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SLANT IMMERSIONS

BANG-YEN CHEN

A slant immersion is defined as an isometric immersion from a Riemannnian man-
ifold into an almost Hermitian manifold with constant Wirtinger angle. In this
article we give some fundamental results concerning slant immersions. Several
results on slant surfaces iii C2 are also proved.

1. INTRODUCTION

Let TV be an n-dimensional Reimannian manifold and M an almost Hermitian

manifold with almost complex structure / and with almost Hermitian metric g. An

isometric immersion / : N —> M is called holomorphic if, for any point x in N, we have

J(TXN) = TXN, where TXN denotes the tangent space of N at x. The immersion / is

called totally real (see [3]) (or Lagrangian) if we have J{TXN) C T^N for each x £ N,

where T^N denotes the normal space of N in M at x. In the following, we denote

by ( , ) the inner product for iV as well as for M.

For any vector X tangent to N, we put

(1.1) JX = PX + FX

where PX and FX denote the tangential and the normal components of JX, respec-

tively. Then P is an endomorphism of the tangent bundle TN and F a normal-bundle-

valued 1-form on TN. For each non-zero vector X tangent to N at x the angle 9{X)

between JX and TXN is called the Wirtinger angle of X. In the following we call an

immersion f:N—>M a general slant immersion if the Wirtinger angle 9(X) is a con-

stant (which is independant of the choice of x € N and X £ TXN). Holomorphic and

totally real immersions are general slant immersions with Wirtinger angle 9 equal to

0 ami 7r/2 respectively. A general slant immersion which is not holomorphic is simply

called a slant immersion. In this case, the Wirtinger angle 9 is called the slant angle of

the slant immersion.

A slant submanifold is said to be proper if it is not totally real. Finally, a proper

slant submanifold is said to be Kaehlerian slant if the endomorphism P is parallel, that

is, VP = 0. A Kaehlerian slant submanifold is a Kaehler manifold with respect to the
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o

induced metric and the almost complex structure J — (sec#)P where 0 is the slant
angle.

In tills paper, we give some fundamental properties of slant immersions. Some rela-
tions between submanifolds with liolomorphic submanifolds or totally real submanifolds
are obtained. Furthermore, many results concerning slant surfaces in C2 are proved.

2. KAEHLERIAN SLANT IMMERSION AND VP = 0

Let N be an n-dimensional Riemannian manifold isometrically immersed in an
almost Hermitian manifold M. (All manifolds are assumed to be connected unless
olherswise mentioned.) Let P be the endomorphism defined by (1.1). Since M is
almost Hermitian, we have (PX,Y) -f- (X,PY) = 0. Thus P2 , which is simply denoted
by Q, is self-adjoint. Therefore, each tangent space TXN of N at x admits the following
orthogonal direct decomposition of eigenspaces of Q: x

(2.1) TXN = V\ ©.. .© 27*(s).

Since P is skew-symmetric and J2 = — 1, each eigenvalue A; of Q = P2 lies in
[—1,0] and moreover, if Aj ̂  0, the corresponding eigenspace T>\. is of even dimension
and it is invariant under the endomorphism P, that is P^J . ) = T>\. Furthermore,
for each A; ^ — 1, dimF(Vl

x) = dimP' and the normal subspaces F(DX), for i =
l,...,k(x) are mutually perpendicular. Thus we have dimM > 2dimiV — dim7^
where T-Lx denotes the eigenspace of Q with eigenvalue —1.

The following lemma follows from the definition of VQ which is defined by
(VxQ)Y = VX{QY) - Q{VXY) for X, Y in TN.

LEMMA 2 . 1 . Let N be a submanifold of an almost Hermitian manifold M. Then
the self-adjoint endomorphism Q (= P2 ) is parallel if and only if

(1) each eigenvalue A; of Q is constant on N;
(2) each distribution T>1 (associated with X{) is completely integrable and
(3) N is locally the Riemannian product of the leaves of the distributions.

