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Summary

An interval quantitative trait locus (QTL) mapping method for complex polygenic diseases
(as binary traits) showing QTL by environment interactions (QEI) was developed for outbred
populations on a within-family basis. The main objectives, within the above context, were to
investigate selection of genetic models and to compare liability or generalized interval mapping
(GIM) and linear regression interval mapping (RIM) methods. Two different genetic models were
used: one with main QTL and QEI effects (QEI model) and the other with only a main QTL effect
(QTL model). Over 30 types of binary disease data as well as six types of continuous data were
simulated and analysed by RIM and GIM. Using table values for significance testing, results show
that RIM had an increased false detection rate (FDR) for testing interactions which was attributable
to scale effects on the binary scale. GIM did not suffer from a high FDR for testing interactions.
The use of empirical thresholds, which effectively means higher thresholds for RIM for testing
interactions, could repair this increased FDR for RIM, but such empirical thresholds would have to
be derived for each case because the amount of FDR depends on the incidence on the binary scale.
RIM still suffered from higher biases (15–100% over- or under-estimation of true values) and high
standard errors in QTL variance and location estimates than GIM for QEI models. Hence GIM is
recommended for disease QTL mapping with QEI. In the presence of QEI, the model including
QEI has more power (20–80% increase) to detect the QTL when the average QTL effect is small
(in a situation where the model with a main QTL only is not too powerful). Top-down model
selection is proposed in which a full test for QEI is conducted first and then the model is
subsequently simplified. Methods and results will be applicable to human, plant and animal
QTL mapping experiments.

1. Introduction

Most biological traits and diseases in animals, plants
and humans have a complex or multifactorial in-
heritance (controlled by numerous interacting genes
with small and large effects) and are affected as well as
by environmental factors such as nutrition, hygiene,
lifestyle and management. A chromosomal region
that contains one or more genes that influence a
multifactorial trait is known as a quantitative trait
locus or QTL. Standard segregation analysis in
informative families or experimental crosses to map
QTLs is well established using either regression or

maximum likelihood based approaches (Haley &
Knott, 1992), generalized linear (mixed) models
(Kadarmideen et al., 2000; Kadarmideen & Dekkers,
2001; Thomson, 2003) or Bayesian methods (Xu &
Yi, 2000). The power of such analyses to detect and
map QTLs (under different genetic models) depends,
among other factors, on the proportion of the
phenotypic variance explained by QTLs, the design
and size of the segregating population, and the type
and number of genetic markers.

It is well known that gene expression differs
depending on the environmental conditions, which
could be due to gene by environment correlations
or interactions. A QTL by environment interaction
(QEI) may exist when a QTL is detected at a specific
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map location in one environment but not in
another and/or when the effects of a QTL between
environments are significantly different. Mostly, QTL
mapping methods consider gene and environmental
effects independently of each other and do not
take into account interaction among such effects.
That is, the effects of QTLs are assumed be the same
across all environmental conditions. Common en-
vironmental factors include, for example, soil types,
day length and general temperature regimes, etc.
affecting plant growth; disease pathogenesis and
fertility ; farm hygiene and nutrition for animal
growth, disease development and fertility ; and cancer
or diabetes episodes due to lifestyle changes or
exposure to a poor environment in humans. Genes
or QTLs with an effect on these phenotypes may
in fact be interacting with these environmental
factors, contributing to the manifestation of a given
phenotype.

In the genetic epidemiology of human diseases, QEI
models would be of help when counselling on the
relative risks for contracting a given disease depend-
ing on the environment. For example, while exposure
to ultraviolet light increases the risk of developing
skin cancer in non-carriers of xeroderma pigmento-
sum (XP) mutations, the combination of these mu-
tations and exposure to ultraviolet light vastly
increases the risk of skin cancer (Hunter, 2005).
In companion animals, many congenital diseases or
cancer risks are not well studied for QEI interactions,
but these may exist, as they do in humans. In farm
animal/plant/tree breeding terms, QEI models would
be of help for predicting the genetic merit of
individuals (at the QTL level) depending on the
environment in which they are reared, paving a way
for environment-specific gene-assisted selection.

While including QEI in genetic models is useful,
ignoring it when present would lead to a poor accu-
racy/confidence interval for the genomic position of
QTLs and low power to detect them, as shown by
Wang et al. (1999). The QEI effects can be expected
to be present especially in the prevalence of certain
diseases among individuals raised in different en-
vironmental conditions: for example, when a QTL
confers resistance to a pathogen specific to particular
environments.

Some studies have investigated gene–gene inter-
action (epistasis) as well as QEI in QTL mapping for
normally distributed traits in crosses from inbred lines
or breeds (e.g. Jansen et al., 1995; Wang et al., 1999;
Juenger et al., 2005). Most often diseases are observed
in binary form, the organism being either ‘healthy’ or
‘diseased’. No study has thus far developed a QTL
mapping method for a QTL with QEI in an outbred
population on a within-family basis where (disease)
data are observed as binary traits or compared dif-
ferent genetic models (with and without QEI) and

statistical methods (linear versus liability methods)
for binary traits.

It is expected that linear models would show spu-
rious interactions for binary traits (such as diseases)
due to scale effects while threshold models would not
in principle, suffer from such artefacts. No study has
so far investigated this phenomenon or proved this
expectation in the context of QTL mapping for binary
traits (regardless of which designs were used). The
objective of this study was to investigate whether
linear models are indeed inappropriate for mapping
QTL with interactions for binary traits. Hence we
compare generalized interval mapping (GIM) with
linear regression interval mapping (RIM) methods
when QEI are indeed present or absent for (binary)
disease episodes in within-family analyses for an
outbred population.

2. Materials and methods

(i) QTL mapping experimental design
and liability models

Multiple half-sib families (with the ith family having
ni progeny) distributed across j different environments
(for j=1 to r) are considered, with the common parent
in each family being called the ‘sire ’ (sires i=1 to s)
and its mates ‘dams’. The expression of the sire QTL
alleles is assumed to differ between environments such
that the progeny of the same sire deviate from the
main QTL effect by an amount equal to QEI effects,
depending on which environment they are in. It is
assumed here that these environments are quite dis-
tinct and limited in number (e.g. tropical versus tem-
perate climate). Let N be the total number of progeny
across all sires and environments. Progeny of sires
are affected by a multifactorial disease that is ob-
served in one of two categories as healthy or diseased
(binary scores, 0 or 1). Genotype data for multiple
marker brackets are available on the offspring and
on their sires, but dams may or may not have
that information. All sires are assumed to be fully
informative (heterozygous) for the marker bracket
under consideration. Sires can be QTL informative
or uninformative, with alleles Q1 and Q2 (with
frequencies f and 1xf, respectively).

