A NOTE ON HARDY-ORLICZ SPACES

BY ZHANG JIANZHONG

ABSTRACT. W. Deeb, R. Khalil and M. Marzuq have studied some properties of $H(\phi)$, the Hardy-Orlicz spaces. They introduced the functions class N_p ($0) and discussed some properties of <math>N_p$. In the present short note we prove that $N_p = N^+$ for $0 . We also give a condition of <math>H(\phi) = H(\psi)$.

Introduction. Let us first recall some definitions. We call a real-valued function ϕ defined on $[0,\infty)$ a modulus function if ϕ is an increasing continuous subadditive function and satisfies the condition that $\phi(x) = 0$ iff x = 0. Let D denote the unit disc in the complex plane and H(D) the class of analytic functions in D. For a given modulus function ϕ , the Hardy-Orlicz space $H(\phi)$ is defined as

$$H(\phi) = \left\{ f \in H(D) : \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} \phi \left(|f(re^{i\theta})| \right) d\theta < \infty \right\}.$$

Let

$$H^+(D) = \left\{ f \in H(D) : \lim_{r \to 1} f(re^{i\theta}) = f(e^{i\theta}) \text{ a.e. on } \partial D \right\}$$

and

$$\begin{split} H(\phi)^+ &= \left\{ f \in H^+(D) \cap H(\phi) : \sup_{0 \leq r < 1} \frac{1}{2\pi} \int_0^{2\pi} \phi \left(|f(re^{i\theta})| \right) d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} \phi \left(|f(e^{i\theta})| \right) d\theta \right\}. \end{split}$$

See [1] and [2] for more details about $H(\phi)$ and $H(\phi)^+$.

For $0 , <math>\phi_p(x) = \log(1 + x^p)$ is a modulus function. Let N_p denote the space $H(\phi_p)^+$. (See [1]). Since $\phi_p(e^t) = \log(1 + e^{pt})$ is an increasing convex function of t, the function $\phi_p(|f(z)|) = \phi_p(e^{\log|f(z)|})$ is subharmonic provided that f(z) is an analytic function in D. Thus, from Theorem 1.6 in [3],

$$M\phi_p(r,f) = \frac{1}{2\pi} \int_0^{2\pi} \phi_p(|f(re^{i\theta})|) d\theta$$

Received by the editors March 21, 1988.

AMS Classification: 46A06, 46E20.

[©] Canadian Mathematical Society 1988.

is an increasing function of r, so we can rewrite N_p as following

$$\begin{split} N_p &= \left\{ f \in H^+(D) \cap H(\phi_p) : \lim_{r \to 1} \int_0^{2\pi} \log \left(1 + \left| f(re^{i\theta}) \right|^p \right) d\theta \\ &= \int_0^{2\pi} \log \left(1 + \left| f(e^{i\theta}) \right|^p \right) d\theta \right\}. \end{split}$$

Let N denote the Nevanlinna class as usual and N^+ its subclass

$$N^{+} = \left\{ f \in N : \lim_{r \to 1} \int_{0}^{2\pi} \log^{+} |f(re^{it})| dt = \int_{0}^{2\pi} \log^{+} |f(e^{it})| dt \right\}.$$

In [1] W. Deeb, R. Khalil and M. Marzuq studied some properties of N_p . In this short note we prove $N_p = N^+$ for all $0 and discuss the conditions for <math>H(\phi) = H(\psi)$.

We can now prove our main result.

Proposition 1. For all $0 , <math>N_p = N^+$.

PROOF. Fix p, 0 . Suppose <math>f(z) is an analytic function in D. Let $h(z) = \log(1 + |f(z)|^p) - p \log^+ |f(z)|$ for $z \in D$. It is not hard to see that $0 \le h(z) \le \log 2$.

