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Abstract

The stability properties of the family ^ of all intersections of closed balls are investigated in spaces
C(K), where K is an arbitrary Hausdorff compact space. We prove that *-# is stable under Minkowski
addition if and only if K is extremally disconnected. In contrast to this, we show that ^ is always ball
stable in these spaces. Finally, we present a Banach space (indeed a subspace of C[0, 1]) which fails to
be ball stable, answering an open question. Our results rest on the study of semicontinuous functions in
Hausdorff compact spaces.

2000 Mathematics subject classification: primary 46B20; secondary 46E15.

1. Introduction

Would you say that the outer parallel body of an intersection of closed balls is again
an intersection of closed balls? We solve this problem, raised in [5], surprisingly in
the negative, in contrast with the result proved in [6] stating that the inner parallel
body of an intersection of closed balls is always an intersection of closed balls. The
family Jt of all intersections of closed balls is one of the most interesting classes
of convex sets. The question of whether every closed, convex and bounded set of
a normed space is in M', a property which is known under the name of the Mazur
intersection property (MIP), attracted during the past 60 years the attention of many
authors. However, the properties of the family M when the space fails the MIP have
seldom been investigated. Results in this direction can be found, for instance, in
[2, 5, 7, 8]. We are interested here in the interplay between Minkowski addition and
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topological properties of Ji, on the one hand, and the geometry of the underlying
Banach spaces, on the other.

We say that Jt is (i) stable i fC + D € Jt when C,D zJt; and (ii) ball stable if

C + kB e J( for every C e / and every X > 0, where B is the (closed) unit ball of
the space. These definitions are motivated by the natural extension of the notions of
Minkowski sum and parallel body, respectively, to the context of infinite dimensional
Banach spaces. It was proved in [5] that •/# is stable in (C(K), || • ||oo) when K
is extremally disconnected. We improve this result by showing that the stability of
M in (C(AT), || • Hoc) actually characterizes the extremal disconnectedness of K. In
contrast to this, we show that M is ball stable in (C(K), || • ||oo) for every compact
Hausdorff space K. We exhibit the first example of a Banach space where M fails to
be ball stable, answering a question raised in [5]. Finally, the ball stability of J( in
(C(K), || • Hoo) is used to prove that, in this space, M is (topologically) closed.

The proofs involve the use of some fine properties of semicontinuous functions
defined in compact Hausdorff spaces. Those readers familiar with the theory of Riesz
spaces will recognize some methods and results from the theory of Banach lattices
with strong unit. Indeed, in some cases, the usual techniques from this theory can be
used to provide alternative proofs of our results.

2. Semicontinuous functions and intersections of closed balls in C(K)

Given an arbitrary Hausdorff compact space and t € K, denote by 8, the Dirac
functional defined as S,(f) = fit) for every / € C(K). Given bounded real-valued
functions / , g on K such that fit) < g{t) for every t e K, we denote

[/, g] = {h € C(K) : f(t) < hit) < git) for all t e K}.

This set can also be written as

The function / : K -+ R is called:

(i) lower semicontinuous if lim inf y^.x fiy) > fix) for all x € K; and
(ii) upper semicontinuous if lim sup^^ fiy) < fix) for all x € K.

The set of points of continuity of a function f : K -*• R will be denoted by Df.
When Df is dense in K we say that / is densely continuous. Semicontinuous
functions (upper or lower) on arbitrary topological spaces are always continuous on
a residual set [4]. Consequently, when defined on a compact space, they are densely
continuous. This is a property that will have a special relevance throughout this paper.
We will call / , g : K -> IR an admissible pair when:
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(a) they are lower and upper semicontinuous, respectively; and

(b) for every x 6 K, lim infy_>x g(y) > lim sup^^ f(y).

Due to the density of Df and Dg, (b) is equivalent to:

(b') for every x e K, lim inf ̂ . . ^ g(y) > lim s u p ^ , >eO/ f(y);

both imply that f(x) < g(x) for every x e K.

LEMMA 2.1. If K is a compact Hausdorff space and f, g: K -> K form an
admissible pair, then there exist functions f,g:K^>-K such that f, g are upper and
lower semicontinuous, respectively, f < f < g < g and 0 ^ [/, g] = [/, g].

