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§1. Introduction

In connection with a Gaussian system X = {X(x); x € M} called Lévy’s
Brownian motion (Definition 1), we shall introduce two integral trans-
formations of special type-—one is a generalized Radon transform R on a
measure space (M, m), and the other is a dual Radon transform R* on
another measure space (H, v) such that H C 2¥, the set of all subsets of
M (Definition 2). To each Lévy’s Brownian motion X, there is attached
a distance d(x,y):= E[(X(x) — X(»))*] on M having a notable property
named L'-embeddability ([3]). The above measure v on H is then chosen
to satisfy

d(x,y) = (B, AB,)  with B,:={hecH; xeh},

where /\ stands for the symmetric difference.

It turns out that these transforms constitute a factorization of the
covariance operator of X (Theorem 3); a more explicit link between X
and R* can be noticed in the somewhat informal expression

X(x) = (R*W)(x),

where W = {W(dh); h e H} is a Gaussian random measure with mean 0
and variance v(dh). In view of the quite simple probabilistic structure
of W, an idea comes to mind: The deep study of R and R* will yield
fruitful results on X. Thus, we shall investigate the transforms R and
R* as well as the Lévy’s Brownian motion X in the present and subsequent
papers.

The main purpose of the present paper (I) is to obtain the singular
value decomposition of R* (Theorem 5), which gives us the Karhunen-
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Loéve expansion of X (Theorem 6). The second paper (II) will concentrate
on the investigation of the null spaces of R*:

N,(A):={geL¥(H,v); (R*g)x) =0, xc A}, AcC M.

The structure of the closed linear span [X(x); x e A] in L¥£2, P) will be
described in terms of N,(A) and W.

In order to give some interpretation to the representation of Chentsov
type which is useful for our study, we begin with a familiar Brownian
motion X = {X(x); x€ R"} with n-dimensional parameter. The variance
of the increment X(x) — X(y) is, by definition, equal to the Euclidean
distance |x — y| between x and y. The idea of Chentsov [6] (cf. [24] and
[26]) now leads us to take the following measure space (H,v): H is the
set of all half-spaces h,,:= {x € R"; (x, w) > {} not containing the origin O;
an element h, , e H is parametrized by the distance ¢ > 0 and the direction
weS" 1= {we R"; || =1}]. The measure v is an invariant measure on H,
explicitly given by

Hah,) = o fjlf dtdo .

Then it is easy to verify that vw(B,AB,) = |x — y]. We thus get at the
conclusion that X is expressed in the form

(1) X(x) = f _ W(dh) = W(B.).

A general framework behind the representation (1) of Chentsov type
consists of the following:

(1) A centered Gaussian system X = {X(x); xe M} with parameter
space M; the variance of the increment is denoted by d(x, y):= E[(X(x)
— X1

(i) A Gaussian random measure W = {W(dh); he H} based on a
measure space (H,v) such that H C 2" and u(B,) < oo for all xe M.

It follows from (1) that

(2) d(5,3) = [ 160 = 1, (WIdh) = (B.AB,),

where Z; denotes the indicator function of a subset B C H. Conversely,
this equation (2) guarantees the existence of such a representation (1).
The variance of X admitting a representation (1) of Chentsov type is
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therefore a (semi-)metric on M of the form | X;, — Xz, |lz1(x,.); such a metric.
is said to be L'-embeddable ([3]).
We are now in a position to introduce the following

DerFiniTION 1. Let (M, d) be an L'-embeddable metric space. Then
a centered Gaussian system X = {X(x); xe€ M} with the variance d(x,y)
of the increment X(x) — X(v) is called Lévy’s Brownian motion with para-
meter space (M, d).

With this terminology, our first conclusion (Theorem 1) is that every
Lévy’s Brownian motion admits of a representation of the form (1).

Another ingredient in our study is a pair of integral transformations
associated with the expression (1).

DEFINITION 2. Let m(dx) be a reference measure on M. The integral

transform

(3) BAB):= [ feamdx),  feL(M,m),
(resp.

(4) (Beg)):= | gthinidn),  geL(H»)

is called a generalized (resp. dual) Radon transform.
The reason for using the symbol R* lies in the obvious relation of
duality:

(Rf, g)Lz(H,u) = (f, R*g)raca,m -

In case X is a Brownian motion with n-dimensional parameter, the
value (Rf)(h,,) is nothing but the integral of f over the half-space &,
and hence the classical Radon transform, the integral over the hyperplane
oh,., (Radon’s celebrated paper [31]; see also [8], [15] and [23]) can be
derived from the first variation of R (cf. [19], p. 47). On the other hand,
the dual Radon transform R* is closely related to the one studied by
Cormack and Quinto [7], because the set B, is changed into the open ball
B, with diameter Ox by means of the mapping

h,,e H—>y = tw ¢ R*\{0}, the foot of the perpendicular from
O to the hyperplane é§h, .