(ii) Genetic threshold models

Threshold or liability models for genetic analysis
of traits measured in categorical or binary scales (e.g.
diseases) in pedigree populations have been described
previously for QTL mapping (e.g. Kadarmideen
et al., 2000; Kadarmideen & Dekkers, 2001) and
segregation analyses for detecting major genes (e.g.
Kadarmideen & Janss, 2005). Briefly, let yijk be a
disease (binary) response variable observed (as yijk=0
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for a ‘healthy’ and yijk=1 for a ‘disease’ phenotype)
in offspring k in sire family i and environment j.
Threshold theory assumes that yijk results from an
underlying linear predictor zijk, called liability, that is
normally distributed and that models the probability
of yijk=1 using the Normal cumulative distribution
function (CDF) as the link function.

Application of the liability concept to QTL
mapping for binary traits is illustrated in Fig. 1, where
the population threshold, t, for the disease results
in incidence p in the general population which is
stratified into two QTL subpopulations depending
on inheritance of either a ‘healthy’ Q2 or ‘disease’ Q1

allele from the common parent. The liability of these
two subpopulations in Fig. 1 differs from the liability
of the general population (due to inheritance of
the healthy or disease allele) and hence in their
incidences ; their differences correspond to substi-
tution effects on the liability scale, an, or on the
probability scale, ap, as shown below. In the case
of QEI, these substitution effects themselves differ
between environments. Based on Fig. 1, the QTL
substitution effect as a difference of two subpopula-
tions (Q1xQ2) on the probability scale is

ap= p+
ap
2

� �
x px

ap
2

� �

and on the liability scale is

an= t+
an
2

� �
x tx

an
2

� �
:

(iii) The null model

The null model is a linear statistical model for liability
which does not fit genetic effects at QTL to disease
data but only environmental effects and polygenic
effects of the common parent i, as :

zijk=m+ ui+ej+eijk (1)

with i=1, 2, …, s, j=1, 2, …, r and k=1, 2, …, m,
where zijk is the liability of the kth offspring from the
ith sire family, in the jth environment, m is the overall
mean, ui is the polygenic mean for the ith sire family
as fixed effect, ej is the fixed effect of environment j,
and eijk is a residual, with eijkyN(0, se

2).

(iv) The QTL model

The QTL model fits a QTL effect to disease data in
addition to those in the null model, as :

zijk=m+ ui+ej+cijkbi+eijk (2)

where bi is the QTL substitution effect for the ith sire
and cijk is the conditional probability of transmission
of allele Q1 from the ith sire to the kth offspring.
The conditional probabilities for QTL allele trans-
mission from sire to offspring (cijk) were assigned as in
Kadarmideen et al. (2000). This is a function of the
marker genotypes of offspring and parents, marker–
QTL linkage phase in ‘sires ’, marker allele fre-
quencies and genomic position at which the model is
fitted.

(v) The QTL–environment interaction (QEI) model

The QEI model fits the QEI term in the genetic model
in addition to those in the QTL model (2) assuming
the presence of QEI effects in the data. For simplicity,
it is assumed that background polygenes are not
interacting with environments, but only the QTLs.
The QEI model is written as

zijk=m+ ui+ej+cijkbij+eijk: (3)

Note that the QEI part, cijkbij, essentially results in
r different expressions (substitution effects, an or ap)
of the QTL from the same sire across environments
(srr effects) due to nesting sire QTL effects within
environments. The estimated parameters from this
model actually represent both QTL as well as QEI
effects, as seen by writing the above model equi-
valently as : zijk=m+ui+ej+cijkbi+cijkbij+eijk. How-
ever, there is a linear dependency between QTL versus
QEI effects in this model. There are two ways to
estimate QTL and QEI effects : first, one of the r en-
vironments within all s QTL effects would be set to
zero, resulting in (srxs) QEI effects and s main QTL
effects, with a total of sr estimable effects ; second,

y=0 y=1

(p)(1–p)

Population with disease incidence, p.

Q1Q2

2
an–τ

+
2
app

2
an+τ

τ

–
2
app

an

Sub-populations with two QTL alleles: Q1 increase p by 
2

ap ; Q2 decrease p by
2

ap

Fig. 1. Illustration of linkage between QTL effects on
liability versus observed scales for binary disease traits.
Top: General population with incidence p and threshold t.
Bottom: The subpopulation shown with an unbroken line
has the Q2 allele and that shown with a dotted line has the
Q1 allele.
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s main QTL effects are to be set to zero with a total
of sr estimable effects. The two approaches are
equivalent, but tests derived from each have different
interpretations. The QEI model (3) was set up where
s main QTL effects were set to zero to be able to
estimate sr QEI effects.

(vi) Statistical methods

(a) Generalized interval mapping (GIM)

The general form of log-likelihood for the binomial
distribution of disease episodes from s unrelated sire
families across r environments, L, can be written,
based on principles in Kadarmideen et al. (2000), as
the sum of the log-likelihood for each offspring over
all families, environments and interaction of family-
specific QTLs with the environment:

L= g
s

i=1
g
r

j=1
g
m

k=1

[ yijk ln (pijk)+(1xyijk) ln (1xpijk)]: (4)

Parameters were estimated as the joint maximum
likelihood of uis, ejs, bis, bij and recombination rate
between QTL and markers, depending on the genetic
model (1, 2 or 3) using a Newton–Raphson algorithm,
and the corresponding likelihood is computed as
shown in the Appendix of Kadarmideen et al. (2000).
With GIM, QTL and QEI variances were estimated
as shown in Appendix A. Computation of the

log-likelihood under different genetic models,
Lnull, LQTL and LQTL+QEI, for GIM is shown in
Appendix B.

