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Total Character of a Group G with
(G,Z(G)) as a Generalized Camina Pair

S. K. Prajapati and R. Sarma

Abstract. 'We investigate whether the total character of a finite group G is a polynomial in a suitable
irreducible character of G. When (G, Z(G)) is a generalized Camina pair, we show that the total
character is a polynomial in a faithful irreducible character of G if and only if Z(G) is cyclic.

1 Introduction

Throughout this article, G denotes a finite group. Let Irr(G), nl(G) and lin(G) be the
set of all irreducible characters of G, the set of all nonlinear irreducible characters of
G and the set of linear characters of G, respectively. Suppose that p is the direct sum
of all the non-isomorphic irreducible complex representations of G. The character 7¢
afforded by p is called the total character of G, that is, 76 = Xycrre(g) X- Since 7¢ is
stable under the action of the Galois group of the splitting field of G, 176(g) € Z for
all g € G. The dimension of the total character of a group seems to have remarkable
connection with the geometry of the group. For instance, in the case of the symmetric
group G = S, 76 (1) is the number of involutions of S, [9], whereas in the case of
G = GL(n, q), 76 (1) is the number of symmetric matrices in GL(n, q) [3]. Degree of
total character is discussed by many authors [4,6,13,15,16].

A consequence of a well-known theorem due to Burnside and Brauer [5, Theorem
4.3] is that the total character of the group G is a constituent of 1+ y +---+ y"™ ' if y is
a faithful character which takes exactly m distinct values on G. M. L. Lewis and S. M.
Gagola [2] classified all the solvable groups for which y* = 75 for some y € Irr(G).
Motivated by this, K. W. Johnson raised the following question (see [14]).

Do there exist an irreducible character y of G and a monic polynomial f(x) € Z[x]
such that f(y) = 76?

The aim of the article is to solve a weaker version of the same, i.e., to examine the
existence of f(x) € Q[x] and y € Irr(G) such that f(y) = 7. We call such a poly-
nomial f(x) € Q[x], if it exists, a Johnson polynomial of G. This problem has been
studied for dihedral groups D,, in [14]. In fact, the authors have proved that D,,, has
a Johnson polynomial if and only if 8 } n.

To describe the classes of groups to which our results apply, we recall some defi-
nitions. A pair (G, N) is said to be a generalized Camina pair (abbreviated GCP) if
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N is normal in G and, all nonlinear irreducible characters of G vanish outside N [12].
There are a number of equivalent conditions for (G, Z(G)) to be a GCP. An equiva-
lent condition we will refer to is that a pair (G, Z(G)) is a GCP if and only if, for all
g € G\ Z(G), the conjugacy class of g in G is gG'.

In this article, we compute the total character 7 of a group G for which (G, Z(G))
is a generalized Camina pair and prove a necessary and sufficient condition for the
existence of a Johnson polynomial. Our main results can be stated as follows.

Theorem 1.1 Let (G, Z(G)) be a GCP. Then G has a Johnson polynomial if and only
if Z(G) is cyclic. In fact, if Z(G) is cyclic, then a Johnson polynomial of G is given by
Fx) = @ 3 (xfd) +d 3 (/)
=1 j=1
' oy
where d = |G/Z(G)|Y% r = |Z(G)/G'|, m = |Z(G)|, and | = |G'|. In particular,
f(x)=d*(x/d)™ + dz;:l(x/d)j when Z(G) is cyclicand Z(G) = G'.

In the last section, we apply the above theorem to prove the following.

Theorem 1.2 If G is a non-abelian p-group of order p> or p*, then G has a Johnson
polynomial if and only if Z(G) is cyclic and G' ¢ Z(G).

The character afforded by the regular representation shares certain properties with
the total character of a group, and so the same question may be asked of it. We say that
a group G has a regular-Johnson polynomial f(x) € Q[x] if there is some y € Irr(G)
such that pg(g) = f(x(g)), where pg is the character of the regular representation
of G. In the following theorem a group having a regular-Johnson polynomial is char-
acterized.

Theorem 1.3  Let G be a finite group. Then G has a regular-Johnson polynomial if and
only if G has a faithful irreducible character.