PROOF. Recall (see [3, page 61]) that a 7, -space X is normal if and only if, for
every pair of real valued functions x(r, <p, upper and lower semicontinuous, respectively,
satisfying is(x) < (p (x) for every x e X, there exists a continuous function (j>: X —> U.
such that \j/(x) < <j>{x) < <p{x) for every x 6 X. As a consequence, we just need to
find a pair of functions f,g:K-+R upper and lower semicontinuous, respectively,
satisfying

(2.1) f(x)<f(x)<g(x)<g(x)

for every x € K, and [/, g] = [/, g]. Then, the above sandwich result yields the rest
of the proof, namely that 0 ^ [/, g]. To this end, we define

/ W ( / W ifxeD,.
I lim sup yeD f(y) ifx$Df,

g(x)=\8(x) ifxeDg,
\li\f g(y) ifx<£Dg.

First we prove that g is lower semicontinuous. Indeed,

(2.2) g(x) = lim inf g(y) = lim inf g(y) = lim inf g(y)
y->x,yeDg y-*x,yeDt y-*x

for every x € K, where the two first equalities are simply due to the definition of
g and the density of Dg in K. With respect to the last equality notice that always
lim inf y^x g(y) < lim inf y_>x, y€Dg g(y). To prove the converse inequality assume, on
the contrary, that

(2.3) a = lim inf g(y) < lim inf g(y) = f) .
y-*x y^x.yeD,

Consider y = a + (2/3)(/J — a). We will show that, for every neighborhood Gx of
x, there is w € Gx D Dg satisfying g(w) < y, hence lim inf,,_>*, >SED, g(y) < y < ft,
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a contradiction. Since a = liminf^j g(y), given e = (ft — a)/3, there is z 6 Gx

such that g(z) < a + s. If z € Dg, we are done. If not, recall that g(z) =
liminfj^.ygD, g(y). Since G* is also a neighborhood of z, and £>g is dense in K, the
set Gx n Dg is a nonempty neighborhood of z in the relative topology of Dg. This
implies that there is w € G, Pi Dg such that g(w) < ot + 2e = y and contradicts (2.3),
as claimed above. An analogous argument shows that / is upper semicontinuous.
Besides, f(x) < g(x) for every x € K since / , g form an admissible pair. Finally, the
proof that [/, g] = [/, g] is straightforward: on the one hand, [/, g] c [/, g] is due
to (2.1); on the other hand, to verify the reverse inclusion, consider h e [/, g]. Then
h(x) > lim sup^x >eDj / (v) = f(x) for every * <= K. Analogously, h(x) < g(x),
for every x e /£, hence h e [/, g]. •

The characterization given in [10] of convex sets which are intersections of balls
in (C(K), || • || oo) can be easily formulated in terms of admissible pairs: If K is a
compact Hausdorff space, then C C C(K) is a nonempty intersection of closed balls
if and only ifC = [/, g], where / , gform an admissible pair.

Let us give a brief proof of this fact, for the sake of completeness. If we consider
a family of balls {B, = h, + r,B} satisfying C = n,£, ^ 0, then C = [/, g] where
f{t) = sup,-{M0 - n) and g(t) = inf,{fc,(0 + r,} for each t e K. It is clear
that / is lower semicontinuous and g is upper semicontinuous. Given h e C, we
have limsup^, f(s) < h(t) < liminfj^., g(s) for every t € K, hence / , g form an
admissible pair.

Conversely, suppose that C = C\,^KS~l[f(t), g(t)] where / , g are lower and
upper semicontinuous, respectively. Consider h € C(K) such that h £ C. There is
t0 e K such that h(t0) <£ [/(fo), g(fo)L Assume, for instance, that h(t0) < f(t0).
Notice that / is the supremum of a family of continuous functions on X, say { ,̂}-
Indeed, since K is normal, / is the pointwise supremum of the set of all continuous
functions that are less or equal to / (which is nonempty, because / is bounded below).
Consequently, there is i0 such that i/fio(tQ) — h(t0) = 2m > 0. Take M > 0 satisfying
V̂oCO + M > g(t) for every t e K {g is bounded above). Finally, consider the ball
D centered in y,0 + (M - m)/2 and having radius (M + m)/2. Then, C C D, but
/i ^ D. As a direct consequence of Lemma 2.1, we have C = [/, g] ^ 0 provided
/ , g form an admissible pair.

The above representation will be used repeatedly through this paper since it turns
out to be very useful in virtue of the nice properties of semicontinuous functions. For
instance, given an admissible pair / , g, the points of continuity of both functions can
be characterized as follows.

PROPOSITION 2.2. When f, g form an admissible pair, g is continuous at x0 € K
if and only if g(x0) = sup 8X0(C), where C = [f,g] C C(K). Analogously, f is
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continuous at x0 if and only if f(x0) = inf 8Xo(C).