Since this lemma can be proved in a standard way and is somewhat well-known,
we omit its proof.

By using Lemma 2.1 we have the following characterisation of submanifolds with
VP = 0.

LEMMA 2 . 2 . Let N be a submanifold of an almost Hermitian manifold M. Then
VP = 0 if and only if N is locally the Riemannian product N\ x ... x Nk, where each
Ni is either a Kaehler submanifold, a totally real submanifold, or a Kaehlerian slant
submanifold.
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PROOF: Under the hypothesis, if P is parallel, then Q is parallel. Thus Lemma

2.1 implies that N is locally the Riemannian product Ny x . . . x Nk of the leaves

of the distributions defined by eigenvalues of Q and moreover, each eigenvalue Xi is

constant on N. If an eigenvalue A; is zero, Ni is totally real. If Aj is —1 then TV;

is a holomorphic submanifold. If Aj ^ 0, — 1 , then, because V1 is invariant under

the endomorphism P and (PX,Y) = -Xi(X,Y) for X, Y in Vi, we have |PA"| =

y/—Aj|A'|. Thus the Wirtinger angle B(X) satisfies cos8(X) = \ / - A i , which is a

constant ^ 0, or —1. Therefore, Ni is a proper slant submanifold. Now assume A; ^ 0

and put Pi = P \xNi • Then Pi is simply the endomorphism of TNi induced from J.

Let V1 denote the Riemannian connection on TV,-. Since Ni is totally geodesic in N,

we obtain (V ' Y P ; )F = (VXP)Y = 0 for X, Y tangent to TV,-. This shows that if Ni

is holomorphic, then Ni is a Kaehler submanifold. And if TV,- is proper slant, Ni is a

Kaehlerian slant submanifold of M.

The converse can be verified directly. ' D

From Lemma 2.2 we obtain the following.

PROPOSITION 2 . 3 . Let N be an irreducible submanifold of an almost Hermi-

tian manifold M . If N is neither holomorphic nor totally real, then N is a Kaehlerian

slant submanifold if and only if P is parallel, that is, VP = 0.

PROPOSITION 2 . 4 . Let N be a surface in an almost Hermitian manifold M.

If N is neither totally real nor holomorphic in M, then the following three statements

are equivalent:

(a) VP = 0, that is, P is parallel;

(b) N is a Kaelderian slant surface;

(c) N is a proper slant surface.

PROOF: Since each proper slant submanifold is of even dimension, Lemma 2.2

implies that if P is parallel, then N is a Kaehler surface, or a totally real surface or a

Kaehlerian slant surface. Since N is assumed to be neither totally real nor holomorphic,

we see that (a) and (b) are equivalent under the hypothesis. It is obvious that (b) implies

(c). Now we prove (c) implies (b). Let N be a proper slant surface in M with slant angle

8. We may choose an orthonormal frame ex, e-i tangent to N such that Pe\ = (cos<?)e2

and Pe2 = — (cos#)ei . Then we have (V_\-jP)ei = cos(?(u;2(A") +o)1
2(A"))e1, where a);

denotes the connection form on N defined by dei = £) ^\ ® ej . Since w\ = — ivf , we

obtain VP = 0. D

3. MINIMALITY AND SLANT IMMERSIONS WITH VF = 0.

Let TV be a submauifold in a Kaehler manifold M. We denote by V and V the

Riemannian connections of N and M respectively. By A, D and cr the Weingarten

https://doi.org/10.1017/S0004972700017925 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017925


138 Bang-Yen Chen [4]

map, the normal connection and the second fundamental form of N in M, respectively.
Then the Gauss and Weingarten formulae of N in M are given respectively by Vjf7 =
V x y + v(X,Y) and Vx£ = -A(X + DX£, for X, Y tangent to N and £ normal to
N. Moreover, the covariant derivative Vcr of a is defined by

(3.1) (Vxa)(X,Y) = DX*{Y,Z) - *(VXY,Z) - *{Y,VXZ).