Another important example should be mentioned here; it is a Lévy’s
Brownian motion with parameter space (S@, d;), d, being the geodesic
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distance on S”. Due to Lévy [21] (cf. also [18]), the corresponding measure
space (H,v) is chosen to be the set of all hemispheres endowed with an
invariant measure v. In this case, the transforms R and R* take the same
form—the integral over a hemisphere. Since the integral over a great
circle can also be derived from the first variation of R, the study of R
and R* has another origin in Funk [11] and [12].

In Section 2 we shall establish the representation (1) of Chentsov type,
and give several examples of (M, d) and (H, v), except the case of M = R",
the usual parameter space of random fields. A variety of L'-embeddable
metrics d on R™ will be described in the second paper (II).

Section 3 is devoted to the study of fundamental properties of R and
R*. In particular, we shall obtain their singular value decompositions,
which will be applied to show that X admits of the Karhunen-Loéve
expansion in terms of an i.i.d. sequence of standard Gaussian random
variables.

Section 4 will concern the n-sphere M = S™ equipped with the uni-
form probability measure ¢. The Karhunen-Loéve expansion will be ex-
plicitly calculated for a certain class of Lévy’s Brownian motions X =
{X(x); xe S} including the one due to Lévy [21] mentioned above; all of
them have probability laws invariant under every rotation on S™.

The author is grateful to Professor D. Koélzow who suggested him to
use the theory of Radon transforms.

§2. Representations of Chentsov type

The purpose of this section is two-fold: to prove the representation
(1) of Chentsov type for each Lévy’s Borwnian motion X, and to give
several examples of (H,v) combined with (J, d) via the equality (2). Par-
ticular attention will be paid to the case of M = S™.

Suppose that (M, d) is an L'-embeddable metric space; by definition,
there exist a measure space (7, z) and a mapping xe M — f.(t) e L\(T, p)
such that d(x, y) = |f.(8) — [L(Dllzxr,,- Then, as was shown by Assouad
and Deza [3], we can find another measure space (H, v) satisfying H C 2¥
and

(2) d(x3) = AB.AB,) = [ m(x, p(dh),
where we have used the notation

m (%, ¥)i= lxh(x) - Xh(y)| = |sz(h) - XB,,(h)l .
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Among various kinds of possible realizations of the distance d, the
above one in terms of the indicator function % (h) in L'(H,v) is most con-
venient for us to associate the transforms R and R* with the expression
(1). It was called a multiplicity realization in [3]. The correspondence
(M, d) — (H, v) has a tiny fault, however; it is not one to one (see Example
1b below).

Having found a multiplicity realization X, (h) in L'(H,v) of a given
L'-embeddable metric d on M, our first conclusion follows immediately:

TuaeoreMm 1. A Léuvy’s Brownian motion X with parameter space (M, d)
admits of the representation

(1) X@ = |, Wdn

in terms of a Gaussian random measure W based on the measure space
(H,v).

Now choose and fix a point O¢ M as the origin. In view of a simple
fact that z,. = 7,, we may change an element h ¢ H with its complement
ht if Oeh, so that HC (2¥),:= {h € M; O« h}. This choice of H implies
that B, = ¢, which leads to the assumption X(O) = 0 often added in the
definition of Lévy’s Brownian motion.

ExampLE 1. Let us mention a couple of examples in which (M, d) is
induced by a graph G ([14]), i.e., M is the set of all vertexes and d(x, )
is the number of edges in a shortest path between x and y.

(&) G =T, atree. At each edge e of T, M is separated into the two

complementary subsets i, and k¢; the root O of T always belongs to AS
Define

H = {h, for all edges e} C (27), with weight v(h,) =1,
to get the desired distance d on M. With this choice of (H,v), the repre-
sentation (1) of Chentsov type can be regarded as a simple extension of
partial sums of a sequence of i.i.d. Gaussian random variables.