Now suppose $f \in N^+$, then the radial limit of $f(re^{it})$, and hence of $h(re^{it})$, exists almost everywhere. We have

$$h(e^{it}) = \lim_{r \to 1} h(re^{it})$$

= \log(1 + |f(e^{it})|^p) - p \log^+ |f(e^{it})| a.e.

and

$$\lim_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{it})| dt = \int_0^{2\pi} \log^+ |f(e^{it})| dt < \infty.$$

By dominated convergence we then have

$$\lim_{r \to 1} \int_{0}^{2\pi} \log(1 + |f(re^{it})|^{p}) dt$$

$$= \lim_{r \to 1} \int_{0}^{2\pi} (h(re^{it}) + p \log^{+} |f(re^{it})|) dt$$

$$= \lim_{r \to 1} \int_{0}^{2\pi} h(re^{it}) dt + p \lim_{r \to 1} \int_{0}^{2\pi} \log^{+} |f(re^{it})| dt$$

$$= \int_{0}^{2\pi} h(e^{it}) dt + p \int_{0}^{2\pi} \log^{+} |f(e^{it})| dt$$

$$= \int_{0}^{2\pi} \log(1 + |f(e^{it})|^{p}) dt,$$

and from the above

$$\int_{0}^{2\pi} \log(1 + |f(e^{it})|^{p}) dt$$

$$= \int_{0}^{2\pi} h(e^{it}) dt + p \int_{0}^{2\pi} \log^{+} |f(e^{it})| dt$$

$$\leq 4\pi + p \int_{0}^{2\pi} \log^{+} |f(e^{it})| dt$$

$$< \infty.$$

This shows $f \in N_p$.

Conversely, let $f \in N_p$. By similar reasoning we can prove $f \in N^+$. Hence $N_p = N^+$ for 0 .

We now want to know when it follows that $H(\phi)^+ = H(\psi)^+$. Although necessary and sufficient conditions on ϕ and ψ are not known, we have the following observation.

Suppose ϕ is a modulus function such that $\phi_c(t) = \phi(e^t)$ is a convex function of t. Since $\phi(x)$ is increasing, so is $\phi_c(t)$. If f is an analytic function then $\log |f(z)|$ is subharmonic, and we have that $\phi(|f(z)|) = \phi_c(\log |f(z)|)$ is a subharmonic function. Some examples of such modulus ϕ are: x^p ($0), <math>\log(1 + x^p)$ ($0), and <math>x/(\log)_n(e_n + x)$, where $e_1 = e$, $e_n = e^{e_{n-1}}$, and

$$(\log)_n(e_n + x) = \underbrace{\log \ldots \log}_{n \text{th}}(e_n + x), \quad n = 1, 2, 3, \ldots$$

Lemma 2. Let $f \in N^+$, then

$$\phi\big(\big|f(re^{i\theta})\big|\big) \leq \frac{1}{2\pi} \int_0^{2\pi} p(r,\theta-t)\phi\big(\big|f(e^{it})\big|\big)dt.$$

PROOF. From Theorem 5.4 in [4, p. 71], we have

$$\log|f(re^{i\theta})| \le \frac{1}{2\pi} \int_0^{2\pi} p(r, \theta - t) \log|f(e^{it})| dt.$$

Observing that $\phi_c(t)$ is increasing, we obtain by Jensen's inequality

$$\begin{split} \phi \left(|f(re^{i\theta})| \right) &= \phi_c \left(\log |f(re^{i\theta})| \right) \\ &\leq \phi_c \left(\frac{1}{2\pi} \int_0^{2\pi} p(r, \theta - t) \log |f(e^{it})| dt \right) \\ &\leq \frac{1}{2\pi} \int_0^{2\pi} p(r, \theta - t) \phi_c \left(\log |f(e^{it})| \right) dt \\ &= \frac{1}{2\pi} \int_0^{2\pi} p(r, \theta - t) \phi \left(|f(e^{it})| \right) dt. \end{split}$$

Proposition 3. Let $f \in H(\phi) \cap N^+$, then

$$\lim_{r\to 1} \int_0^{2\pi} \phi(|f(re^{i\theta})|) d\theta = \int_0^{2\pi} \phi(|f(e^{i\theta})|) d\theta.$$