We mention the following lemma for later use ([2]).

LEMMA 3 . 1 . Let N be a submanifold of a Kaehler manifold. Then

(a) VP = 0 if and only if AFXY = AFYX, for all X, Y tangent to N and
(b) VF = 0 if and only if AnX = -A^PX) for ( normal to N and X

tangent to N.

REMARK 3.2. As usual, the covariant derivative of F is defined by

(VXF)Y = DX{FY) - F(VXY), for X, Y in TN.

We recall that a submanifold N of a Kaehler manifold M is called generic if the
maximal holomorphic subspace Hx — TXN fl J(TXN) is of constant dimension. A
submanifold is called minimal if tr a = 0, and it is called austere if for each normal
vector £ the set of eigenvalues of A( is invariant under multiplication by —1; this is
equivalent to the condition that all the invariants of odd order of the Weingarten map at
each normal to N vanish. Of course an austere submanifold is a minimal submanifold.

LEMMA 3 . 3 . Let N be a submanifold of a Kaehler manifold M. Then we have:

(1) if N is either totally real or holomorphic, then F is parallel (that is,
VF = 0);

(2) if N is generic and F is parallel, then F(TN) is a parallel subbundle of
the normal bundle T±N;

(3) if —1 is not an eigenvalue of Q at any point of N and VF — 0, tiien
lmaCF(TN);

(4) if 0 is not an eigenvalue of Q at any point of N and VF = 0, then N is
austere and hence N is minimal.

PROOF: Statement (1) is trivial. For statement (2), we assume N is a generic
submanifold of M with VF = 0. Then the normal bundle T^-N has the following
orthogonal direct decomposition:

(3.2) T*-N = F{TN) ®u, uz ± F(TXN).

For any vector field £ in u and X, Y in TN, we have

(AJ(X,Y) = (*(X,Y),Jt) -
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from which we find

(3.3) (Dx(FY)O = -(A((PY) + AJ(Y, X).

On the other hand, for any ( normal to N, if we denote by t£ and /£ the tangential
and normal components of J£ respectively, then we have [2, p.264]

(3.4) ((VxF)Y,t) = -(Af(Y + Ae{PY),X).

Since / = J on u, (3.3) and (3.4) imply (DX{FY),£) = 0 for any ( in v. This proves

(2)-
For (3), if VF = 0, Lemma 3.1 implies (a{X,Y),J() = -(<r(X,PY),() for any £

in v. Thus, for any eigenvector Y of Q with eigenvalue A and any £ in i/, we have
(a(X,Y),() = -\(a(X,Y),(). From this we obtain statement (3).

We now prove (4). Assume VF = 0. Then we have fa(X,Y) = a(X,PY) (see
[2, p.264]). Let X be any unit eigenvector of Q with eigenvalue A ^ 0. Then X* =
PX/\/—\ is a unit vector perpendicular to X. Thus, a(X, X) = a(PX,PX)/\ =
—<r(X*, X*), which implies (4) D

PROPOSITION 3 . 4 . Let N be a proper slant submanifold of a Kaehler mani-
fold. If VF — 0, then N is austere and, in particular, minimal.

This result follows from statement (4) of Lemma 3.3.

PROPOSITION 3 . 5 . Let N be an n-dimensional slant submanifold of Cm. If
VF — 0, then N is contained in a complex linear subspace Cn of Cm as a minimal
slant submanifold.

This result follows from statements (2), (3) and (4) of Lemma 3.3 and a reduction
theorem of Erbarcher.

4. EULER NUMBERS AND SLANT SURFACES

In the following, we assume N is a slant surface in the flat complex number space
C2 with slant angle 0. For a unit vector field ej tangent to iV, we put

(4.1) e2 = (sec8)Peu e3 = (csc 0)Feu e4 = (csc0)Fe2.