PROOF. Necessity was proved in [10, Theorem 4.3]. Let us sketch the idea of
this implication, for the sake of completeness. Pick t0 € K, a point of continuity
of g. Given e > 0, our purpose is to find h € [/, g] such that h(t0) > g(t0) — e.
To this end, Lemma 2.1 ensures that [/, g] ^ 0 and we begin by choosing an
arbitrary function <p e C. We may assume that q>(t0) < g('o) (since otherwise there
is nothing to prove) and (p(tQ) < g(t0) — e (considering a smaller e, if necessary).
By continuity of g and <p at to, there is a neighborhood G of t0 such that t e G
implies g(t) > g(t0) — s and (p(t) < g(t0) — s. Consider, finally, a Urysohn function
f: K -> R satisfying f (t) = 0 for all t € K \ G, ^(r0) = 1 and 0 < f(t) < 1 for
each t e K. We now modify <p in order to obtain the desired function h, as follows:
h(t) = (1 - f(t))<p{t) + i/(t)(g(tQ) - e) for all t e K. The argument for the points
of continuity of / is analogous. To prove sufficiency, consider x0 € K such that
g(x0) = sup5i0(C). Consider the function g(x) = supheCh(x), x € K, which is
well denned since C ^ 0. Moreover, g is lower semicontinuous and g(x) < g(x).
Therefore we can write

g(x0) = g(x0) < liminf g(x) < liminf g(x),
X-+XQ X—*-Xo

so the upper semicontinuous function g is lower semicontinuous at x0 hence is con-
tinuous at this point. Again, the argument for / is completely analogous. •

To finish this section, we include the following useful result that applies, in partic-
ular, to Minkowski sums of sets which are intersections of closed balls in C(K). It
will be used in the proof of the main result of the next section. It is a special form
of the Riesz decomposition property, but, in default of a suitable reference, we give a
proof for greater clarity.

PROPOSITION 2.3. Every pair of (not necessarily continuous) functions <p, \jr :
K -*• R with (p < \(r and every pair f,ge C(K) with f < g satisfy

[/, g] + 1<P> *] = if + <P, g + *]

provided [<p, \jr] ^ 0.

PROOF. For the case / = g, the conclusion holds even when / is not continuous:
/ + [q>, t/f] = [f + <p, f + if]. We will consider first the following special case:
if>, f e C(K). Since

[0, f -
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we may assume that / = 0 and <p = 0. To prove that [0, g] + [0, if/] = [0, g + rjr],
we just need to show that

(2.4) [0,g] + [0,f]D[0,g + Tjr],

since the reverse inclusion is straightforward. The inclusion (2.4) is a consequence of
the classical Riesz decomposition property [9]. For instance, every h e[0, g + ty] can
be decomposed as h = hi + h2 where ht = min{/i, g] and h2 = h — /ii are continuous
functions satisfying h{ e [0, g] and h2 e [0, rjr].

We can proceed now with the general case, namely that [/, g] + [<p, V] = [/ +
<P» 8 + &]• Again, the nontrivial inclusion is [/, g] + [(p, f] D [f + <p, g + yfr].
Consider h 6 [/ + (p, g + ifr]. If we can find a pair of continuous functions / , g such
that <p < f < g < \{r and

(2.5) f + f<h<g + g,

then we have finished: the problem can be reduced to the special case since (2.5)
implies that h e [/, g] + [/, g] and, obviously, [/, g] C [<p, is]. To this end, given a
continuous function £ e [cp, \jr], we define

g = max{£, h - g) and / = min{|, h - / } .

Then, cp < g < is and <p < f < g. It is not difficult to check that (2.5) holds for this
choice of / and g. •

The above result can be used to prove that, when B is the unit ball in C{K),
C = n,fi, is an intersection of balls and X > 0, then

(2.6) C + \B = (~l,fi, +XB = n,(B, + XB).

In particular, JZ is always ball stable in (C(K), || • Hoc). The proof of (2.6) follows the
lines of [5, Proposition 2.1], where the same equality was proved in the case that K
was extremally disconnected.

3. Stability and ball stability of. #

The importance of the ball stability of M is related, for instance, to the continuity
of the ball hull mapping, which associates to each bounded set D its ball hull D, the
intersection of all closed balls containing D, as illustrated in the following remark.
The continuity of the ball hull mapping, in turn, implies that J( is topologically closed
(see the argument following Remark 3.2).
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REMARK 3.1. The ball hull mapping under the Hausdorff metric is Lipschitz with
constant 1 provided M is ball stable.