(b) G = K, the complete graph of m vertexes. It is possible to find
several different kinds of (H,v). Indeed, for each &, 1 < k < [m/2], take

H, = {all subsets h of k vertexes} with weight v, (h) = {2(::’ _12>}H1 .
Then it is easy to show that
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d(x, y):= 3 m(x, () =1 for any x, ye M.
heHg

We note that (M, d) induced by a cyclic graph C,, is a discrete ana-
logue of (S!, d;) and hence the corresponding measure space (H, v) can be
constructed after the manner of the one described in Section 1.

ExampLE 2. In case M is the set of all natural numbers, an easy
way to get an L'-embeddable metric d on M is as follows: Take

H:= {h,; m > 2} with weight v(4,) >0,
and define

d(x,):= 3, w0, ulln)

where h,:= {mk; k =1, 2, - - -} is the set of all multiples of m. The special
choice of weight

v(h,) = log p if m has only one prime factor p, = 0 otherwise,

gives us the interesting distance d(x,y) = log (x Uy/xNy) mentioned in [1]
and [2], where x Uy (resp. xNy) denotes the L. C. M. (resp. G.C.M.) of x and y.
A generalized Radon transform of the form

(Bf)hy) = 3 f(mk)

was considered by Strichartz [34], who gave the inversion formula

(5) flx) = 2, p(R) B
where (k) is the Mobius function defined by
()= (—1)*, if £ has [ distinct prime factors,
= 0, if & is divisible by the square of a prime.

The representation (1) for a Lévy’s Brownian motion X with parameter
space (M, d) now takes the form

X(x) =2 Wh,), x>2, and X(1)=0,
ml|r
which is canonical ([16]) in the sense that
[X(@2), -+, X(m)] = [W(hy), -- -, W(h,)]  for every m > 2.

To be more precise, we obtain the exact expression of W in terms of X:
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(6) W(h,) = g_,;‘ny(m/x)X(x) .
The proof of (5) consists of an application of the inversion formula (5) to
a general relation

5 f@X@) = 5, (BRI W(h,) .

=2

The rest of this section concentrates of the case of the n-sphere (M, m)
= (8", g). For each pe (0, 2r), set

C,(p):={xe 8"; (x, p) > cos (0/2)} .

This is an open cap with north pole p € S™ and in particular C.(p) is the
hemisphere. Take H,:={C,(p); pe S"} with an invariant measure

d(C,(p)) = cdo(p), c¢=uH,)>0.

Then the corresponding distance becomes

(1) d,(, 9)i=c [ 7e,in(@ Mo(dp) = ea(Cx) A C),

which is rotation-invariant and hence of the form cr,(ds(x, y)), where
dg(x, y):= arccos (x, y). Since, 7¢,,_,4 = Tc,-p» We have r._,(8) =r,(@).
Furthermore, a straightforward computation (o = r) yields the explicit
form of r,: r.(f) = t/x (cf. [18] and [21]).

A Lévy’s Brownian motion X with parameter space (S, d,) is then
expressed in the form
) X@ =ve [ wd,

»

where W, = {W,(dy); ye S™} is a Gaussian random measure based on the
uniform probability space (S”, ¢). Instead of the pair of R and R* asso-
ciated with (1), it is more convenient to treat the following transform
associated with (1'):

(8) RA@:= [ fO)otdy),

0
which is a self-adjoint operator on L*(S*, ¢). The expression (1') as well
as the transform R, will be further discussed in Section 4.

In the one-dimensional case n =1, we can go further by makinzg a
superposition of {d,: 0 < p < x}:
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(9) de.y):= | _dy( o),

where p is a probability measure on (0, z]. A measure space (H, v) com-
bined with this d is obviously taken as follows:

H:={h,,:=C/(p); 0<p<= peS} with u(dh,,) = cu(dp)a(dp).

Observe that the rotation-invariant distance d on S' takes the form
d(x, y) = r(de(x, ), where
r@t) = CLU ]rp(t)/l(dp) =2 J(O ]min (t, p)uldp) .
The right derivative r’.(f) is of the form 2cp((t, z]) and therefore non-
increasing in 0 <t <.
What we have just observed is summed up in the following

ProprosITION 2. Suppose that r(f) is a continuous function on [0, z],
r(0) = 0 and has the right derivative r’.(t) > 0, non-increasing on [0, ).
Then the distance d(x,y):= r(ds(x,y)) on S! is L'-embeddable.