Then ei = — (sec0)Pe2, e j , e2, t.% and e\ form an orthonormal frame such that e\,
e2 are tangent to N and e.%, e^ normal to N. We put h\j = (<r(e,-, ej),er),i , j — 1,2
and r = 3,4 and denote by G and GD the Gauss curvature and normal curvature of
N in C2 respectively. Then we have

(4.2) G = hl.hl, - (hs
12)

2 + h*nht2 - (ht2)\

(4.3) GD = h3
nh\2 + h\2h\2 - h^h^ - h\2h\2.
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Since N is compact, we have

(4.4) I GdV = 2TTX(7V) and / GD dV = 2TTX{T-LN).
JN JN

LEMMA 4 . 1 . If N is a slant surface in C2 then G = GD identically.

PROOF: If iV is a slant surface in C2, then VP = 0 by Proposition 2.4. Thus we

have (Lemma 3.1)

(4.5) AFXY =

for X, Y tangent to N. Hence, by applying (4.1) and (4.5), we find

(4.6) h\2 = h^, h\2 = h\2.

Therefore, by (4.2), (4.3) and (4.6), we obtain G = GD. D

We give the following consequence of Lemma 4.1.

PROPOSITION 4 . 2 . Let N be a compact surface. Then we have:

(1) if the Elder number x{N) ^ 0, then N admits no slant imbedding in C2 ;
(2) if x{N) = 0 (hen every slant immersion of N in C2 is regularly homotopic

to an imbedding;
(3) if N has positive (or negative) Gauss curvature, then N admits no slant

immersions into C2.

PROOF: If TV admits a slant imbedding in C2, then Lemma 4.1 implies G = GD.

Thus x{T±N) = x(N). Since x(T±N) = 2g (q the self-intersection number [7]) and
q = 0 for an imbedding, we obtain (1). Statement (2) follows from x(2iJ"7V) = x(-W) = 0
and the fact that the self-intersection number is a regularly homotopic invariant. Now
we prove (3). If N is a compact slant surface with positive (or negative) Gauss curvature
in C2 , then Lemma 4.1 implies that GD is everywhere positive (or negative). Thus, by
a result of Little [9], x{TXN) = -2x{N) (or x ^ i V ) = 2X(N)) which is impossible
unless x(-^) = 0- But this is a contradiction of the curvature condition. u

5. MINIMAL SLANT SURFACES

In the following, E* denotes Euclidean 4-space with the standard metric. An
almost complex structure / on E* is said to be compatible if (Ei, J) is a flat Kaehler
manifold. We denote by Jo the compatible almost complex structure on Ei defined by

(5.1) Jo(a,b, c, d) = (-c, -d,a,b).

The flat Kaeliler manifold (E*, Ju) is simply denoted by C2 .
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LEMMA 5 . 1 . If TV is a holomorphic surface in C 2 , then, for any constant a,

0 < a < TT/2, TV is a slant surface in (E*,Ja) with slant angle a , where Ja is the

compatible almost complex structure on EA defined by

(5.2) Ja(a,b, c,d) = (cos a)(-c, -d, a, b) + (sina)(-6, a,d, -c).

PROOF: Follows from direct computation. U

THEOREM 5 . 2 . Let TV be an oriented slant surface in C2 . TJien there is a

compatible almost complex structure J on E* such that N is holomorphic in I EA, J I

if and only if TV is minimal.