Proof Let G has a regular-Johnson polynomial f € Q[x] with y € Irr(G) such that
pc(g) = f(x(g)) for all g € G, where pg is the regular character. Now we will show
that y is faithful. On the contrary, let ¢ # 1 € ker(y). Then 0 = pg(g) = f(x(g)) =
f(x(1)) = pg(1), which is a contradiction. Conversely, let y € Irr(G) be a faithful

character of G. Suppose that f(x) = | P X(ﬁ%;g(?g)' Then f(x(g)) = pc(g) for
all g € G. The coefficients of f(x) manifestly lie in the cyclotomic field Q[&], where
& = e*™/" and n = |G|. Next we show that f(x) € Q[x]. Consider the Galois group
G := Gal(Q[£]/Q). Then Z; = G by r — 0,(&) = &, where Z consisting of all
congruence classes mod 7 of integers coprime to 7. The Galois group G acts on Irr(G)
by 0.¢(g) = tr(ap(g)), where ¢ € Irr(G) and ¢ is afforded by the representation
p, and op is defined by first realising p as matrices over Q[&], and then evaluating
(op)(g) = 0(p(g)) entry-wise. Therefore we have 0.¢(g) = ¢(g") if 0 = o, (as
described above), where r is coprime to n = |G|. Since g — g" is a permutation of G
fixing 1, the coefficients of f(x) are rational. ]
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2 Further Notation and Preliminaries

Throughout this article, C, denotes the cyclic group of order n. Suppose G is a fi-
nite group. Then Z(G), G' and Cl(G) denote respectively the center, the commu-
tator subgroup and the set of conjugacy classes of G. If a,b € G, then Ya = b~'ab,
[a,b] = a”'b " ab. Here cd(G), d(G), and ®(G) denote the set of irreducible char-
acter degrees, the minimal number of generators of G, and the Frattini subgroup of
G, respectively. Suppose N is a normal subgroup of G. Then we denote by Irr(G|N) =
Irr(G) \ Irr(G/N). Here we start by recalling some basic results.

Lemma 2.1 ([5, Theorem 2.32(a)]) If G has a faithful irreducible character, then
Z(G) is cyclic.

Lemma 2.2 Let G be a non-abelian group. Then 3 qin(g)y X(g) = 0 for each g €
G\ G

Proposition 2.1 exhibits the relationship between faithful characters and groups
having Johnson polynomial.

Proposition 2.1 Let G be a finite group. Suppose f(x) € C[x] and y is a character of
G such that f(x) = 1. Then y is a faithful character. In particular, an abelian group
has a Johnson polynomial if and only if it is cyclic.

Proof Suppose f(x) € C[x] and y is a character of G such that f(y) = 7¢ with
ker(y) # {1}. Since Ngerrr(q) ker(¢) = {1}, 76(1) # 16(g) forall g # 1 € G. Take
g #leker(y). Then 16(1) = f(x(1)) = f(x(g)) = 76(g), which is a contradiction.
This shows that y must be a faithful character. Hence an abelian group G having a

Johnson polynomial implies that G is a cyclic group. For the converse, consider the
polynomial f(x) = legloflx". [

To show that G provides a negative answer to Johnson’s question, we will later in-
troduce a specific character and then attain a contradiction. For this, we need the
following proposition, which is a simple observation.

Proposition 2.2 Let y be an irreducible character of G. If g1, g, € G are such that
x(g1) = x(g2) but 16(g1) # 16(g2), then there does not exist f(x) € C[x] such that

f(x) =16

3 Groups with (G, Z(G)) a Generalized Camina Pair

In this section, we study the total character of a group G for which (G, Z(G)) isa gen-
eralized Camina pair (abbreviated as GCP). The notion of generalized Camina pair
was first introduced by Lewis [12]. The groups with (G, Z(G)) a GCP were studied
under the name V Z-groups by Lewis [11]. First, we record a couple of lemmata that
will be useful.
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Lemma 3.1 ([12, Lemma 2.1]) Let g € G. Then the following statements are equiva-
lent.

(i)  The conjugacy class of g is the coset gG'.
(i) x(g) = 0 for all nonlinear x € Irr(G).

Lemma 3.2 ([12, Lemma 2.4]) Let H be a normal subgroup of a group G such that
(G, H) is a GCP. Then G’ is a subgroup of H.

3.1 Remarks on a Group G with (G, Z(G)) a Generalized Camina Pair
Let (G, Z(G)) be a GCP. Suppose y is a nonlinear irreducible character of G. Then

Xz = x(HA
for some A € Irr(Z(G) ). Thus

Gl= Y Ix(@F = > Ix(F (since (G, Z(G)) is a GCP)
geG g¢Z(G)
= ¥ xMA)P
g€Z(G)
= x(1)*Z(G)I.

