
One has to check that FC satisfies all the relations of ColCob (which is the list of [12]
in all possible colourings), for example,

The functor is symmetric since the twist in ColCob is sent to the twist in Vect . �
Note that on objects, FColCob is defined in the same way as F in Definition 9.4.

DEFINITION 10.5. For a circle diagram CC(w,w′) where the points
−1,−2, . . . ,−(n − k) + |w×| are not all occupied, we add green circles containing
all the others until this is the case. We call the resulting circle diagram CC+(w,w′).

Note that FC(CC(w,w′)) = FC(CC+(w,w′)) and now all circle diagrams
associated to row-strict tableaux of type (i1, . . . , im) have the same size.

We define a multiplication as in [19, Section 5.4] via FC(CC+(w,w′)) ⊗
FC(CC+(v, v′)) → FC(CC+(w, v′)), f ⊗ g → fg, where fg = 0 if w′ �= v and otherwise
fg = FC(C), where C is the coloured cobordism from CC(w′, v) on top of CC(w,w′)
to CC(w, v) which contracts the parts belonging to w′.

THEOREM 10.6. The multiplication from Definition 10.5 induces an associative
algebra structure on

⊕
w,w′ H∗ (̃Yw ∩ Ỹw′).

Proof. The multiplication is associative, since the coloured associativity relations
hold in ColCob. �

It would be interesting to find an algebraic formulation of the data of a symmetric
monoidal functor from ColCob to finite dimensional vector spaces (in analogy to the
case of Cob where such a functor can be described equivalently by the structure of a
commutative Frobenius algebra).

REMARK 10.7. (Connection to category O) Note that the algebra structure for
Spaltenstein varieties is the same as for Springer fibres of smaller dimension. A similar
phenomenon arises in the Lie theory in the context of parabolic category O. By the
Enright–Shelton equivalence, singular blocks of parabolic category O for glm+n are
equivalent to regular blocks for smaller m and n (see [3, Proposition 11.2]). In fact,
in [2] this analogy was made precise by constructing an equivalence between modules
over our diagram algebras and blocks of parabolic category O.

In our setup, the Springer fibre corresponds to the principal block O
pn−k,k
0 of

parabolic category O for the Lie algebra gln where the parabolic has two blocks of size
n − k and k (cf. [20]). A Spaltenstein variety of type (i1, . . . , im) corresponds to a block
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O
pn−k,k
ν , where ν = (i1, i2 − i1, . . . , im − im−1) is the corresponding partition of n. In this

block, the simple modules are labelled by row-strict tableaux of shape (k, n − k) of type
(i1, . . . , im) (cf. [1]) as are the generalised irreducible components of Sp(i1, . . . , im).

Whereas Theorem 5.8 can be used to reduce from Spaltenstein varieties to smaller
Springer fibres, the counterpart on the category O side is the (non-trivial) Enright–
Shelton equivalence. Diagrammatically, this equivalence is obvious.
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