PROOF: If / : N —> C2 is a slant immersion, then G = GD (Lemma 4.1). Let
e i , e2 be an oriented orthonormal frame on TV. Then the Gauss map v: TV —» G(2,4)
from TV into the real Grasmannian G(2, 4) is defined by i/(p) = (e\ A e2)(p) for p 6 N.
Denote by 5^. and 5 i the space of positive and negative symplelic 2-vectors in A2E*
(see for instance, [5]). Then G(2,4) is isometric to the Riemaimian product 5^. x 5 1 .
Denote by //j and v2 the projections of v into 5^ and 51 respectively, so that v —
( I / ] , J / 2 ) : N —> S+ x S i . Then V\ is a holomorphic map (see for instance, [8]), if / is
minimal. Thus, if TV is minimal in C2, the image ^i(TV) is either a point or an open
subset of S\ . On the other hand, it is also known that the rank of v\ is < 1 if and
only if G = GD (Hoffman and Osserman; see [5]). Thus, if / : N —* C2 is minimal
and slant, then î i is a constant map. Thus, by applying Proposition 2.2(i) of [5], N is
holomorphic with a certain compatible almost complex structure on E* . The converse
of this is trivial since every holomorphic surface in a Kaehler manifold is minimal. u

REMARK 5.3. Theorem 5.2 generalises a result of [4, 5].

REMARK 5.4. Theorem 5.2 implies that there exist many examples of slant surfaces in

C2.

The followiug result provides another characterisation of minimal slant surfaces in

C2.

THEOREM 5 . 5 . Let N be a surface in C2 which is neither holomorphic nor
totally real. Then N is a minimal slant surface if and only if V.F = 0.

PROOF: Since TV is neither holomorphic nor totally real in C2, both P: TXN —»
TsTV and F: TXN -> T^TV are surjective for each a; € TV. Thus, if 6 denotes the
Wirtinger angle and ej a unit vector tangent to TV, then t\ , e2 — (sec 6)Pe\, e$ —
(zsc9)Fe\ and e^ = (csc0)jFe2 form an orthonormal frame. Since J2 = —I these
imply

te3 = -(sin0)e!, te4 = -(sin 9)e2,
(5.3J

/ e 3 = -(cos0)e4, / e 4 = (cos0)e3.
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If V.F = 0, then, by Lemma 3.1, we have A/(X = — A^{PX) for any £ normal to N
and X tangent to N. In particular, we have

AFeie2 = (Un0)Ae3{Pei) = -(ta

Therefore, by applying Lemma 3.1 again, we obtain VP = 0. Consequently, from

Propositions 2.4 and 3.4, N is minimal and proper slant in C2.

Conversely, if N is minimal and proper slant, then (4.6) gives

i 3 _ _ i 3 _ _ i 4 i 4 _ _ i 4 _ i 3

from which by direct computation we may obtain Af(X = —A((PX) for any £ normal

to TV and X tangent to N. Thus, by applying Lemma 3.1, F is also parallel. U

REMARK 5.6. Theorem 5.5 still holds if C2 is replaced by an arbitary Kaehler manifold

of complex dimension .2.

From Proposition 3.5 and Theorem 5.5 we have:

COROLLARY 5 . 7 . Let N be a surface in Cm. Then VF = 0 if and only if

either N is totally real or holomorphic in Cm or N is a minimal proper slant surface

in a complex linear subspace C2 of Cm .

6. TOTALLY REAL SURFACES

THEOREM 6 . 1 . Let N be a proper slant surface in C2 . Tiien there is a com-

patible almost complex structure J\ on E* such that N is totally real in (i?4,.7i) if

and only if N is minimal.

PROOF: Let N be a proper slant surface in C2 . We may choose e\, e2 , e% , e4

satisfying (4.1) and (5.3). Since VJ = 0, by comparing the normal components of

Vx{JY) and J( VJVV" 1 and using the formulae of Gauss and Weingarten, we have

(6.1) DX{FY) - F{VXY) = f<r(X,Y) - a{X,PY).

Thus, if we put De^ — wf ® e4 and De$ = ui\ ® e3 , (4.1), (5.3) and (6.1) imply

(6.2)
c

Suppose that there is a compatible almost complex structure J\ on E* such that N is

totally real in' (JE4, JI) • Then there is a function f> such that

e3 = (c
(6.3)

e4 = -
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Since Ji is parallel, (5.4) implies

Thus we get

(6.4) u>4 = ui\ + d<p.