§3. Generalized Radon transform and its dual

This section is devoted to the study of basic properties of the gener-
alized Radon transform R and the dual Radon transform R*. The main
fact we prove is the singular value decomposition of R* regarded as a
Hilbert-Schmidt operator from L*(H, v) to L*(M, a(x)m(dx)), where the density
a(x) is chosen from among positive functions in L'(M, m) satisfying

j UBJa(@m(d)i= C < oo

The decomposition of R* implies the Karhunen-Loéve expansion of a Lévy’s
Brownian motion X with parameter space (M, d).

We shall begin by discussing the covariance operator of X. The
representation (1) of X implies that the covariance function I'(x, y):=
E[X(x)X(y)] is equal to v(B,NB,). With a choice of « mentioned above,
we consider the Hilbert space LM, m), m(dx):=a(x)m(dx), instead of the
usual L*(M, m). Then, the equation

(10) IN@ = | I D)),

defines a positive, self-adjoint and trace class operator on L*(M, m) (cf. [5],
p. 294). The operator I is called the covariance operator of X.
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We next consider the generalized Radon transform R. Observe that
multiplication by « is a well-defined operator from LM, m) to L'(M, m):

(T.f)x):=a(x)f (x),  fe LM, m).

So we can form the composition Ro T, to infer that it is a bounded oper-
ator from LM, m) to L*H,v). The proof of this assertion is an easy

computation:
(R o Tof)(R) 2oz,
< [, wan{[[ | 1@ @17 )|

= ([ 5B.1 B @I £ et
< { f . ¢1T(B§)'lf(x)|m(dx)}2 < Clf o -

A similar argument implies that the dual Radon transform R* is
bounded from L*(H,v) to L*(M, m). We need one more step to get at the
following

THEOREM 3. We have a factorization of I':

r
(11) LXM. m) —> L}(M, 1)
I'=R*(R-T,). BT\, SE
L¥H, v)
The proof of (11) is immediate:

(R*oRo T,f)(x) = L[ f(y)m (dy){fH sz(h)XBy(h)u(dh)}
— [ P D) = (TP, Fe 0L ).

We are now going to give the singular value decompositions of the
two factors, Ro T, and R*, in Theorem 3. Positive eigenvalues 2} of the
covariance operator [’ is enumerated by means of index ie I, where [ is
a finite or countable infinite set and {1} e l*(I). Set

Ny:= {fe LM, m); (['f)(x) =0, xe M}, the null space of I".

Then we can select in N a CONS {f(x); i€ I} consisting of eigenfunc-
tions of I':

f)x) = Aifdx),  iel.
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Note that any non-negative function in L*(M, /) cannot be in N, since
I'(x,y) >0 for all x, ye M.
Now, put

gi(h):= (R T.f)(h)/% e LX(H,v),

and N,:= [g;; i e I]*, where [g;; i € I] stands for the closed linear span of
{g;;ieI}in L*(H,v). The functions g;(h), i€ I, constitute a CONS in N{;
the proof of this assertion is carried out by using Theorem 3:

(& gj)L“‘(H,v) = (Xizj)—l(R* oRoT,f, fj)L2(M,77L)
= (zilj)_l(rfh fj)Lz(M,ﬁn = Zilfl(fi, fj)LZ(M,ﬁL) = 5i,j .

For our purpose we need the following
Lemma 4. We have an expansion
(12) Xu(x) = X5 (h) = %]ifi(x)gi(h) , xeM and heH.
Proof. We write the Fourier series of X5 (h) as an element of L*(H,v):
s (h) = 23 c0)gih) + g%h),
where c(x):= (Xz,(h), 8/(h)1ecx,, = (R*g)(x) and g°e N,. Since
(R*8", [)rec,m = (8" Ro Tof)raary = 2(8° 8)1acryy = 0

for any ie I, we have R¥*g’e N,, Actually this function (R*g°(x) is con-
stantly equal to 0, because it is a non-negative function in N,:

(R*g)x) = (X5,(h), 8°(M)aczry = 18° 72ty = 0.

We have thus proved that g°h) = 0.

The next task is to calculate the Fourier coefficients c¢,(x) = (R*g)(x),
iel. Since

(R*gs, reon,m = (86 Ro Tof Vocay = (fi, If )2, m/? = 0
for any f°e¢ N,, we have R*g, e N{. Furthermore, the equality
(B*gs, e,y = (8o Ro Taf Diocu,y = 404,

shows that c;(x) = 2,fi(x), which completes the proof. We note that (12)
is also the Fourier series of X,(x) as an element of L*(M, rn).
In view of the expressions

(R T.f)R) = (Lu(2), ()2, and  (R*g)(x) = (X5, (h), () 1ecr,u,
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Lemma 4 immediately gives us their singular value decompositions having
common positive singular values {2;; i € I} € I)(I).