To test for the presence of a potentially interacting
QTL we adopt here a top-down model selection pro-
cedure (Fig. 2). This top-down scheme was used with
the rationale that bottom-up testing may fail to find
interacting QTLs when they have a small main effect
only; also top-down model selection here is readily
feasible because the number of interaction models to
be tested remains small. This is unlike the case of
testing for QTLrQTL interactions (epistasis), where
the number of potential interaction models is large
and a top-down selection scheme may be compu-
tationally prohibitive (see also our Section 4). Our
top-down model selection starts with testing for joint
main (QTL) and interaction effects (QEI) using model
(3) and the null hypothesis of bij=0 for all i and j,
with the LR test statistic LRQTL+QEI=2[LQTL+QEIx
Lnull]. This test may be positive also when there is a
main effect only; therefore, if positive, model selection
proceeds to test for the presence of interaction above
the main effect, using LRQEI=2[LQTL+QEIxLQTL].
If the QTL+QEI test is negative, this does not yet
preclude the presence of a QTL with main effect
only, and therefore, if the QTL+QEI test fails, the
top-down approach proceeds with a test for a QTL
with main effect only based on model (2) and using
LRQTL=2[LQTLxLnull].

Big QTL with no or
negligible interactions
with environments
detected (above the main
effect)

No

QTL+QEI
H2:H0

QEI
H2:H1

QTL
H1:H0

Yes No

Big QTL with very small
interactions or small QTL with
large interactions: Identify
significant interactions over and
above main QTL effect

Big QTL with no
interactions; too
many parameters
Use simple Model

Yes

QTL detected without
interactions

No Yes

No QTL detectedSignificant QTL
interactions with
environments detected
(above the main effect)

Fig. 2. Top-down selection scheme of genetic models to detect and map QTLs with or without environmental interactions
for binary disease traits.
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(b) Regression interval mapping (RIM)

The RIM based on three different genetic models was
exactly the same as described for GIM, except that yijk
replaces liability zijk and likelihoods are computed
based on the residual sums of squares (RSS) as shown
below. Estimates of sQTL

2 , sQTL+QEI
2 and sQEI

2 were
computed as for GIM.

As per our top-down approach, we first test for sig-
nificance of the presence of a QTL as well as the QEI
and compute the LR test statistic as : LRQTL+QEI=
N ln (RSSnull/RSSQTL+QEI), where RSSQTL+QEI is
the RSS obtained from fitting the QEI model (3)
under the alternative hypothesis (bijl0 for at least
one ij). If positive test results are found for joint QTL
and QEI effects, the next test is for significance of the
presence of only the QEI where the LR test statistic
is computed as LRQEI=N ln (RSSQTL/RSSQTL+QEI).
If the test results for joint QTL and QEI effects are
negative, the test is for significance of the presence
of a QTL in the marker bracket. The LR test statistic
for this test was computed as LRQTL=N ln (RSSnull/
RSSQTL) where RSSnull is the RSS obtained from
fitting a null model under the null hypothesis (null
model 1), bi=0 for all i, and RSSQTL is the RSS
obtained from fitting the QTL model (QTL model 2)
under the alternative hypothesis, bil0 for at least
one i.

(vii) Simulation

(a) Phenotype and QEI data

Phenotypic values of offspring were first generated on
the liability scale as zijk=m+ui+ej+aj+eijk, where ui
is the polygenic effect of the ith sire, ej is the environ-
mental effect of the jth environment, aj is the substi-
tution effect for sire QTL allele (Q1 or Q2) in the jth
environment and eijk are residuals. This bi-allelic QTL
was located at 5 cM from the left marker in a 20 cM
marker bracket and was assumed to be interacting

with the environment, which meant that it had dif-
ferent QTL substitution effects among environments.
Table 1 gives the environment-specific QTL effects,
specific for assumed QEI variances, 0 or 10%, as well
as the actual QTL variances calculated based on the
method described in Appendix C.

A total heritability, including QTL and QEI effects,
of 0.25 on the liability scale was used in all cases. The
polygenic effects, ui, were sampled from N[0, 0.25su

2],
where su

2 is the additive genetic variance (0.25su
2 is a

sire variance). One environmental effect with five
levels was simulated; ej was sampled from N[0, sev

2 ]
where sev

2 is the environmental variance, which was set
equal to 0 or 10% of the total phenotypic variance on
the liability scale. The distribution of progeny across
the five environments was random for 20 sires. A
progeny of the ith sire had a QTL allele effect of 1

2aj

when the progeny inherited the Q1 allele and x1
2aj

when the progeny inherited the Q2 allele, based on
binomial sampling, with equal frequency. Residuals, e,
were sampled fromN[0, s2

px(0�25s2
u+s2

ev+0�5s2
QTLr

)],
where sp

2 is the phenotypic variance.

(b) Parameters for simulations

Binary datasets were simulated for population in-
cidences p, equal to 0.25 and 0.50, corresponding to
standardized thresholds (t) equal to 0.67 and 0.0 and
for the number of offspring per sire (ni) equal to 200
and 500. The mean QTL effects on the underlying
liability scale (q̄) were equal to 0.05, 0.15 and 0.30
phenotypic standard deviation units (sp=1) each with
a QEI variance (s2

QEI) of 0 and 10% of phenotypic
variance. Incidences of 25% and 50% were chosen to
represent binary data with large scale effects (around
25% incidence) and with very minimal scale effects
(around 50% incidence). Scale effects are related to
the binomial variance, p(1xp), which is fairly flat
around 50% but decreases sharply from about 35%
down to 15% incidence. The above combinations of

Table 1. Parameters used in simulation of QTL and QTL–environment interactions effects and variances for
binary disease data with different QTL substitution effects across environments

sQEI
2

QTL substitution effect (aj)

Average

s2
QTLr

liability
scale

Binary
scaleE1 E2 E3 E4 E5

q̄=0.05
0 0.05 0.05 0.05 0.05 0.05 0.05 1.3 0.2
10% x0.29 x0.25 0.13 0.21 0.45 0.05 41.0 5.7

q̄=0.15
0 0.15 0.15 0.15 0.15 0.15 0.15 11.3 1.7
10% x0.19 x0.14 0.23 0.31 0.55 0.15 50.7 6.5

q̄=0.30
0 0.30 0.30 0.30 0.30 0.30 0.30 45.0 6.5
10% x0.04 0.01 0.38 0.46 0.70 0.30 84.8 9.3
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parameters resulted in 24 types of disease data to be
analysed by RIM and GIM. Since the QEI model
being developed can also be suitable for normally
distributed traits, we kept a few representative simu-
lations on the underlying liability scale to be analysed
by RIM. They correspond to six datasets created by
three main QTL effects (0.05, 0.15 and 0.3 phenotypic
standard deviation units) and two GrE variances
(0 and 10%) for ni, equal to 500. Further, a few more
combinations of parameters were used in simulations
to test the effect of the number of different levels of
environments (=2) and low/high (5% or 20%) GrE
variances. Table 1 gives QTL, QEI effects and the
different variances simulated.

