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Constrained Approximation with Jacobi
Weights

Kirill Kopotun, Dany Leviatan, and Igor Shevchuk

Abstract. In this paper, we prove that for € = 1 or 2 the rate of best £-monotone polynomial approx-
imation in the L, norm (1 < p < oo) weighted by the Jacobi weight w, g(x) = (1+ x)%(1 - x)P
with &, f > —1/p if p < 00, or a, § > 0 if p = o0, is bounded by an appropriate (£ +1)-st modulus of
smoothness with the same weight, and that this rate cannot be bounded by the (£ +2)-nd modulus.
Related results on constrained weighted spline approximation and applications of our estimates are
also given.

1 Introduction and Main Results

One of the central topics in Approximation Theory is the investigation of the connec-
tion between the rate with which a function can be approximated and the smoothness
of this function. The goal is to prove direct and matching inverse estimates in terms
of the right measure of smoothness. In other words, one strives to obtain results of
the following type: “a function can be approximated with a given order if and only if it
belongs to a certain smoothness class” In order to describe these smoothness classes,
one usually needs to introduce appropriate moduli of smoothness that correspond to
the way approximation orders are measured. For example, in the case of approxima-
tion by algebraic polynomials, if orders of approximation of f are given using the L,
norms, then one can measure smoothness of f using either the Ivanov or the Ditzian-
Totik moduli (we refer the reader to [4] for further discussion of recent developments
in this area).

Corresponding problems for weighted polynomial approximation are much more
complicated, especially if the weight has zeros and/or singularities inside (-1,1). One
cannot simply replace the usual L, norm |- [, by a corresponding weighted norm
|1, everywhere, and there is a need to modify the definition of the moduli of
smoothness near zeros/singularities of the weight (see, e.g., [1,2,12] and the references
therein for further details). Even the case for the classical Jacobi weights that have ze-
ros/singularities “only” at the endpoints of [-1,1] is rather involved, and requires a
modification of the definition of the moduli.
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In this paper, we are interested in weighted approximation with Jacobi weights that
is not only exact in the above-described sense but also preserves the shape of the func-
tions being approximated. It is usually referred to as shape preserving or constrained
approximation. Constrained approximation without weights has been relatively well
studied in recent years (see, e.g., our survey paper [10] for details). At the same time,
we are not aware of any results on weighted polynomial approximation with con-
straints on a finite interval (with Jacobi or any other weights), and the purpose of
this paper is to obtain the first result of this type. We prove Jackson type estimates
inthe IL,, 1 < p < oo, norm weighted by the Jacobi weights in terms of the “correct”
moduli of smoothness (i.e., those moduli that yield matching direct and inverse es-
timates) in the case of monotone and convex polynomial approximation, and state
several applications of our results. Some of the results may be had (with appropri-
ate modifications) also for 0 < p < 1, but we have limited ourselves to 1 < p < oo
in order to avoid complicated technicalities. Moreover, we have not considered the
¢-monotone approximation with € > 3 in this paper, since this type of approximation
is rather involved even in the unweighted case (see, e.g., [10] for additional discus-
sion). Furthermore, it is a natural question whether analogs of our results are valid in
the case of approximation with more general doubling weights. However, this seems
to be a rather complicated question, since the presence of internal zeros and singu-
larities causes difficulties even in the case of approximation without any constraints
(see [8,9], for example). Still, we hope that the techniques developed in this paper
and their modifications can be used to tackle more general problems on constrained
weighted approximation in the future.

In order to continue our discussion, we need to introduce some notation and recall
several definitions.

As usual, for a measurable f:[-1,1] » R and an interval I ¢ [-1,1], let

1/p
ey = ([ GPax) s oo, and Iflioqp = esssup,lf()l
For a weight function w, we also let
Low,p (1) = { f [ 1w flL, 1) < o}
and, for f € L, ,(I), let
E.(f I)w,p = Pi?gn Iw(f - Pn)HJL,,(I)

be the degree of weighted approximation by polynomials in IT,, the set of algebraic
polynomials of degree < n. For I = [-1,1], it is convenient to use the notation | |, :=