THEOREM 5. (i) The operator Ro T, is a Hilbert-Schmidt operator
from L*(M, m) to L*(H,v) and has the singular value decomposition

(13) (RoT.f)h) = ;I'zz(f’ f) 2o, &(R).

The null space of Ro T, is N, = [f;; i e I]*-.
(1) The dual Radon transform R* is a Hilbert-Schmidt operator from
LXH,v) to L*(M, m) and has the singular value decomposition

(14) (R*g)(x) = é 28, &) reca i) .
The null space of R* is N, = [g;;ieI]%

An application of Theorem 5 (i1) to the representation (1) is now in
order. Let us define

&= [ aywian),

to get an ii.d. sequence & = {§;; ie I} of standard Gaussian random vari-
ables. Since (1) is rewritten as X(x) = (R*W)(x), the decomposition (14)
yields

(15) X(x) = 2, 4&:fix)

which is nothing but the Karhunen-Loéve expansion usually derived from
Mercer’s theorem (cf. [5] and [17]):

16 I(x,9) = 3 2f@0).

Moreover, orthonormality of the system {f;; i€ I} in L*(M, /n) implies the
inverse expression of £ in terms of X:

& = (X(®), fi(X)) 2c, 9/ A -

Summing up what we have just proved, we get

THEOREM 6. FKvery Lévy’s Brownian motion X with parameter space
(M, d) admits of the Karhunen-Loéve expansion (15) in terms of &, and
moreover we have

an  X@;xeMl=(&;iell = {[ grWdn; ge N1}
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As a direct consequence of (15), we obtain another useful expression
of the L'-embeddable metric d(x,y) = v(B, A B,) on M:

(18) d(x, ) = 2 2(fix) — f ),

which is equivalent to (16).

§4. Lévy’s Brownian motion with parameter space (S*, d,)

The final section concerns the concrete examples on S™ discussed in
Section 2. We shall calculate explicitly the eigenvalues and eigenfunctions
of the self-adjoint operator R, on L*S", ¢); then an application of the
decomposition of R, to the expression (1’) will yield a new representation
for a Lévy’s Brownian motion X with parameter space (S*, d,). In addi-
tion, we shall investigate the M(#)-process of X introduced by Lévy [20].

We recall some known facts about spherical harmonics (cf. [10] and
[33]). Let SH, denote the set of all spherical harmonics of degree m;
then the dimension of SH,, is

h(m): = 2m+n—1(m+ n——l).
m+n—1 m

We get the direct sum decomposition L¥S", o) = >.»_,® SH,, as well as
a CONS {S,, «(x); (m, k) € 4} consisting of spherical harmonics, where 4:=
{(m,k); m>0 and 1< k < h(m)}. In the sequel we shall make use of the
addition formula

S 8 @S0u3) = Cill, DD,
(m) &

where C}(u) is the Gegenbauer polynomial of degree m with 1:= (n — 1)/2.

Let us proceed to prove the explicit form of (12) in the present situ-
ation where d = d, and (M, m) = (S, 0) ~ (H,,v) by the mapping xe S"
— C,(x)e H,.

LemmA 7 (cf. [32]). We have an expansion

(19) Lol ) = T 2nl)Sns(®)S0s(3)

= 20 An(@R(m)Cr((x, Y))/C1(D)

where
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I Sn—l| ‘ 1

[S *| o Jeos (/2
1871 Cieos (o/2) |
|S"|n Cia()

1 — u)*du, m=20,
An(0) =

m** (o/2), m=>1

Proof. Appealing to the Funk-Hecke theorem ([10]), we have (19) with

)= 1S G

‘m\"*) . 2)2-1/2
|87 Jeoswm CE(L) (1= wy™du.

1
To compute the integral Cllu)(1 — u®)*'*du for m > 1, we use the

cos (p/2)
formula

Cfn(u) — bfn(l _ uZ)—x+1/2 dr (1 . uz)m+1—1/2,
du™
b, = (=1)"™2,/2Cm)!! (2 + 1/2),,
where (@),.:= [["5 (@ + j). Since
IS’n—l! b;ln [ dm-l

187 Ca® Ldur

|Sn_l|22 (it S21+1
IS"I_”T(Ql +an(1) Cm—1(COS(P/2)) sin®** (p/2)
[S™] C§,,+_11(COS(p/2)) 22+l

S Cy e

Aulp) = @ = wyee|

cos (0/2)

the proof is completed.