3. Results

(i) Empirical significance thresholds and simulations
without QEI

Table 2 shows the empirical significance threshold
(ST) values for testing of main effects and interactions
for different disease incidences and population sizes
using the data simulated under the null model.
Overall, these empirical thresholds lie about 8–12%
above the expected x2 table values. In one particular

case, however, RIM deviates from GIM, which is for
testing interactions at 25% incidence: here empirical
thresholds for RIM are elevated upwards by 14–19%
compared with x2 table values, whereas empirical
thresholds for GIM in this case actually deviate least
from the table value (+6 to +9%). This difference
between RIM and GIM is not seen at 50% incidence
or for testing of main effects, pointing to scale effects
on the binary scale being the cause of these elevated
ST values for RIM. A subtle effect of the progeny
group size on significance thresholds can be seen in
that threshold levels are higher for the larger progeny
group size, but only for the testing of interactions at
25% disease incidence, and not for other situations.

(ii) Power to detect QTL and QEI

Table 3 shows the power for detection of the QTL
main effect and QEI from simulated data with a main
QTL effect but without QEI interaction using nom-
inal values for significance thresholds or empirical
significance thresholds. As no QEI is present, results
from the third test (H2 :H1) testing for interaction
above the main effect indicate the false detection rate
(FDR) for testing of QEI by RIM and GIM. As
expected from the results in Table 2, use of nominal
significance thresholds leads to (extra) increased FDR
by RIM when testing for interactions at 25% disease
incidence; GIM here has a FDR of 12–16%, while
RIM shows a FDR around 23%. In other cases, such
as 50% disease incidence or when testing for main
effects, no differences between RIM and GIM are
discernible. The test combining main and interaction
effects (H2 :H0), which is not supposed to give more
significant results than the test for main effect only
(H1 :H0) in these data without QEI, can also be
seen to be elevated for RIM compared with GIM for
25% disease incidence and for small QTL effects
when using nominal significance thresholds. When
using empirical threshold levels, RIM has somewhat
smaller power for the H2 :H0 test at 25% disease in-
cidence when QEI is not present, but only marginally.
In practice, this (somewhat) reduced power for RIM
has no implications, because after rejection of the
H2 :H0 test one would still proceed to test for a main
QTL effect only using the H1 :H0 test (see Fig. 2).
When using empirical thresholds, Table 2 shows that
the pure interactions test (H2 :H1) is corrected to
yield the desired 5% FDR. In the absence of QEI,
small QTL effects remain largely undetected with
power <10%.

Data on the power to detect QTLs and their inter-
actions with environments (QEI) based on RIM and
GIM when QEI interaction is present (10% QEI
variance) are given in Table 4. Here, empirical
thresholds are used which imply elevated thresholds
for RIM when testing interaction effects at 25%

Table 2. Empirical significance threshold values for
QTL interval mapping for a binary trait in 20 half-sib
families based on linear regression (RIM) and
threshold (GIM) models for testing different effects
(ST1, overall QTL effect; ST2, overall QTL effect and
QEI effect; and ST3, QEI effect)

Incidence n Model Level ST1 ST2 ST3

25% 200 RIM 5% 33.85 135.56 110.87
1% 40.53 147.80 122.87

GIM 5% 33.45 127.44 103.58
1% 39.50 137.37 114.14

500 RIM 5% 33.90 140.44 116.11
1% 40.45 153.45 128.39

GIM 5% 33.67 129.60 105.44
1% 40.27 141.68 115.88

50% 200 RIM 5% 33.80 130.55 105.83
1% 39.88 141.86 116.28

GIM 5% 33.23 132.04 107.45
1% 35.47 137.25 111.68

500 RIM 5% 33.73 129.87 105.28
1% 39.94 142.89 116.03

GIM 5% 33.73 129.17 104.70
1% 39.78 141.89 115.52

Results are based on 10 000 replicates of binary data for
different combinations of progeny group sizes (n) and dis-
ease incidences (p). The expected significance thresholds
from a chi-square distribution are: for ST1 (19 d.f.) 30.14
(5%) and 36.19 (1%); for ST2 (95 d.f.) 118.75 (5%) and
129.97 (1%); and for ST3 (76 d.f.) 97.35 (5%) and 107.58
(1%).
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disease incidence, so it might be expected that RIM
loses some power in these situations compared with
GIM. In fact GIM consistently has somewhat better
power at 50% incidence; at 25% incidence GIM is
only better for the small main effect, while RIM has
more power for the medium and large main effect.
Overall, differences in power between RIM and GIM
remain small, and these results indicate that the use of
empirical thresholds, which elevate thresholds for
RIM to safeguard RIM against detection of spurious
interactions, does not negatively affect the power of
RIM compared with GIM when QEI is present.

An interesting effect can be observed when the
power of a test for a QTL main effect (H1 :H0) when
QEI is present (Table 4) is compared with that when
QEI is absent (Table 3) for the same QTL main effect.
Although QEI is not modelled, power to detect a QTL
by its main effect increases when the QTL also has
QEI effects. For instance, a QTL with main effect
of 0.3 at a disease incidence of 25% with empirical
thresholds (in Table 3) can be detected with 58%
power using the test for main effect only, whereas
Table 4 (compare at n=200) shows that this same size
of QTL can be detected using a test for main effect
only with 75–77% power. This phenomenon is
further referred to as the ‘absorption of interaction
effects in the main effect ’ (see also Section 4). In this
respect, however, there is no difference between RIM
and GIM. As expected, power increases for larger
progeny group size, but power is not clearly affected
by disease incidence. The effects of incidence are that
power is consistently lower for detecting a main effect

at 50% than at 25% incidence, while the situation is
variable for detecting an interacting QTL with the
H2 :H0 test.

As can be seen further, the presence of QEI when
modelled and used in testing can improve the power
to detect a QTL. This is especially critical when the
segregating QTL has a small main effect (q̄=0.05) but
interacts with the environment as evidenced by the
increase in power for QEI tests ranging from
approximately 20% to 80% in Table 4. This confirms
the ability of the full QTL+QEI model to detect
QTLs with small main effect but interacting with the
environment that would otherwise have been missed
by the simple QTL model.