HfH]LP[—l,l]) ]Lw,p = Lw,p[_l’ 1] and E, (f)w,p =E, (f> [_1’ 1])w,p-
Let

A (foo[arb]) = {Zilo (Y(=1)*i f(x — kh/2+ ih) ifx+kh/2 € [a,b],

i

0 otherwise,
be the k-th symmetric difference, AX(f,x) := AF(f,x,[-1,1]), and let

KE(fox)i= A5 (fox+kh/2) and  AE(f,x) = AL(f,x - kh/2)
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be the forward and backward k-th differences, respectively. Then the usual k-th mod-
ulus of smoothness of f € IL,(I) on an interval I is defined as

wi(f>0,1)p = 0512136 ”Alfz(f’ "I)”]Lp(l)’
<n<

Now, let

(14 2)%(1— x wBel (-1/p,00) if p < oo,
e = (e e ]p'_{[o,oo) if p = oo,

be the Jacobi weights, and denote ]LZ"6 = Ly, g,p-
The main part weighted modulus of smoothness (with Jacobi weights) is defined
as

QG(f> 4 O wyp =

sup ‘wa,[;(~)Alfl¢(.)(f, - [-1+ Ah*,1- AR?])

0<h<é

L,[-1+Ah?,1-AR?]’

where A is a positive constant and ¢(x) := V1 - x2.
Following [1,12] (see also [5, Chapter 11]), we define

O (oA Oagup = 05 (f A O + k(o[ -14248])

_as2
+E(f,1-248%1])
and note that w;k(f, A, 8)w,,p is bounded for all f € ]LZ"B with a, B € J.
If 1 < p < oo, it is possible to show (see [9, Corollary 11.1] for 1 < p < oo, if p = oo,
the proof is analogous) that

1) @03 (fr AL 0w pp ~ 05 (frA2,82)w,pif Ar~A; and 8y~ 8,

where by A ~ B we mean that there exist constants 0 < ¢; < ¢; such that ;A < B < ;A
Here and in the sequel, the equivalence constants as well as the constants ¢, in
general, depend on «, f3, p and the order of the moduli. Constants ¢ may be different
on different occurrences even when they appear in the same line.
The weighted Ditzian-Totik (DT) modulus of smoothness (see [5, (8.1.2), (8.2.10)
and Appendix B]) is defined as

0g(f> 4 ) pp = U (fr A Op + QG (fr A )up + QG (f1 A )

where

Qg(f’ A, 8)y,ppi= SUP

0<h<2A8?

W«x,ﬁXZ(f) HLP[

-1,-1+2A46?]
and

Sk
Q4(fr A 8)wepp = sup
0<h<2A$?

-
k
Wap &3 (f) ”]1,1,[172A82,1] ’
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where AK(f) = AK(f,-)and AK(f) = AK(f,-). If w =1, then w’(;(f,A,(S)l,p is
equivalent to the usual DT modulus

“)Iq(a(f";)p = sup HAfup(f)Hw
0<h<é

where A§¢(f) = A’;l¢(,)(f, ).

We note that the moduli wé‘)( f>8)w,4.p are usually defined with the restriction
a, 3 > 0 forall p < oo and not just for p = co. The reason for this is that if & < 0 or
S < 0, then there are functions f in L;’ﬁ for which w’é(f, 8)wapop = 00 (see, eg, [7]
for more discussion).

At E}I:e same time, if «, 8 2‘0, then for all f ¢ Lg’ﬁ, 1 s p < oo, w’;(f,A, ‘?)w‘,,,g,p
and 3" (f, A, 8)w, ,,p are equivalent. Namely, the following can be proved using the
same method as in [2, Theorem 2.1 and Proposition 4.2].

Lemma 1.1 IfkeN,A>0,a,f>0andf € ]Lg’ﬁ, 1< p < oo, then there exists §g > 0
such that

w’(:ﬁ(f’ A’ 8)"":.1,/})17 ~ w;k (f’A> 6)Wa,ﬁrp
forall 0 < 6 < 6.

The next theorem follows from [1, Theorem 3.1] (see also [12, Theorem 1.4] in the
case where p = oo and [9, Theorems 5.2 and 9.1] if 1 < p < o0).