Combining (6.2) and (6.4) we find

(6.5) cot e^trh^u1 + {trh*)u>2} = -dip,

where w1, ui2 denote the dual 1-forms of e\, e2. Also, (6.3) gives Jyei = (cosy>)e3 -

and Jie2 — (siny)e3 + (cos<^)e4. Thus, by (6.3), we obtain

/ijj = (cos2 f)h3
n + sin tp cos ip^h^ — /ij2) + sin2 <ph\2.

Thus, by applying (4.6) we get

(6.6) (sinV)(<r/i3) = 0 .

Similarly, we obtain

(6.7) (sinV)(tr/i4) = 0.

Let U = {x £ N | H(x) ^ 0} where H is the mean curvature vector. By (6.6) and

(6.7), we get tp = 0 (mod TT) on U. Hence, by (6.5), cot 9 = 0 on U. This says that if

TV is not minimal in C2 , then N is totally real in C2 which contradicts the assumption.

Thus, if N is totally real in (E*, Ji) for some compatible Ji then N is minimal in

C2.

Conversely, if N is minimal and proper slant in C2, then, by Theorem 5.2, N is

holomorphic in E* with respect to some compatible almost complex structure. Thus, by

Lemma 5.1, N is totally real with respect to a suitable compatible complex structure. U

Combining Theorems 5.2 and 6.1 we have

THEOREM 6 . 2 . Let N be a totally real surface in C2 . Then there is a compatible

almost complex structure J\ on E* such that N is a proper slant surface in [EA,Ji)

if and only if N is minimal.

PROOF: Let TV be a totally real surface in C2. If TV is proper slant with respect

to a compatible almost complex structure J\ on Z?4, then Theorem 6.1 implies that TV

is minimal in EA. Conversely, if TV is minimal, and totally real, then TV is proper slant

with respect to a compatible almost complex structure by Theorem 5.2 and Lemma

5.1. . D
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7. CLASSIFICATION OF SLANT SURFACES WITH PARALLEL MEAN CURVATURE VECTOR

THEOREM 7 . 1 . Let TV be a surface in C2 . Then TV is a siant surface with

parallel mean curvature vector, that is DH = 0, if and only if TV is one of the following

surfaces:

(a) an open portion of the product surface of two plane circles, or
(b) an open portion of a circular cylinder contained in a hyperplane of C2, or
(c) a minimal slant surface in C2 .

Moreover, in cases (a) and (b), TV is totally real in C2 .

PROOF: Let TV be a slant surface in C2 with parallel mean curvature vector. Then
the length of II is constant. Assume TV is not minimal. Then one may choose ei such
that e3 = (csc^Fe i is in the direction of / / . (Such e.\ is chosen if we choose e% in the
direction of —tH.) Since DH = 0, w| = 0. Thus the normal curvature GD vanishes.
Hence, by Lemma 4.1, TV is flat. Now, let V = {x € TV \ Aei ± 0 at x). If V = 0, then
Irrur C Span{//}. Thus, by DH = 0, TV lies in a hyperplane E3 of C 2 . Since TV is
flat with nonzero constant mean curvature, TV is an open portion of a circular cylinder.
(See Proposition 3.2 of [1, p.118]). If V ^ 0 and W is a connected component of V,
then e4 is a parallel, minimal, non-geodesic section on W. Since W is flat, Proposition
5.4 of [1, p.128] implies that W is an open piece of the product surface of two plane
circles. Since det(^4e4) is a nonzero constant on W, by continuity, we have V = N.
Thus, the whole surface is an open portion of the product surface.