Further simulations with low (5%) and high (20%)
GrE variances (results not shown), in addition to the
0 versus 10% GrE variances reported here, showed
that the power to detect interacting QTLs by LRQEI

tests was 5–15% higher when sGrE
2 was 20% than

when it was 5%. This confirmed that the power to
detect interacting QTLs proportionately increases as
GrE variances increased from 0 to 5% and 10% to
20%, as expected. Like other tests, LRQEI tests tend
to have less power to detect interactions at lower
incidence (here 25%) than at intermediate incidence
(here 50%), especially when the overall QTL substi-
tution effect is small (0.05).

(iii) QTL and QEI variances

Estimated QTL variances (sQTL
2 ) and QTL+QEI

variances (sQTL+QEI
2 ) are given in Table 5 for RIM

Table 3. Power for detection of QTL main effect and QTL–environment interactions (QEI) for a binary trait at
5% nominal significance level and 5% empirical significance level when no QEI is present, shown for two
incidence levels (p), different average main effect (q̄) of the QTL, and for linear regression (RIM) and threshold
models (GIM)

Incidence Model q̄

At nominal 5% level At empirical 5% level

H1 : H0 H2 : H0 H2 : H1 H1 : H0 H2 : H0 H2 : H1

25% RIM 0.05 13.2 27.5 23.5 6.6 6.1 5.6
0.15 25.9 34.8 22.4 16.0 7.6 5.4
0.3 71.9 59.7 23.1 58.5 25.8 5.8

GIM 0.05 12.8 14.0 13.6 7.7 6.4 6.0
0.15 27.4 24.8 12.4 16.7 12.8 6.0
0.3 71.9 48.4 9.7 58.1 28.6 3.7

50% RIM 0.05 12.0 18.7 14.8 5.0 5.0 4.7
0.15 28.0 25.4 14.0 15.1 9.5 4.8
0.3 79.7 57.8 15.0 69.1 31.6 5.8

GIM 0.05 12.3 21.5 16.7 6.1 5.6 4.5
0.15 28.4 29.0 16.7 16.9 9.3 5.0
0.3 80.4 60.2 15.9 71.7 30.9 5.4

H1 : H0 tests for the presence of a QTL main effect, H2 : H0 tests for the presence of a QTL main effect and QEI jointly and
H2 : H1 tests only QEI over the main QTL effect. Results are based on 1000 replicates of binary data on 20 half-sib families
with 200 progeny per family. The empirical significance levels used are in Table 2.
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and in Table 6 for GIM. In these tables, an estimate
of ‘pure’ interaction variance (sQEI

2 ) is also con-
structed from the difference between these two
variance components. Estimated variances are on the
binary scale for RIM and on the underlying liability
for GIM.

For both RIM and GIM, QTL variances were also
estimated as given in Appendix A, which accounted
for covariances; those estimates were very similar
to the QTL variances estimated directly from the
QTL model (2) and hence are not shown in Tables 5
or 6.

RIM and GIM deviate considerably in perform-
ance with the model for QTL+QEI, with RIM
showing a gross overestimation. In the absence of

QEI, for instance with p=25%, n=200 and for the
large main effect (q=0.3), RIM overestimates total
QTL variance with the QTL+QEI model by 177%.
GIM in this same situation overestimates total QTL
variance by ‘only’ 58%. Note that this is a situation
where the model is actually inappropriate because
QEI is not present, and that we might therefore expect
some overestimation, but the relatively poorer per-
formance of RIM points to relatively larger problems
for RIM in assessing interaction effects in binary data.
When QEI is present RIM continues to perform
relatively badly, for instance for the same situation
with p=25%, n=200 and for the large main effect
(q=0.3), RIM overestimates total QTL variance by
147%, while GIM in this case overestimates total
QTL variance by 38%. For the large progeny group
sizes, overestimation is reducing, and at 50% and
with QEI present GIM even starts to slightly under-
estimate total QTL variance; RIM in this case still
overestimates the total QTL variance by around
100%. The main-effects model posed fewer problems
for both RIM and GIM, with RIM doing fairly well
while GIM appears to overestimate the QTL effect in
the absence of QEI. Obviously, when QEI is present,
use of a main-effects model will not allow the capture
of all QTL variance present, and both RIM and
GIM underestimate total QTL variance. Finally, the
phenomenon of ‘absorption’ of interaction effects
into the main effect, when using a main-effects model,
can also be seen in the estimation of variances. This
phenomenon is present at 25% incidence but not at
50% incidence for both RIM and GIM. For instance,
for a main QTL effect of q̄=0.3, progeny group size of
n=200 and with RIM analysis (Table 5), estimated
QTL variance with a main-effects model increases
from 5.1 (without QEI effects) to 6.9 (with QEI
effects) at 25% incidence, i.e. although the main effect
is the same, the estimated main effect variance
increases by 35% when QEI is present, apparently
picking up part of the interaction effect. The picking
up of extra variance in the main effect is not seen at
50% incidence. This phenomenon, and absence of it
at 50% incidence, is systematically seen for the other
QTL main effects, progeny group sizes and for GIM
analyses.

4. Discussion

Gene or QTL by environment interaction (QEI) is an
important mode of gene action from an evolutionary,
medical and quantitative genetics point of view.
However, it is often neglected while trying to detect
and map genes controlling complex polygenic traits
(QTLs) by interval mapping methods, especially in
animal populations. This paper has developed and
investigated QEI models with a focus on mapping
QTLs for binary (disease) traits.

Table 4. Power for detection of a QTL main effect
and QTL–environment interaction (QEI) for a binary
trait at a 5% empirical significance level when QEI is
present, shown for different progeny group size (n),
different disease incidence (p), different main effects
(q̄), and for linear regression (RIM) and threshold
models (GIM)