Theorem 1.2 Let1< p < oo, a,ﬁe]p,keN,A>0andfe]Lg’ﬁ. Then

*k -
En(f)wu,p,p Scwy (f,An l)Wa,ﬁ)P

and

n

*k - —k k—
Wy (f,An 1)wa,a,p <en E 1:1 lEi(f)Wa,ﬂap’
iz

where constants ¢ depend only on k, p, o, f, and A.

Remark 1.3  With the moduli w’(; instead of w;k and «, § > 0, Theorem 1.2 was
proved in [11, Theorem 4].

Corollary 1.4 Let1 < p < oo, a,f € ]y, ke N,A> 0, and f ¢ Lz’ﬁ. Then for
0<y<k,
En(Nwapp =0(n7) = 0 (f,4,8)u,5p = O(8"), 6> 0.
Denote by A¢ the set of all £-monotone functions on (-1,1) (i.e, f € A’ if its
¢-th order divided difference [f;,...,ts; f] > 0, for all collection of distinct points

(t:)., c (-1,1)), where we view f as a representative of its class defined pointwise.
Recall that [t;; f] := f(#) and for £ > 2,

[t tes f1i= ([t s tees f1 - [tas - o tes f1) /(11— te).
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In particular, note that A' and A? are the cones of all monotone and convex func-
tions on (-1,1), respectively. We also let

EO(fDwpi= dnf  Jw(f = pa)l, ESO (D= EP(£,[-11]),,

n

P’
The following theorem is the main result in this paper.

Theorem 1.5 Let£=10r€=21<p<o0, A>0,a,f¢€]p, andletfeLg’ﬁﬁAe.
Then

(12) ESO (fwepp < cw;(“l)(f, A,n )y, pps forall m>e+1.
Remark 1.6  Using exactly the same proof as in [13], the fact that all norms in fi-

nite dimensional spaces are equivalent (and so, for example, |P|co ~ ||Wa gP[oo ~
|wa,pP||, with equivalence constants depending on #, «, 8 and p), and the estimate

*k
W (f’ A, t)wq,/;,p < CHth,ﬂpr>

for k e Nand A, t > 0, it is possible to show that the estimate (1.2) is exact in the sense

that w;(€+1) in (1.2) cannot be replaced by w;k with k > €+ 2.

Remark 1.7 It suffices to prove Theorem 1.5 for sufficiently large n, since for small
n, it immediately follows from the observation that for f € ]Lg’ﬁ NAY e=1ore=2,

ESE (Fwapr = Eerr(Nwepop-

Corollary 1.8 Let€=10r€=2,1<p<o00, A>0,a,3>0,andlet f € Lg’ﬁ n AL
Then

(1.3) Ef,e)(f)wa,ﬂ,p < cwi”(f,A, n_l)wa,ﬂ,[,, forall n>¢€+1.

Corollary 1.8 immediately follows from Theorem 1.5 and Lemma 1.1 for sufficiently
large n (i.e., n > 1/8p). If € +1 < n < [1/8o] = np, then n™' ~ (ng +1)7 < &, and
using (1.1), Lemma 1.1, and monotonicity of wsfl(f, A, t)w,,p in t, we have

EO (s < €0y D (Fr A ppp < cof 0 (£,4, (no +1)7)

< cwsfl(f,A, (ng + 1)71)w

Wa,B>P
£+1 -1
pp <cwy (f,A.n )Wa,ﬂ)P’

and so (1.3) is also verified for “small” n.
Theorems 1.2 and 1.5 imply the following result.

Corollary 1.9 Let€=10r8=21<p< o0, A>0,a,pB¢]p, andfeLg’ﬁﬂAe.
Then for 0 <y < £ +1, we have

ESO(fugpp =0(n7") = @} (f,4,8)4,,,=0(8"), 6>0.

Finally, we note that one additional application of our results is given in Section 7.
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2 Auxiliary Results
Let x; := cos(jm/n),0 < j < n, denote the Chebyshev nodes. We also put x;j := 1, j < 0
and x;j := -1, j > n, and denote I; := [xj,x_1], —00 < j < oo and |I| := meas(I). For
v € Ny, it is convenient to define

IJ('V) =[x xja] = U I
i=j—v
Note that I; = I](.O). Finally, define
I;
v;(x) :—¢ 1<j<n

-l L)

The following lemma was essentially proved in [6] (see [6, Proposition 2, Lemmas 1
and 2, and estimates (59)]).