Therefore the degree of any nonlinear irreducible character of G is |G/Z(G)|/2. Sup-
pose n is the number of nonlinear irreducible characters of G. Then

Gl= > x(1)*=IG/G'|+n.x(1).
xelrr(G)

Therefore the total number of nonlinear irreducible characters of G is
1Z(G)| - 12(G)/G).

Let #: G - G/G' be the natural homomorphism and let ¢:Irr(G/G’) — Irr(Z(G))
be defined by ¢(1) := A o 5. Suppose X := {1 € Irr(Z(G)) | A ¢ Image(¢)} and

—_

®: X - nl(G) defined by

G/Z(G)"?A(g) ifgeZ(G),
0 otherwise.

(3.1) D()(g) = {

Theorem 3.1 Suppose (G, Z(G)) is a GCP. With the notation in the preceding para-
graph, the map ® is a bijection. In other words,

nl(G) = {®(1) | A e Irr(Z(G)) and G’ ¢ ker(1)}.

Proof Clearly @ is one-to-one. Let y € nl(G). Then xbzc) = |G/Z(G)|?), where
A e Irr(Z(G)). We must show that A € X. Suppose A ¢ X. Then G’ < ker(1). Hence
xbz(6)(G") = |G/Z(G)["/* = x(1). Thus y € lin(G), which is a contradiction. Hence
@ is a bijection. ]

In the following proposition we discuss the total character 7 of G.
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Proposition 3.1 Let (G, Z(G)) be a GCP. Then the total character ¢ is given by
G/G'|+ (12(G)| - |z(6)/G'DIG/z(G)* ifg=1,

(32)  716(g) =11G/G'|-12(G)/G'|.1G/Z(G)|'/? ifgeG'~ {1},
0 otherwise.

Proof Set A := Irr(Z(G)) ~ Irr(Z(G)/G’). By Theorem 3.1, nl(G) = {®(1) | A €
A} and x(1) = |G/Z(G)|Y? for all y € nl(G).

If g = 1, then 76(1) = |G/G'| + (|Z(G)| - |Z(G)/G'))|G/ Z(G)[V*. If g e G\ Z(G),
then by the hypothesis of the proposition and Lemma 2.2, we get

6a(g)= >, x(@= > x(g=0o.

x€lrr(G) x€lin(G)
For g # 1 € Z(G), we have
(33) 0= > we= X ¢@+ 2 M)
yelrr(Z(G)) ¢elrr(Z(G)/G") AeA

Ifg+1eG' < Z(G), then
(@)= 2 x@+ X x(@)

x€lin(G) xenl(G)
=1G/G'| +1G/Z(G)['* 3 A(g)
AeA

=[G/G'|-1Z(G)/G'IG/Z(G)I'*  (by (3.3)).

Finally, if g € Z(G) ~ G', then by Lemma 2.2 and (3.3), we get 76(g) = 0. This
completes the proof. ]

With these technical results we give the proof of Theorem 1.1.

Proof of Theorem 1.1  Suppose that Z(G) = (g) is a cyclic group of order m. Since
(G,Z(G)) is a GCP, by Lemma 3.2, G’ ¢ Z(G). Let G' = (g*), |G'| = I, and
|Z(G)/G'| = 1. Set {, = ¢’ . The homomorphism A¢, i Z(G) — C* given by g = (,
defines a faithful linear character. Hence Z(G) = Irr(Z(G)) = (A¢,,). The set of ir-
reducible characters of Z(G) whose kernel contains G’ is {1} > )téln yeees Azfn }. Hence
nl(G) := {5(A2m) |i=1,...,mand] } i}, where @ is the map defined in (3.1).
Obviously |nl(G)| = |Z(G)| - |Z(G)/G'|. Let

r

F) = Y ()T + 43 (x/d)'
j=1

J=1
Itj

where d = |G/Z(G)["2.

Assertion  If y = ®(Ag,), then f(x) = 16.
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Proof of the Assertion If ¢ =1, then

FOD) = d Y () /) + d Y (x()/d)
j=1 j=1

Itj

=d*r+d(m-r)

=|G/G'|+1G/Z(G)["*(12(G)| - 12(G)/G"))

- 16(1) (by (3.2)).