n Incidence Model q̄ H1 : H0 H2 : H0 H2 : H1

200 25% RIM 0.05 10.0 39.5 41.2
0.15 28.5 56.5 46.3
0.3 77.0 85.2 55.3

GIM 0.05 8.6 41.4 36.2
0.15 31.8 55.9 39.0
0.3 74.7 78.4 36.8

50% RIM 0.05 6.2 44.0 47.2
0.15 17.7 50.7 46.1
0.3 69.6 78.4 47.0

GIM 0.05 7.2 44.9 49.4
0.15 18.9 53.0 46.7
0.3 71.0 79.2 47.2

500 25% RIM 0.05 17.6 84.7 83.4
0.15 65.7 96.6 89.3
0.3 99.4 100.0 95.3

GIM 0.05 16.0 88.8 88.3
0.15 59.9 95.7 88.0
0.3 99.6 100.0 89.0

50% RIM 0.05 8.0 91.8 94.3
0.15 42.7 96.7 94.0
0.3 98.5 100.0 94.2

GIM 0.05 7.9 93.7 94.8
0.15 43.2 97.2 94.9
0.3 98.4 100.0 94.5

QTL–environment interaction (s2
QEI) was 10% of pheno-

typic variance. H1 : H0 tests for the presence of a QTL main
effect, H2 : H0 tests for the presence of a QTL main effect
and QEI jointly and H2 : H1 tests only QEI over the main
QTL effect. Results are based on 1000 replicates of binary
data on 20 half-sib families. Empirical threshold levels
imply elevated thresholds for RIM for 25% incidence
in order to safeguard RIM against spurious detection of
interactions.
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(i) False positive rate and significance thresholds

One of the ideas behind a comparison of the linear
(RIM) versus threshold model (GIM) is that a linear
model may find spurious interactions for binary
traits due to scale effects on the binomial scale. This
phenomenon was indeed demonstrated, with RIM
showing elevated false positive rates for detection of
interacting QTLs; when using empirical thresholds
this led to elevated significance thresholds for RIM
for testing interactions. This elevated false positive
rate for RIM was present only at 25% disease
incidence (where scale effects are large), not at 50%
incidence (where scale effects are very small). RIM did
not show aberrations when testing for main effects
and with the use of continuous liability data (results
not shown), which confirms our earlier findings
(Kadarmideen et al., 2000). These false detections of
QTLs overwhelmingly indicate that linear models are
inappropriate particularly when testing interactions

in binary data with incidences deviating from 50%,
i.e. where scale effects are important. We expect this
to be a general phenomenon for testing any inter-
actions in binary data. The increased false positive rate
can be corrected by the use of empirical significance
thresholds, which is therefore strongly recommended
when using linear models to test interactions in binary
data. Although for QTL mapping the use of empirical
thresholds is fairly common, this is not the case in
many other areas of statistical analysis. Such empiri-
cal significance thresholds would have to be computed
for each individual case because the empirical levels
depend notably on disease incidence, and also some-
what on the size of the dataset and possibly on
other factors. This of course makes the use of linear
models to analyse interactions in binary data some-
what cumbersome in practice. In all subsequent work
performed here we used empirical significance thres-
holds in order to compare RIM and GIM on an equal
footing.

Table 5. Estimates of QTL variance for interval mapping of a QTL with
different average effects (q̄) and different interaction (QEI) effects (s2

QEI)
based on linear regression (RIM) models for different disease incidence ( p)
and progeny group size (n)

Incidence n sQEI
2 q̄ Simulated

Estimated

sQTL
2 sQTL+QEI

2 sQEI
2 a

25% 200 0 0.05 0.2 1.2 13.9 13.1
0.15 1.7 2.0 14.8 13.0
0.3 6.5 5.1 18.0 13.0

10% 0.05 5.7 1.6 16.7 15.5
0.15 6.5 2.9 18.5 15.7
0.3 9.3 6.9 23.0 16.0

500 0 0.05 0.2 0.5 5.6 5.2
0.15 1.7 1.4 6.6 5.2
0.3 6.5 4.8 10.0 5.2

10% 0.05 5.7 0.9 8.5 7.7
0.15 6.5 2.4 10.3 8.0
0.3 9.3 6.8 15.1 8.3

50% 200 0 0.05 0.2 1.5 17.5 16.4
0.15 1.7 2.7 18.9 16.4
0.3 6.5 7.7 24.0 16.3

10% 0.05 5.7 1.6 21.2 20.1
0.15 6.5 2.9 22.6 20.0
0.3 9.3 7.8 27.7 19.9

500 0 0.05 0.2 0.7 7.0 6.5
0.15 1.7 2.1 8.5 6.4
0.3 6.5 7.5 13.7 6.3

10% 0.05 5.7 0.7 10.6 10.0
0.15 6.5 2.1 12.1 10.0
0.3 9.3 7.6 17.4 9.8

Statistical models with only a main QTL effect (estimating sQTL
2 ) or with a main

and QEI effect (estimating sQTL+QEI
2 ) were used with results based on 1000 rep-

licates of binary data. All variances are r1000.
a sQEI

2 , estimate of pure interaction variance computed from sQTL+QEI
2 xsQTL.

2
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(ii) Power of detecting QTL and QEI effects

The LRQTL+QEI test is the first test from our top-
down model selection scheme and is a joint test for
QTL main effects and QEI. In the absence of QEI,
RIM has slightly lower power for this LRQTL+QEI

test at 25% disease incidence. This is logically the
result of the use of elevated empirical significance
thresholds for RIM in this case. In the other tests for
the QTL main effect (LRQTL) and for ‘pure’ inter-
action only (LRQEI), RIM and GIM have comparable
performance based on the empirical significance
thresholds. In the absence of QEI it was also seen that
the LRQTL+QEI test has lower power than the LRQTL

test, which is logically due to the higher number of,
here unnecessary, parameters fitted in the QTL+QEI
model. This initial overparameterization and low
power is not a problem because when the LRQTL+QEI

test fails, our model selection scheme proceeds with
the LRQTL test.

When QEI was present, differences between RIM
and GIM were more complicated. At 50% incidence
GIM consistently had (somewhat) better power for
the interaction tests (LRQTL+QEI and LRQEI) so that
GIM will conclude more often for the correct model
with QEI. Applying the correct model can have a
dramatic impact on detection of a QTL: when QEI is
present but not detected, a subsequent test for the
main effect (LRQTL) can be nearly powerless when
the main effect is small. At 25% incidence, however,
differences between RIM and GIM were variable and
were found to depend on the size of the main effect. In
conclusion, RIM is better for the medium and larger
main effects, while GIM is better for a small main
effect.