Lemma 2.1 LetneN,1<j<n-1 andlet yeN, yu>10. Then there exist constants
co and c, depending only on y, and polynomials o;, 8;, &, R;j, and R; of degree < con
such that, for all x € [-1,1],

[(x=x)e = 00| < el (x),  |(x—x7)s = 8;(x)] < |yt (x),
(= x)s = ()] < el (), [(x-x)% = Ri(x)] < Py (),
@1 |(x-x)?-Ry(x)| < Py (x), | 1i(x) = 85(0)] < e (x),
[ x5(x) = 80| < vt (), | x5(x)+ — 0] < ey (),
|20 =) = R(x)| < elllyh (x), |20 = x7)s = Ri()] < el (),
and
o/(x) 20, =8i(x) = —xpm(x),  8;(x) > xja(x),
(2.2) (xj1 = xj)0] (x) = RY (x) 2 =2y;(x),
(x = xje1)0] (x) + R} (x) 2 2¢(x),
where x;j(x) = X(x;11(%) is the characteristic function of [x;,1] and (x - xj)k =
(x = %) * X7 (%)

The following “restricted averaged main part modulus” (that we state here only for
the Jacobi weights) was defined in [9]:

—~ 1 8 P 1/p
Qf;(f,(s)ﬂ_p(s),wa,ﬁ 1=(5f0 /S-|w“,ﬁ(x)AZ¢(x)(f,x,S)| dxdh) ,

where S ¢ [-1,1] is independent of h.
It is convenient to denote

Jas = [-1+A8%1- A8?].
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The following lemma immediately follows from [9, Lemma 4.2] (with 8 = 1) taking
into account that

E-i](;(.f’ 8)H4p(jA,6))Wa,ﬂ < Q](Z(f’ A’ 6)Wa,[3’p
and @i (f, 71 7)p ~ Ex(fs Dup = Ex(f> 1) for f € Lp(J).

Lemma 2.2 Letl<p<oo,a,fe]p fe ILZ"B, n,k e N, and let A > 0 be arbitrary.
Denote

(2.3) I'={1<i<n|LicIgym}s

and suppose that for each i € I*, the interval T; is such that I; c T c Jayn and T;| <
co|I;|. Then

S [ wap () Ex(f.T),]" < cQb(f,A1/n)E, 0

iel*

where the constant ¢ depends only on k, «, 3, p, co, and A.

An analog of this lemma is also valid in the case p = oo, and its proof is straight-
forward.

Lemma 2.3 Leta,>0, f € L&, n,k €N, andlet A > 0 be arbitrary. Suppose that
foreach i € I* (with I defined in (2.3)), the interval T; is such that I; c T; c Jayn and
T3] < co|I|. Then

sup e, (xi) Ex (f,Ti)eo < €4 (f2 A,1/1)1y 5,00,
iel*
where the constant ¢ depends only on k, «, f, co, and A.

Corollary 2.4 Let1<p<oo, A>0,a,8¢€], f€ ]Lg’ﬁ, k €N, and v € Ny. Then for
each n € N, we have

sup Ex(fo I ) proo < X (fr A1 M)y prcor  if = 00,

1<i<n
> E(f 1 g Wi AN e <0
where the constants ¢ depend only on k, A, a, B, p and v.
Proof In the case p < oo, since [x,-1,%1] C I/ if B < By = 2, and [%2v41,1] €

[1-2C/n*,1] and [-1,x,-2y-1] € [-1, =1+ 2C/n*]if C > Cy := 16(v +1)?, and taking
into account that the sets {1,...,v + 1} and {n — v,...,n} may have a non-empty
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intersection, we have by Lemma 2.2,

sz 1) e
v+l n-v-1 n
SOIEDIE I LA RSl
i=l  i=v+2  i=n-v
n—-v-1
v p
< cE(fs v 1D pp + € 0 [Warp () Ex (£, 1),]
i=v+2

+ Ex(fs [ xn2v1 ] pop
<CQ¢(f Bo,1/n)b, s T CE(fs [1-2Co/n* 1)), P
+ cEx(f, [-1, -1+ 2Co/n* ])WaﬂP
<cw¢ (f Bo,l/n)waﬂp+cw¢ (f, Co,l/n)waﬁp
<cwy k(f, A, 1/n)b b