The generalized (or dual) Radon transform R, associated with (1) is
a self-adjoint and Hilbert-Schmidt operator on L*S", ¢), and the factori-
zation of the covariance operator I" (Theorem 3) takes the simpler form

r
B L¥S™, ¢) —> LXS™, 9)
I'=WCcR). VIR, JVer,
LX(S", o)
In order to state the decomposition of R,, we set

d,:={(m, k) e 4; 2,(p) = 0} = {(m, k) € 4; m = 2, C;%i(cos(p/2)) = O},

which corresponds to the null space N of R,, and I,:= 4\4,. Recalling
that (R,/)(x) = (Xc, (), f(¥)1s¢sn,07» Lemma 7 implies the following

TuEoREM 8. We have
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(20) (R.f)x) = - f;e‘z 2O f, Sni)r2csn,0rSm (%)
and the null space N =[S, (x); (m, k) e 4,].
By applying (20) to the expression X(x) = « ¢ (R,W,)(x), we obtain

the Karhunen-Loéve expansion of X in terms of the i.i.d. sequence

¢ = {ensi= [, SmsIWuldy); (m, Bye L)

of standard Gaussian random variables.

TueoreM 9. A Lévy’s Brownian motion X with parameter space (S*, d,)
admits of a representation

(21) X(x) = «/—c—(m gél zm(p)SM,kSm,k(x) .
Moreover, we have

(@2 1X@; xe 5 = [ (m e L] = {[ e()Wid); ge N},
and

(23) di(x,3) = 2¢ 3 B(oAm){L — Ch(x M)CD)} .

We now focus our attention on the case p =c =r, i.e., X is a Lévy’s
Brownian motion with the geodesic distance d;. In this case,

4. =1{@j,k);j=1,2 - and 1 <k < h(2j)}

and
1/2, m=20,
An(®) = I'((n + 1)/2)(n — 21! (— 1y & = D!

F(n/2)\/_7; (2j+n)!! ’ m=2j+1.

With the help of these values, one can compute the coefficients 2z2%(x)h(m)
in (23), to find the formula of d, due to Gangoli [13] and Moléan [25]
(cf. also [27], p. 143) who proved it via an entirely different approach. In
view of the special form of 4., it is natural to assume that X(x) is odd,
ie., X(x) + X(—x) = 0; the expression (21) then becomes

, _I'(n+1D2)n =91 &, 4y @2 — D!
1) X = I'(n/2) D Ty

h(2j+1)

X Z $2j+1,kS2j+1,k(x)'
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In connection with the M(f)-process ([20]), we need another transform
(T,f)x) (cf. [15]) which is given by the mean value of f over the small
(or great in case p = x) circle §C,(x), 0 < p < 2r.

DerFiniTION 3. For fe C(S™), the set of all continuous functions on
S*, the integral transformation defined by

(24) (TH@:= [ F)s(d)sC, ),

is called the mean value operator over 5C,(x), where s denotes the (n — 1)-

dimensional surface measure on 6C,(x). For each fixed x, € S*, the Gaussian
process

(25) M@):= (T..X)(x) — X(x,), 0<t<nm,

is called the M(t)-process.

By appealing, again, to the Funk-Hecke theorem, we get the decompo-
sition of T,.

PropositioN 10. The mean value operator T, on C(S™) is extended to
be a self-adjoint, compact operator on L*S", o), and it has the decomposition

(26) @@= 5 CHEEOD (8o Sust),

where I =M, and d,:= {(m, k) € 4; C% (cos(0/2)) = 0}. Moreover, the null
space of T, is [S, (%); (m, k)€ A,,].

By the combination of (21) and (26), we write

MO =ve 3 [ 1St
=+c %‘;f ()W h(m) n.{1 — C3 (cos £)/CL)},

where we have put

h(m)

Pt = «/h( 5 7 2 EniSnp(xo)  for med,i={m =15 2.(0) # 0} .

It is shown that the 7, form an i.i.d. sequence of standard Gaussian
random variables.

ProposITION 11 (cf. [27]in case p = 7). The M(t)-process of a Lévy’s
Brownian motion X with parameter space (S™, d,) is expressed in the form
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@7) M@) =+ 7";]' 2n(p)V h(m) 9a{1 — C} (cos )/ Ci(D)} .
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