Leta #1€G'. Then a = g*9 where1< g < (1 -1). So

F(8 ) = & N (x(g)/d) +d 5 (x(g5)/d)

j=1 j=1
Itj
T N m .
=d* YT v d (e Y
j=1 j=1
Itj

=d*r+d(-|Z(G)/G'))
=1G/G'|-12(G)/G'.IG/Z(G)"?
= 16(g") (by (3.2)).
Finally, let ¢ € Z(G) ~ G'. Then s is not a integer multiple of k. Now by using the

similar arguments as in the above case we get f(y(g°)) = 0 = 76(g’). This completes
the assertion. ]

On the other hand, if Z(G) is non-cyclic, then G has no faithful irreducible char-
acter. Therefore, from Proposition 2.1, G has no Johnson polynomial. This completes
the proof. ]

Remark 3.1 Since the set of character values of 6()‘2,,. ) does not depend on i when
(i,m) =1, we have f(D(A} )) = 7¢.

As a consequence of Theorem 1.1, we get the following:

Corollary 3.1 Every extra-special p-group has a Johnson polynomial.

Proof Suppose G is an extra-special p-group. Then Z(G) = G’ and |Z(G)| = p and
by [8, Theorem 2.18], (G, Z(G)) is a GCP. Therefore by Theorem 1.1, the polynomial

p-1 .
fGx)=p" 3o (x/p") + p*" (x/p")"
j=1

is a Johnson polynomial of G and f(y) = 7 for every y € nl(G). [ |
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Table 1
Group Order Presentatzion Polynomial f(x) ‘
G P (a,b|aP” = bP = 1,[a, b] = aP) filx) = p St (x/p)
+ p*(x/p)?
G, 23 (a,b|a*=b*=1,a%> =b? = [a,b]) fz(x)=x2+x1 ‘
Gs Podd |(abelal b -t blak] <o fi(x) = p 0 (x/p)
a,c]=[b,c]=1) 2 p
4 P’ = pp s o (xfp)p pi
Gs p (a,b|al” = bl =1,]a,b] = al") fa(x) = p* 25, (x/d)
2 .
2 Py el
Gs p* (a,b,c|a?” =bP =c? =1,[a,b] = [a,c] =1, | fs(x) = p? Zﬁ.’:l(x/d)l’f
[b,c] =aP,[a,b] =[a,c]=1,[b,c] = aP) 2 .
L “PEL g ()
Ge p* (a,b|a? =bP =1,[a,b] =al) Does not exist
Gy p* (a,b,c]| al’ =bP =P =1, [a,b] = a?, Does not exist
[a,¢] =[b,c] = )
Gsg p4 (a,b,c| ap2 =bP =cP =1,[a,b] =c, Does not exist
[a,¢] = [b,c] =1)
Go 24 (a,b,c|a*=b"= c2=1, [a,b] = a?, Does not exist
a’=b2[a,c]=1[b,c]=1)
Gio ptodd |(a,b,c,d|af =bP =cP =dP =1,[a,b] =c, Does not exist
la,c] =[a,d] =[b,c] =[b,d] =[c,d] =1)
Gn = Dig | 24 (a,b]a® =b%=1,[a,b] = a®) Does not exist
G2 24 (a,b|a®=b%*=1,[a,b] = a?) Does not exist
Gi3 24 (a,b]ab= b4 =1, [u,b] =ab a* = b?) Does not exist
Gua ptodd |(a,b,c]| al’ =P =P =1, [a,b] = a?, Does not exist
[a,c] =b,[b,c] = )
Gis ptodd |(a,b,c| a?” =P =1, [a,b] = a?, Does not exist
af =cP,[a,c]=b,[b,c] =1
Gig ptodd |(a,b,c| at’ —pp = b = L[a,b] = a?, Does not exist
cP =a%*,[a,c] =b,[b,c]=1)
a denotes a quadratic non-residue mod p
Gz ptp>3|(ab,c,d|af = i"*c‘”*d‘”il Does not exist
[a,b] =c,[b,c] =d,[a,c] =
[a.d] =1b,d] =[c.d] =1)
Gis 34 (a,b,c|a’ = b3 =1[ab]= Does not exist
[a,c] =1,[b,c] = a®)

4 An Application

4.1 p-Groups of Order < p*

We quote some known results that we use in the sequel.

Lemma 4.1 ([5,Lemma2.9]) Let H be a subgroup of G. Suppose y is a character of G.
Then (xlm> xlu) <

|G/H|(x, x) with equality if and only if x(g) =0 forall g € G \ H.