Juenger et al. (2005) studied epistasis and GrE
interaction using a bottom-up testing strategy: i.e.
detect interesting marker loci with a QTL versus null
model (our LRQTL) then test whether a detected QTL
has interactions by comparing the QTL+QEI model

Table 6. Estimates of QTL variance for interval mapping of a QTL with
different average effects (q̄) and different interaction (QEI) effects (s2

QEI)
based on threshold models (GIM) for different disease incidences (p) and
progeny group size (n)

Incidence n sQEI
2 q̄ Simulated

Estimated

sQTL
2 sQTL+QEI

2 sQEI
2 a

25% 200 0 0.05 1.3 11.1 22.5 11.8
0.15 11.3 22.0 36.0 13.0
0.3 45.0 61.5 71.4 6.4

10% 0.05 41.0 16.4 55.0 39.0
0.15 50.7 35.6 73.3 40.0
0.3 84.8 80.0 116.9 39.0

500 0 0.05 1.3 4.6 8.5 4.5
0.15 11.3 15.9 19.6 4.0
0.3 45.0 55.7 58.9 2.0

10% 0.05 41.0 8.4 39.7 33.0
0.15 50.7 25.3 54.0 31.0
0.3 84.8 74.4 98.6 29.0

50% 200 0 0.05 1.3 8.7 20.1 11.1
0.15 11.3 19.4 31.3 10.0
0.3 45.0 58.7 70.8 10.0

10% 0.05 41.0 8.7 51.3 42.0
0.15 50.7 20.2 62.7 41.0
0.3 84.8 58.8 101.0 39.0

500 0 0.05 1.3 4.2 5.5 1.0
0.15 11.3 15.2 16.1 1.0
0.3 45.0 55.2 54.5 1.0

10% 0.05 41.0 4.3 32.6 29.2
0.15 50.7 15.5 43.5 29.1
0.3 84.8 55.5 83.4 26.1

Statistical models with only a main QTL effect (estimating sQTL
2 ) or with a main

and QEI effect (estimating sQTL+QEI
2 ) were used with results based on 1000 rep-

licates of binary data. All variances are r1000.
a sQEI

2 , estimate of pure interaction variance computed from sQTL+QEI
2 xsQTL.

2
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with the null model. Our results, however, indicate
that under such a scheme QTLs with a small main
effect but with important QEI may remain undetected
because they fail the initial main-effects test (LRQTL).
This was also observed by Wang et al. (1999), who
found that their simple QTL models failed to detect
interacting QTLs with a small main effect.

We confirmed the phenomenon that interaction
effects are confounded and partly ‘absorbed’ in the
main effect when fitting a main-effect model only, as
also seen by Culverhouse et al. (2002) and Purcell &
Sham (2004). Additionally, we showed that this effect
is not present at 50% incidence, indicating that
binomial scale effects would seem to be implicated in
this phenomenon. This ‘absorption’ of interaction
effects which happens at 25% but not at 50%
incidence, explains certain cases where 50% incidence
may give less power than 25% incidence.

(iii) Estimation of QTL and QEI effects
and variances

We assessed the ability of models to estimate QTL
and QEI effects in terms of the estimated variances
associated with these QTL and/or QEI effects. It was
shown that RIM yields a gross overestimation of QTL
variance (up to 177%) when using the QTL+QEI
model, both when QEI is present and when it is
absent. Although the use of elevated significance
thresholds for RIM could correct for its increased
false positive rate when modelling interactions, accur-
ate inference on interaction effects therefore remains
very problematic for RIM. GIM performs fairly
well with the QTL+QEI model, when QEI is either
present or absent, usually with some overestimation
but, compared with RIM, at a more modest level.

Use of a main-effects model did not allow the
capture of all QTL variance present, and both RIM
and GIM underestimate total QTL variance. Similar
results were reported by Wang et al. (1999). The
phenomenon already discussed above of interactions
effects being ‘absorbed’ in the main effect by RIM
was also seen here, again typically at 25% incidence
but not at 50%. The overestimation of QTL+QEI
variances by RIM much more frequently and sub-
stantially is the evidence that linear models can find
spurious interaction effects on the observed scale.

(iv) QTL location

The mean and standard deviation of QTL location
across 1000 replicates (results not shown) depended
on the power, which in turn depended on a number of
factors, including the genetic model used. The choice
of genetic model was shown to be important when
mapping QTLs, with an incorrect model leading to a
mean estimated QTL location remote from the true

location with high standard deviation. As expected, a
powerful design (large segregating QTL, large pro-
geny groups/genotypings, and intermediate incidence)
always resulted in mapping a QTL to its true location.
Comparing RIM and GIM, the significant differences
in power did not translate to significant differences in
mapped locations by RIM and GIM when QEI
existed at intermediate incidences. The finding that
a small interacting QTL is more precisely mapped
by QEI models is an important result. Although we
simulated a single marker bracket for single QTL
mapping, results are valid for QTL mapping with
multiple marker brackets, as shown by Kadarmideen
& Dekkers (1999) for non-interacting QTLs.

(v) General

In this study we used fixed-effect models, but one
might think of treating polygenes, QTLs and QEI
effects as random in a mixed-model approach, which
needs further investigation (e.g. as in Wang et al.,
1999). In the case of random models, more para-
meters can be included and all variances can be esti-
mated. So far, however, the fixed models have proved
useful to demonstrate our main aim of investigating
possible biases with RIM to model and test inter-
actions in binary data. Computational constraint is a
common problem in mapping a QTL with inter-
actions; the complexity increases when statistical
methods used are non-linear (e.g. threshold models).
In such situations, we recommend the use of the
marker regression mapping method of Kadarmideen
& Dekkers (1999), as this is based on a simple single
regression approach. We used large half-sib families
but the basic models and methods developed here are
applicable to any type of families. The models and
methods focused on binary traits (or diseases specifi-
cally) but in practice there may also be continuous
traits showing QEI (e.g. flowering time in Arabidopsis,
body condition or milk yield in cows, immune
responses in chickens or humans). In this case, the
top-down methodology and results would still apply.
In fact, results from applying RIM to continuous
liability data (results not shown) indicated that com-
parison of genetic models is valid on both normal
(liability) and binary scales. One could map QTLs
for each environment but this would result in
different QTL locations. Biologically, there is only
one QTL located on the genome but acting differently
between environments. The method developed in this
study has essentially shown how to map a QTL to
one location but with many within-family across-
environment QTL effects. In addition, in theory,
pooling QTL/marker data on offspring across varied
environments should result in high power, precision
of estimates and lower bias than when mapping QTLs
separately in each environment.
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5. Conclusions