PROOF. Since the ball hull mapping restricted to Jt is the identity, it is clear that
the constant must be greater or equal than 1. Now consider two bounded sets C, D
satisfying dist(C, D) < s. If J( is ball stable, then C C D + sB C D + eB e Ji',
and this implies C c D + sB. Analogously, by a symmetric argument, D c C + eB
and hence dist(C, D) <s. •

REMARK 3.2. Jt is ball stable in (C(K), || • ||oo), for every compact Hausdorff
space K. As a consequence, ^# is (topologically) closed in these spaces.

The first part of Remark 3.2 follows directly from Proposition 2.3. The argument
to prove the second part is quite simple. Since ^ is ball stable in (C(K), || • Hoc), the
ball hull mapping is continuous. Consider a sequence [Cn] C ^ which converges to
C C C{K). Then

Cn • C

thus implying that C = C. Let us mention that we do not know whether the continuity
of the ball hull mapping implies the ball stability of jft'. On the other hand, it is
tempting to think that the ball stability of M is a property shared by every Banach
space. Indeed, it is explicitly mentioned in [5] that there are no examples of spaces for
which jfl is not ball stable. Here we present one, showing that the conjecture above
is false. Recall that the convex body C + KB is called an outer parallel body of C.

THEOREM 3.3. The outer parallel body of an intersection of closed balls needs not
be an intersection of closed balls.

PROOF. Let X = {/ € C[0, 1] : 2/(1/2) = / ( I )} , let C = [/, g] in C[0, 1] with
g(0 = X[\/2,i](0 and f(t) = -X[o,i/2j(O- Then C = [/, g] n X is an intersection of
balls in X but this is not the case for D = C + B, where B is the unit ball of X.

It is not difficult to show that C is an intersection of balls. Indeed, consider
£ € X \ C Say, for instance, that there is t0 e [0, 1] such that £(f0) > gih)- If
t0 € [1/2, 1], then £ £ B and C C B. Otherwise, if t0 e [0, 1/2), consider

?(*) =
- 1 if 0<x<t0,

ax - all if t0 < x < 1/2,

0 if 1 / 2 < * < 1 ,
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where a = (1/2 - to)~
l. Then f € C and, moreover, C C £ + B, while ||£ - f || > 1,

thus showing that C is an intersection of closed balls of radius 1. We will show now
that the function h{t) = It (which is in X \ D) belongs to every closed ball in X
containing D. Indeed, a closed ball in X is just a set of the form <f> + XB where </> € X
and X > 0. For every t e [0, 1/2), <f>(t) + k > 1. Also, for every t e (1/2,1),
<j>{t) + k > 2. Since <p is continuous, the above inequalities are true for t e [0, 1/2]
and [1/2, 1], respectively. Then h(t) < 4>{t) + k, for every t e [0,1]. A similar
argument shows that (j)(t) - k < -2 if t e [0,1/2] and <p(t) - k < - 1 if t e [1/2, 1].
Consequently, 4>(t)- k < h(t) < </» (0 + X for every t e [0, 1], so ||/i-0||oo < k. •

Given a convex set C and k, the set C ~ kB = [x € C : dist(*, X \ C) > k) is
called an inner parallel body of C. The above result should be compared with the
one obtained in [6]: if C is an intersection of closed balls then C ~ kB is again an
intersection of closed balls (which can possibly be empty). For a systematic study of
parallel bodies (in finite dimensional spaces) the reader is referred to the authoritative
book by Schneider [12]. We now come to the main result of this section which
characterizes those Hausdorff compacta for which Jt is stable in C(K). This result
contrasts the fact that M is always ball stable in (C(K), \\ • ||oo).

THEOREM 3.4. Given a compact Hausdorff space K, Ji is stable in (C(K), || • H )̂
if and only if K is extremally disconnected.

PROOF. The stability of Jt in (C(K), || • ||oo) when K is extremally disconnected,
was proved in [5] using the fact that, once we fix an extreme point e of the unit ball,
there is a unique way of making C(K) into a complete vector lattice such that the
order interval [—e, e] is just the unit ball. Here we outline a direct proof. The main
idea is the following: if K is extremally disconnected and C = [f, g] c C(K) is
an intersection of balls, then there exist two continuous functions / , g : K —> R
satisfying

(3-D f(x) < f(x) < gix) < g(x)

and also [/, g] = [/, g]. The result follows by applying Proposition 2.3. In order
to find / and g, we modify the functions / and g in a similar fashion as we did in
Lemma 2.1:

|liminf / (y) if x i Df,

•x.yeD.SOO if X i Dg.
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Then, / and g still form an admissible pair which satisfies (3.1) and [/, g] = [/, g].
Let us show that g is continuous (the proof for / is analogous). Suppose, on the
contrary, that there is x0 6 K such that g is not continuous at x0. Then,

liminf g(y) = liminf g(y) = a < g(x0).
y-*xo.y€Ds y^-xo,yeDs

Let p = (l/2)(g(x0) + a). Since g is upper semicontinuous, G = g~'(—°°,/?)
is open. Moreover, G is open because K is extremally disconnected. Notice that
xQ € G, since limmfy->Xo,yeDgg(y) < ft, so there is an open neighborhood Uxo

satisfying x0 e UXo C G. However this implies g(x0) = lim sup^^^ yeDg g(y) < fi, a
contradiction.