Lemma 4.2 ([1, Theorem 20]) If G is a p-group, then for each x € Irr(G), y(1)
divides |G : Z(G)].
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Lemma 4.3 Let G be a non-abelian group of order p*. Then cd(G) = {1, p}.

Proof Since Z(G) # 1, |Z(G)| = p or p*. Therefore |G/Z(G)| = p* or p*. So by
Lemma 4.2, the result follows. ]

The list of all non-abelian p-groups of order p* and p* [10, Table 1] is displayed in
Table 1 along with a Johnson polynomial (if exists). Now we prove Theorem 1.2. To
prove the theorem, we use the classification of non-abelian p-groups of order p* and
p4, and follow the notation in Table 1.

Proof of Theorem 1.2 Suppose G € Z(G) then G = G; (1 < i < 10). By Lemmata
4.3 and 4.1, for these groups (G, Z(G)) is a GCP. Therefore, for G; (1 < i < 10) use
Theorem 1.1 to determine a Johnson polynomial (Z(G;) is cyclicif 1 < i < 5 and
non-cyclic otherwise).

Next suppose G’ ¢ Z(G). Then G = G; (11 < i < 18). We must show that for these
groups there is no Johnson polynomial. For the groups G = G; (11 < i < 13), one can
easily check that G has no Johnson polynomial.

Next for G = G; (14 < i < 18), the nilpotency class of G is 3. Therefore G/Z(G)
is non-abelian and Z(G) c G’. Hence |Z(G)| = p. As |G/G’| > p*, we deduce that
|G| = p*. Since there is a normal abelian subgroup N (say) of index p, every nonlinear
irreducible characters of G must be induced from N. Therefore, y(G \ N) = 0 for all
y € nl(G) and cd(G) = {1, p}. Since G/Z(G) is an extra-special group of order p°,
G/Z(G) has p — 1 nonlinear irreducible characters of degree p which vanish outside
Z(G/Z(G)) = G'/Z(G) in G/ Z(G). For x € nl(G/Z(G)) we have

(4.1) Xbz(6/z(6)) = A

for some A € Irr(Z(G/Z(G))) N 12(6/2(6))> where 17(;z(c)) is the trivial character
of Z(G/Z(G)). In particular, we have all the nonlinear irreducible characters of G
having Z(G) in their kernel. Now, let v € Irr(G|Z(G)). Since |Z(G)| = p, v is
faithful and hence ¢ is not G-invariant, where ¢ is an irreducible constituent of ¢ $,.
Therefore, by Clifford’s theorem y|&, = 3°F ¢;, where ¢, = ¢ and p is the index of the
inertia group N of ¢ in G. Now gbiigéc) = A, where A € Irr(Z(G)) \ 1z(g) for each
1< i < p. Therefore, by using the fact y(1) = p, we have

‘l’lg' = Z Bé1 = peryzia) 1>

Belrr (G’ /Z(G))

where pgr/z(c) is the regular character of G'/Z(G). Hence for each y € Irr(G|Z(G)),
we have y(G' ~ Z(G)) = 0.
Now if g € G’ ~ Z(G), then

42 (@)= > xo+ X 9+ X xg

xelin(G) xenl(G/Z(G)) x<lrr(G|Z(G))
=1G/G'| + 2 P+ > x(g) (Gy@D)
Aelrr(Z(G/Z(G)))Nz(6/z(6)) x€lrr(G|Z(G))
=p’-p+0=p’-p.
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Now suppose G has a Johnson polynomial f(x) such that f(y) = 7, where y €
nl(G). Therefore y is faithful and y € Irr(G|Z(G)). By (4.2), we have

f(0) = f(x(8)) =76(8) = p* - p
forall g € G’ ~ Z(G). Again for h € G ~ N we have, f(0) = f(x(h)) = 76(h) = 0.
Therefore, from Proposition 2.2, G has no Johnson polynomial for G = G; (14 < i <
18). This completes the proof. ]

4.2 Minimal Non-abelian Groups and p-JFC-groups

A non-abelian group G is called a minimal non-abelian group if every proper subgroup
of G is abelian. For a prime p and n > 2, m > 3 define

G(n,m) ={(a,b|a? =b"" =1,[a,b] = a?").

Then G(n, m) is a metacyclic group and its order is p"*™. Again for a prime p and
n, m € N define

G(n,m,1) ={(a,b|a?" =b?" =1,[a,b] = c,[a,c] = [b,c] =1).