This is the first study to develop a QTL interval
mapping method by liability-threshold models for
binary traits (e.g. diseases) that show gene by en-
vironment interactions (QEI) with a focus on outbred
populations on a within-family across-environments
basis. A top-down testing procedure was proposed to
help choose appropriate genetic models and obtain
maximum power in detecting interacting QTLs. We
have shown that a simple QTL model often fails to
detect small interacting QTLs; only genetic models
that model QEI are able to detect and map such
QTLs. The power to detect interacting QTLs
increases proportionately as GrE variances increase.
It was shown that the use of a linear model to model
and test interactions in binary data poses several
problems. First, the linear model had an increased
false positive rate for testing interactions which was
attributable to scale effects on the binary scale. This
increased false positive rate can be corrected by the
use of empirical significance thresholds, which are
therefore mandatory for the correct testing of inter-
actions in binary data using a linear model. Secondly,
however, the linear model with interaction terms
continued to suffer from very large biases for assess-
ing interaction effects/variances. A phenomenon
already reported elsewhere that interaction effects can
become ‘absorbed’ in the main effect also appears
associated with scale effect in binary data. A non-
linear (threshold) model generally performed well.
This is the first study to prove the principle that linear
models are not suitable for analysis of binary or
categorical data with interactions (at the polygenic
and/or QTL level) and that threshold models are
better suited for this purpose.

Appendix A. Computation of QTL and QEI variances

From the QTL model (2), an estimate of QTL vari-
ance (sQTL

2 ) was computed as in Kadarmideen et al.
(2000) as s2

QTL=s2
bxs̄ 2

pe, where sb
2 is the variance of

‘best ’ estimates of QTL substitution effects (bi) across
sires and s̄ 2

pe is the average prediction error variance
of QTL substitution effects for the best-fitting model
(obtained from the diagonal of the inverse of the
left-hand side, LHS, matrix). From the QEI model
(3), the variance of environment-specific QEI effects,
due to the fitted model, actually represents variance
of both the main QTL and QEI effects and hence
calculation based on s2

bij
could only provide an

estimate of the sum of QTL and QEI variance
(sQTL+QEI

2 ) as s2
QTL+QEI=s2

bij
xs̄ 2

pe(bij)
, where s2

bij
is

the variance of ‘best ’ estimates of environment-
specific QTL substitution effects (bij) and s̄ 2

pe(bij)
is the

average prediction error variance of QTL+QEI ef-
fects for the best-fitting model. The average prediction

error variance of QTL+QEI effects (s̄ 2
pe(bij)

) is
calculated as

s̄ 2
pe(bij)

=
1

sr
g
sr

i=1
diag{(LHS)x1}i:

An estimate of sQEI
2 was obtained as

s2
QEI=s2

QTL+QEIxs2
QTL:

However, the most appropriate way is to derive
sQEI
2 directly from the QEI model, as follows: First,

an overall QTL effect estimate (bi.) and an overall
prediction error variance (pe(bi.)) for each sire need to
be calculated; bi. can be calculated as bi:=

1
r
gr

j=1bij.
The calculation of pe(bi.) is not straightforward
because it is the variance of the average, which needs to
include all covariances. Estimates of bij are calculated
from mixed-model equations, which can be written as
an srr1 vector g with elements [b11, …, bs1, …,
b12, …, bs2, …, b1r, …, bsr]k. Let LHSb

x1 be the part in
LHSx1 corresponding to g. Let Ki be an srr1 vector
with values of 1/r for the elements corresponding to
bij in the vector g, where j=1 to r, and with a value
of zero for the rest of the elements. Then, pe(bi.) can
be calculated as pe(bi.)=Kik LHSb

x1 Ki. Therefore,
s2
QTL=s2

bi:
x 1

s
gs

i=1pe( bi:). Based on the methodology
used here to estimate variances, the estimated QTL
or QEI variances could become negative when s̄ 2

pe or
s̄ 2
pe( bij)

are larger than the corresponding sb
2 or s2

bij
; in

this case a value of zero for variances was used.

Appendix B. Computation of log-likelihoods

The general form of likelihood for GIM was given in
equation (4). To test the significance for the presence
of QTL effects with the null hypothesis of bi=0 for all
i, the log-likelihood in equation (4) under the null
model, Lnull, is maximized with pijk=W(hijk), where
hijk=E(zijk)=m+ui+ej as defined in the null model.
Similarly, to test for the presence of a QTL in the
marker bracket, the likelihood (in equation 4) under
the alternative hypothesis (bil0 for at least one i),
LQTL, is maximized with pijk=W(hijk), where
hijk=E(zijk)=m+ui+ej+cijkbi as defined in the QTL
model. Finally, to test for the presence of a QTL in
the marker bracket as well its interaction with the
environment, QEI, simultaneously, the log-likelihood
in the equation under the assumption of QEI (bijl0)
for at least one ij, LQTL+QEI, is maximized with
pijk=W(hijk), where hijk=E(zijk)=m+ui+ej+cijkbij as
defined in QEI model (3).

Appendix C. Simulation of QTL by environment

interaction effects

In simulation, the substitution effect of the QTL in
environment j (aj) included two parts : the overall
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QTL substitution effect (q̄) and the deviation from the
overall effect (qej). The q̄ was determined by overall

QTL variance (sQTL
2 ) as q̄=

ffiffiffiffiffiffiffiffiffiffiffiffi
s2
QTL

2f (1xf )

q
. The QTL by

environment interaction part, qej, was sampled from a
normal distribution with a mean of zero and a vari-
ance of s2

QEI. Then the total effect conferred by the
QTL in a given environment was aj=q̄+qej ( j=1
to r). Different QTL effects across environments were
fixed in a given replicate but varied between sire
families. Although, QEI variances were set to 0 or
10%, the realized QTL variances may differ due to
sampling size and number of environments. The
realized QTL variance (s2

QTLr
) was calculated as the

mean of QTL variances for each environment, 1 to r :
s2
QTLr

= 2f (1xf )
r

gr

j=1a
2
j , where r is the number of

environments and f is the frequency of the Q1 allele
inherited from the sire. Since data were simulated on
liability scales, these realized values were on the
Normal scale. For the purpose of comparison of
results on a binary or observed scale from RIM, the
aj needs to be transformed from a liability to a
probability scale before computing the realized
variances on binary scales. This was done based on
Kadarmideen et al. (2000). The true QTL effect of the
jth environment on the probability scale (ajp) was
computed based on the true environment-specific
QTL effect on the liability scale aj as ajp=W(aj),
where W is a normal cumulative density function.
Then the QTL variances for each environment and
the mean of these variances were computed.
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