To prove the converse, assume that there is an open set G C K such that G is not
open (in particular G £ K). We construct a pair of sets C, D e Jt such that C + D
is not an intersection of balls. To this end, define f,g : K -> K by

, , „ , , f l if xeK\G,
(3.2) P(X) = { f(x) =

S (0 if x e G ,
It can be readily verified that g is upper semicontinuous, / is lower semicontinuous and
f < g. The points of continuity of g and / are G U (K \ G). Our strategy is to define
C = If, g], then to choose D - -C and finally to prove that C -C = C -C i Jt.
Consider

and define g = 1 - xs and / = — g. We claim that C — C = [f, g]. Notice
first that 5 ^ 0 because G is not open. It is clear also that C — C C [f, g], since
(p(y) = 0 for every function <p e C and each _y € 5, hence for every function in — C as
well. To prove the reverse inclusion, consider h e [/, g] and the usual decomposition
h = h+ + h~, where h+ = max{/i, 0} and h~ = min{h, 0}. We can also decompose h
as follows: h = hx+h2, where

f/r(;t) if x 6 G, ( /J + (*) if x € G,
M) h2(x) =if xeK\G, [h-(x) if xeK\G.

Both hi and /i2 are continuous since h{y) = 0 for each y e S and then the Pasting
Lemma can be applied [11]. It is straightforward to check that h\ € C and h2 € —C.
On the other hand, C - C = [f, g] and [/, g] - nxeKS;l([f(x), g(x)]). Hence, as
an intersection of closed sets, the set C — C must be closed. Let us check that C — C is
not an intersection of balls. Assume, on the contrary, the existence of / and g, lower
and upper semicontinuous, respectively, satisfying
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When x e K is a point of continuity for / and g we know, using Lemma 2.2,
that sup^(C - C) = gix) and inf8X(C - C) = fix). Consequently, at these
points, f{x) < f(x) and gix) > gix). Therefore fix) < - 1 and gix) > 1 for
every x e (G U iK \ G)). Since / and g are lower and upper semicontinuous,
respectively, this implies that fix) < — 1 and gix) > 1 for every x € G, thus for
every x e K. Hence [/, g] contains the unit ball, which contradicts the fact that
[f,g] = C-Cc S;\0) for each y e S. •

A closed, convex and bounded set C is a Mazur set provided that for every hyper-
plane H such that dist(C, H) > 0, there is a ball D satisfying C c D a n d D f l / / = 0.
In virtue of the Hahn-Banach theorem, Mazur sets are intersections of balls which
simply satisfy a stronger separation property. When every intersection of balls is a
Mazur set, we say that the space is a Mazur space. This class was introduced in [5],
where some of its structural properties were investigated. In particular, it turns out
that J( is always stable in these spaces. On the other hand, it was also proved in
[5] that iCiK), || • Hoc) is a Mazur space when K is extremally disconnected. These
results, together with Theorem 3.4, prove that (C(#), || • ||oo) is a Mazur space if and
only if K is extremally disconnected.

Some arguments used in the proof of Theorem 3.4 can be used to characterize the
extremal disconnectedness of K in terms of two classic notions from convex geometry.
Recall that a closed, bounded and convex set C in a Banach space has constant width
d > 0 if, for every f e X* with | | / | | = 1, we have sup / (C - C) = d; we say that
C is diametrically maximal if, for every x ^ C, diam({^} U C) > diam C. Sets with
constant width are always diametrically maximal [1]. The two notions coincide in
any two dimensional space, but they fail to coincide in certain 3-dimensional spaces.
In the case of iCiK), || • ||oo), K a compact Hausdorff space, they coincide if and
only if K is extremally disconnected. To prove necessity, assume that K is extremally
disconnected and C is diametrically maximal. Then C is an intersection of balls [1]
and, as we observed in the proof of Theorem 3.4, there are two continuous functions
/, g : K -*• R satisfying C = [/, g]. This fact, together with the characterizations
given in [10], proves that C has constant width. Conversely, if K is not extremally
disconnected, we can consider the functions / , g denned in (3.2). The set [/, g] is
diametrically maximal, but has no constant width.
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