Now, we claim that if N is non-minimal, then N is totally real in C2 . This can
be seen as follows. If N is not totally real, then, by a)| = 0 and trh4 = 0, (6.2) gives

(7.1) " 2 ( e 2 ) = 0, a,2(e1)

Because N is flat, by the structure equation and (7.1) we obtain

Thus, by (7.1), we obtain cot 9 = 0 which implies TV is totally real.

The converse of this is easy to verify. U

By applying Thoerem 7.1, we may obtain the following classification of slant sur-
faces with parallel second fundamental form.

THEOREM 7 . 2 . Let TV be a surface in C 2 . Tnen TV is a slant surface in C2

with parallel second fundamental form, that is Vu = 0, if and only if TV is one of the
following surfaces:

(a) an open portion of the product of two plane circles;
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(b) an open protion of a circular cylinder which is contained in a hyperplane

ofC2;

(c) an open portion of a slant plane in C2 .

Moreover, in cases (a) and (b), N is totally real in C2 .

PROOF: If N is a surface in C2 with parallel second fundamental form, then N

has parallel mean surface vector. Thus, by Theorem 7.1, it suffices to prove that slant

planes are the only minimal slant surfaces with parallel second fundamental form. But

this follows from the fact that every surface in C2 with Vcr = 0 is locally symmetric

and the only minimal surfaces in E* with constant Gauss curvature are the totally

geodesic ones. LI

From Theorem 7.1 we obtain the following:

COROLLARY 7 . 3 . There exist no compact proper slant surfaces in C2 with par-

allel mean curvature vector.

COROLLARY 7 . 4 . Let N be a slant surface in C2 with constant mean curvature.

Then N is spherical if and only if N is an open portion of the product surface of two
plane circles.

PROOF: If N is a spherical surface with constant mean curvature, then the mean
curvature vector of N in C2 is parallel. Thus, by Theorem 7.1, N is one of the surfaces
mentioned in Theorem 7.1. Among them, surfaces of type (a) are the only spherical
ones. The converse is clear. U

8. SOME EXAMPLES

EXAMPLE 8.1. For any nonzero constants a and b,

x(u,v) = (a cos u, b cos v, a sin u, b sin v)

gives a compact totally real surface in C2 with Vcr = 0.

EXAMPLE 8.2. For any a > 0,

x(u,v) = (acosu, v, asinu, 0)

defines a non-compact totally real surface in C2 with Ver = 0.

EXAMPLE 8.3. For any a , 0 < a < n/2,

x(u,v) = [u cos a,usin «,i;,0)

defines a slant plane with slant angle o in C2 .
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EXAMPLE 8.4. For any positive constant fc,

x(u,v) = {eku cos u cos v, e " sinucosD,el" cosusinv,ek u sinusint))

defines a complete, non-minimal, psuedo-umbilical proper slant surface in C2 with slant
angle cos"1 (fc/\/l + fc2) and with mean curvature e~ku/\/l + k2.

EXAMPLE 8.5. For any positive number fc,

x(u,v) = (u,kcosv,v, ksinv)

defines a complete, flat, non-minimal and non-psuedo-umbilical, proper slant surface
with slant angle cos"1 ( l / \ / l + fc2) and constant mean curvature fc/2(l + fc2) and
with non-parallel mean curvature vector.

EXAMPLE 8.6. Let k be any positive number and (</(s),/i(s)) be a unit speed plane
curve. Then

x(u,s) = ( — kss'mu,g(s),kscosu,h(s))

defines a non-minimal, flat, proper slant surface with slant angle fc/\/l + k2 .

Finally, we give some examples of Kaehlerian slant submanifolds in C4 .

EXAMPLE 8.7. For any k > 0,

x(u,v,w,z) = (u,v,ksmw,ks\nz,kw,kz,kcosw,kcosz)

defines a Kaehlerian slant submanifold in C4 with slant angle cos"1 fc.

Added in proof. In a forthcoming article of the author and Y. Tazawa it is proved that
every compact slant submanifold of C m is totally real.
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