Then G(n,m, 1) is not a metacyclic group and its order is p"*™*!. First we recall a
result on minimal non-abelian p-groups.

Theorem 4.1 ([17, Lemma 2.1]) Let G be a minimal non-abelian p-group. Then G is
isomorphic to Qg, G(n, m) or G(n, m,1).

Proposition 4.1 Suppose G is a minimal non-abelian p-group. Then G has a Johnson
polynomial if and only if G is isomorphic to Qs.

Proof Total character of Qg = (a,b | a* = 1,a* = b%,b7'ab = a™') is given by
70, (1) = 6, Tq,(a%) = 2, and 7q,(a) = 7q,(b) = Tq,(ab) = 0. If y is the faithful
irreducible character of Qg, then one can verify that y* + y = 7q, so that x* + x is a
Johnson polynomial of Qs. Now observe that Z(G(n,m)) = (a?, b?) = Cpr1 x Cpma
and Z(G(n,m,1)) = (af, b, c) = Cpn1 x Cym x C, are non-cyclic. Therefore, they
do not have any faithful irreducible character. Hence by Proposition 2.1, G(n, m) and
G(n,m,1) have no Johnson polynomials. [ |

A p-group G is said to be a p-JFC-group if the Frattini subgroup of every proper
subgroup of G is cyclic.

Theorem 4.2 ([17, Theorem 3.1])  Suppose that G is a p-JFC-group with |G'| < p and
podd.
(i) If|G'| =1, then G is abelian, and one of the following holds.
(@) G = Cpn x E}, where n,m are non-negative and ®(G) is a cyclic group of
order p"~'.
(b) G=CpxCp2and ®(G) = EIZJ.
(ii) If|G'| = p and d(G) = 2, then one of the following holds.
(@) G = Modyw =(a,b| a?" =bP =1,{a,b] = apn_l), where n > 2 is a positive
integer.
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(b) G=(a,b| at’ =pP =P =L[a,b] =¢[c,a]l =[c,b] =1), wheren >1isa
positive integer.
(©) G=(a,b|a? =bP" =1,[a,b] = aP).
(iii) If|G’| = p and d(G) # 2, then ®(G) is cyclic.

Proposition 4.2 Let p be an odd prime. Suppose G is p-JFC-group with |G | < p.

(i) If|G'| =1, then G has no Johnson polynomials.

(i) If|G'| = p and d(G) = 2, then G is a Johnson polynomial if and only if G =
MOdan.

(iii) If|G'| = p and d(G) # 2, then G need not have a Johnson polynomial.

Proof If |G'| = 1, then by Theorem 4.2, G is a non-cyclic abelian group and hence
by Proposition 2.1 G has no Johnson polynomials. Now suppose G = Mod,»+ so that
IG'| = pand d(G) = 2. Here Z(G) = (a?), |G/Z(G)| = p* and G’ = (a?""). By
Lemma 4.2, the degree of every nonlinear irreducible character is p and so by Lemma
4.1 (G, Z(G)) is GCP. Hence by Theorem 1.1 the following polynomial

pn72 pnfl
fC)=p" 3 Gelp)7 +p 2 (x/p)

! 1J7+J'
is a Johnson polynomial. Next suppose |G’| = pand d(G) = 2and G # Mod,»+1. Then
by Theorem 4.2, either G = (a, b | a?’ =pP’ =P =1, [a,b] =c¢,[c,a] =[c,b] =1)or
G={(ab]| at’ = b? =1, [a,b] = a?). In the former case, Z(G) = (af,b?, ¢), and in
the latter, Z(G) = (a?, b?). Hence, in either case the center is non cyclic. Therefore,
it does not have faithful irreducible character and hence by Proposition 2.1, none of
these groups has a Johnson polynomial.

Finally to justify the third statement of the theorem we will produce examples.
Suppose p is an odd prime. Let G; = (a,b,c | a? = b? = ¢? =1,{a,b] = ¢,[a,c] =
[b,c] =1)and G, = (a, b, c | at’ =P =cP =1, [a,b] = aP,[a,c] = [b,c] =1). The
groups G; and G, are both p-JFC-groups. Observe that ®(G;) = G, = Z(G,) = (c),
D(G,) = Gy = (af), Z(Gy) = (aP,¢c), d(G;) # 2, and (G, Z(G;)) is a GCP for
i = 1,2. Hence by Theorem 1.1, G; has a Johnson polynomial but G, has no Johnson
polynomials. ]
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