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A NOTE ON HARDY-ORLICZ SPACES

BY
ZHANG JIANZHONG

ABSTRACT. W. Deeb, R. Khalil and M. Marzuq have studied some
properties of H (¢), the Hardy-Orlicz spaces. They introduced the functions
class Np (0 < p = 1) and discussed some properties of Np. In the present
short note we prove that N, = N* for 0 < p < 1. We also give a condition
of H(¢) = H().

Introduction. Let us first recall some definitions. We call a real-valued function
¢ defined on [0, 00) a modulus function if ¢ is an increasing continuous subadditive
function and satisfies the condition that ¢(x) = 0 iff x = 0. Let D denote the unit
disc in the complex plane and H (D) the class of analytic functions in D. For a given
modulus function ¢, the Hardy-Orlicz space H(¢) is defined as

- : L i
H(¢) = {fGH(D).Os:;LrlgI 2—7;/0 o(|f(re )|)d9<oo}.

- H*(D) = {f € H(D): lim f(re®) = f(e*) ae.on aD}
and
H(¢)" = {f €H'(D)NH(): sup 21—” Ozﬂ o(|f(re™)|)db
=5 ’ ¢(|f<e"’>|)de}.

See [1] and [2] for more details about H(¢) and H (¢)*.

For 0 < p =1, ¢p(x) = log(1 + x?) is a modulus function. Let N, denote the
space H (¢,)*. (See [1]). Since ¢,(e’) = log(1 +e?") is an increasing convex function
of 1, the function ¢, (|f(z)]) = ¢,(e'°¢//@) is subharmonic provided that f(z) is an
analytic function in D. Thus, from Theorem 1.6 in [3],

1 2T .
Mo,(r, /== [ ¢, (Ifre®)|)db
27[' 0
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is an increasing function of r, so we can rewrite N, as following

2w
N, = {f € H'(D)NH (@) : lim / log (1 +|f(re™)?)d8
=t Jo
27
- [t
0

Let N denote the Nevanlinna class as usual and N7 its subclass

2T

27
Nt = {f €N : lim / log* | f(re™)|dt :/ log*]f(e”)ldt} .
r=1 Jo 0

In [1] W. Deeb, R. Khalil and M. Marzuq studied some properties of N,. In this
short note we prove N, = N* for all 0 < p = 1 and discuss the conditions for

H(¢) = HW).

We can now prove our main result.
PROPOSITION 1. For all 0 <p =1, N, = N*.

Proor. Fix p, 0 < p = 1. Suppose f(z) is an analytic function in D. Let h(z) =
log(1+|f(2)]P) —plog" |f(z)| for z € D. It is not hard to see that 0 < h(z) < log 2.

Now suppose f € N*, then the radial limit of f(re"), and hence of h(re™), exists
almost everywhere. We have

h(e") = lim h(re")
=log(1+|f (M) —plog*|f(eM)] a.e.
and
21 ) 21 )
lirr} f log* | f(re")|dt = / log* | f(e™)|dt < o0.
r=t Jo 0

By dominated convergence we then have

r—1

2m
lim/ log(1 +|f(re™)|?)dt
0

— lim / * (h(re™) + plog* | f(re™)|)dr
0

r—1
27 ) 2 )
zlin} h(re”)dt+plin}/ log* | f(re™)|dt
=1 Jo =1 Jo

2 2m
= / h(e™)dt + p / log" | f(e")|dt
0 0

2
:/ log(1 +[f(e™)|P)dt,
0
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and from the above
2m )
/ log(1+|f(e")|P)dt
0
2m ) 2m )
= f h(e™)dt +p / log™ | f(e")|dr
0 0

27

§47r+p/ log* | f(e™)|dt
0

< 00.

This shows f € N,.
Conversely, let f € N,. By similar reasoning we can prove f € N*. Hence N, = N*
forO<p=1. a

We now want to know when it follows that H(¢)* = H(¢))*. Although necessary
and sufficient conditions on ¢ and 1 are not known, we have the following observation.

Suppose ¢ is a modulus function such that ¢.(t) = ¢(e’) is a convex function of
t. Since ¢(x) is increasing, so is ¢.(¢). If f is an analytic function then log |f(z)] is
subharmonic, and we have that ¢(|f(z)|) = ¢.(log|f(2)|) is a subharmonic function.
Some examples of such modulus ¢ are: x” (0 <p = 1), log(1+x?) (0 <p = 1), and
x/(log)(e, + x), where e; = e, e, = ¢“', and

nth

—N—
(log),(e, +x) =log...log(e, +x), n=1,2,3,...
LeEMMA 2. Let f € N*, then
. 1 [ .
s(lee) S 5= [ b6 =ns(lfen))ar
0
Proor. From Theorem 5.4 in [4, p. 71], we have
, 1 [ _
log If(re'g)l = — ] p(r,0 —)log|f(e™)|dtr.
27'(' 0
Observing that ¢, (¢) is increasing, we obtain by Jensen’s inequality

o(|fre®)]) = ¢.(log|f(re™)))
1 [ _
é@( / p(r,é)—t)log|f(e”)|dt)
0

27

I\

1 2 .
> /0 p(r,8 — D)o (log | f(e™)|)dr

I

1 [ .
3 / p(r 0 —0¢(|fM)])dr. a
0
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ProposITION 3. Let f € H(¢) NN, then

2 2m
lim /O o(1f(re®))dd = /0 o(1f@®)])d

Proor. By Lemma 2,

2w
(If(re"’)l)é / p(r,0— 06 (1f (e"))dt
0

2
/0 o(|f(re)])db

27 1 27 ]
< L _ it
s[5 [ po—onase(renpa
271
=/O (| f(e"))dr.

On the other hand, by the Fatou’s lemma,

2w ) 2 )
| otsennas < sim [ o(1ren)as
0 r— 0

hence

Thus we have . .
lim /0 (| fre™)|)d6 = /0 ¢(|f(e™)])d6. O

REMARK 4. From Proposition 3, we know that H(¢) "NN* C H(¢)". We believe
that H(¢) "N* = H(¢)", so that H(¢)* = H(¥)* if and only if H(¢) = H(¥).

We have the following

PROPOSITION 5. Let ¢ and vy be modulus functions. If

fm 20

oo Pory O
then H(y) C H(9).
PrOOF. Suppose

— o
lim —— < oo,

then there are xo > 0 and 0 < M < oo such that ¢(x) < My(x) for x > xy. Let
f € H(), then

27
5= / o(|f(re")|)d

1 _
= |f(re™)|)dt + — o(|f(eM))at
2” {6: |f|<\o} # ) 21 Jgo:1 71> xa} ( )

< B(xo) + — / My (| (re™))dt
27 J10:1£1>x0}

1 [ ,
= o)+ M oy /(; 1/J(|f(re”)|)dt < M.
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where My is a finite positive constant independent of r. Therefore f € H(¢). This
shows that H(y)) C H(¢). ]

Remark 6. From Proposition 5, we know that H(¢) = H(v) if

0<li_m@<l_'n_i£(x—)<oo.

o B(X) ~ x0 P(x)
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