Proof. By Lemma 2,

$$\phi(|f(re^{i\theta})|) \le \frac{1}{2\pi} \int_0^{2\pi} p(r, \theta - t)\phi(|f(e^{it})|)dt,$$

hence

$$\begin{split} \int_0^{2\pi} \phi \big(|f(re^{i\theta})| \big) d\theta \\ & \leq \int_0^{2\pi} \frac{1}{2\pi} \int_0^{2\pi} p(r, \theta - t) d\theta \phi \big(|f(e^{it})| \big) dt \\ & = \int_0^{2\pi} \phi \big(|f(e^{it})| \big) dt. \end{split}$$

On the other hand, by the Fatou's lemma,

$$\int_0^{2\pi} \phi \big(|f(e^{i\theta})| \big) d\theta \leqq \lim_{r \to 1} \int_0^{2\pi} \phi \big(|f(re^{i\theta})| \big) d\theta.$$

Thus we have

$$\lim_{r\to 1}\int_0^{2\pi}\phi\big(|f(re^{i\theta})|\big)d\theta=\int_0^{2\pi}\phi\big(|f(e^{i\theta})|\big)d\theta.$$

REMARK 4. From Proposition 3, we know that $H(\phi) \cap N^+ \subset H(\phi)^+$. We believe that $H(\phi) \cap N^+ = H(\phi)^+$, so that $H(\phi)^+ = H(\psi)^+$ if and only if $H(\phi) = H(\psi)$.

We have the following

Proposition 5. Let ϕ and ψ be modulus functions. If

$$\overline{\lim}_{x\to\infty} \frac{\phi(x)}{\psi(x)} < \infty,$$

then $H(\psi) \subset H(\phi)$.

Proof. Suppose

$$\overline{\lim}_{x \to \infty} \frac{\phi(x)}{\psi(x)} < \infty,$$

then there are $x_0 > 0$ and $0 < M < \infty$ such that $\phi(x) < M\psi(x)$ for $x > x_0$. Let $f \in H(\psi)$, then

$$\begin{split} \frac{1}{2\pi} \int_{0}^{2\pi} \phi \big(|f(re^{it})| \big) dt \\ &= \frac{1}{2\pi} \int_{\{\theta: |f| \le x_0\}} \phi \big(|f(re^{it})| \big) dt + \frac{1}{2\pi} \int_{\{\theta: |f| > x_0\}} \phi \big(|f(e^{it})| \big) dt \\ &\le \phi(x_0) + \frac{1}{2\pi} \int_{\{\theta: |f| > x_0\}} M \psi \big(|f(re^{it})| \big) dt \\ &\le \phi(x_0) + M \frac{1}{2\pi} \int_{0}^{2\pi} \psi \big(|f(re^{it})| \big) dt < M_0. \end{split}$$

where M_0 is a finite positive constant independent of r. Therefore $f \in H(\phi)$. This shows that $H(\psi) \subset H(\phi)$.

Remark 6. From Proposition 5, we know that $H(\phi) = H(\psi)$ if

$$0 < \underline{\lim}_{x \to \infty} \frac{\phi(x)}{\psi(x)} \le \overline{\lim}_{x \to \infty} \frac{\phi(x)}{\psi(x)} < \infty.$$

ACKNOWLEDGMENTS. The author wishes to thank Professors Yao Wenxin, Yuan Changnian and Chang Xinyi for their helpful suggestions.

REFERENCES

- 1. W. Deeb, R. Khalil and M. Marzuq, *Isometric multiplication of Hardy-Orlicz spaces*, Bull. Austral. Math. Soc. **34** (1986), 177–189.
 - 2. W. Deeb and M. Marzuq, $H(\phi)$ spaces, Canad. Math. Bull. **29**(3) (1986), 295–301.
 - 3. P. L. Duren, *Theory of H^p spaces*, Acad. Press, New York and London (1970).
 - 4. J. B. Garnett, Bounded Analytic Functions, Acad. Press, New York (1981).

Department of Mathematics Shaanxi Teachers University Xi'an China