The case for p = oo is analogous. |

3 Constrained Approximation by Splines

For n,k € Nand r € Ny, we write s € S;C w18 [z )€ Mk 1< i < myand s € CT[-1,1].
It is also convenient to denote Sy ,, := S ! the set of all piecewise polynomials with
(possible) discontinuities at x;,1<i < n— 1 We remark that the fact that a piecewise
polynomial s is -monotone imposes smoothness on s and so, for example, Sy ,NA¢ c
Si2e>2.

k,n>
The following lemma follows immediately from (if € = 2) or can be proved similarly

to (if £ = 1) [3, Theorem 1.2].

Lemma 3.1 Let€=1o0r¢=2and1< p < oco. Then for every g€ A*nLy, neN,

there exists S(g) € Sg& , N AY and an absolute constant n € N such that

||g—S ||]L (I)ScEgH(g, )P, 1<j<n.
We will now prove the following theorem.

Theorem 3.2 LeteN,veNy, reNyu{-1} and1< p < oo. Suppose that for every
g€ A*nL, and n €N, there exists a spline S(g) € S}, , 0 A® such that

£+1,n

lg=S(@),, (1)) < coBen(g L) 1< j<n.

Then for all a, B € Jp, n € N, and f € ]Lg’ﬁ N A, there exists v € N, depending only on
1, and a spline S € S}, N A such that

¢+1,n
(3.1) |wa,p(f - S)||Lp(m < cEpun(f, I,(»”))Wa,ﬂ,p’ 1<j<n,

where ¢ depends only on a, 3, n and co.
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Theorem 3.2 and Lemma 3.1 immediately imply the following result.

Corollary 3.3 Leté=1lor€=21<p<oo,a,fe]pnel, andfeLg’BmAe.

Then there exists S € Sg;} u N A¢ and an absolute constant v € N such that

||wa,ﬁ(f— S)”]L,,(I,-) < cEpn(f, I]('V))Wa,ﬁ’p, 1<j<n,

where ¢ depends only on « and p.

Proof of Theorem 3.2  First, we assume that n > 25 + 3.

Note that a function f from ]Lg’ﬁ N A¢ does not have to belong to L, (for example,
a convex function f(x) := (1+ x) 7" is clearly not in Ly, but it is in Lf’ﬁ forany a > 0
and B > —1). Hence, given f € ]L;’ﬁ N A® we modify it near +1 so that it becomes an
L, function. Recalling that any function from A* has continuous derivatives of order
i,0<i<€-2on(-1,1)and that f(*=V (x+) exist for every x € (~1,1), we let

-1 -1
Ty(x) = Z;)f(i)(xl)(x—xl)i/i! and  T,_(x):= ;]f<f>(xn,1)(x-xn,l)f/ﬂ,

where f(¢=V (x;) and f(¢) (x,_,) are understood as f(¢~V (x;+) and ¢~V (x,_;-),
respectively. In other words, T; and T,_; are Taylor’s polynomials from IT, for f at
the points x; and x,,_;, respectively. We now define

Tu1(x) ifxel,,

f(x) =1 f(x) if x € [x,-1,x1],
Tl(x) ifx € I,

and note that f € A’ is necessarily bounded in [x,_1, ;] so that f € L, n AL
Suppose now that S := S(f) € S5, N A% is such that

€+1,n
(32) [F =81y, )y < oBea(F ™)y 1<j<n.

For j = #+2and j = n—1-1#,lets; be the polynomials of degree < £+1 defined on
E\;lzlljﬁich that s; |1j: S |1,-- Observing that IJ(.”) c[xpx]ifyp+2<j<n-1-g,
Sp-1-q (%) ifx € [-1, x4 ],
S(x) = {S(x) if X € [Xn_1-y> Xpa1]»
Spa2(x) if x € [xy41,1].

Evidently, S €S}, n A%

¢+1,n
We now note that

(3.3) Wa,g(x) ~ wa g(xj) Vxe I](.”), if I](") c [xp-1,%1].
Note that this holds for # + 2 < j < n — 1 - 5. Therefore, for all such # and j,

a8l aomy = wes () Ll oo,
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and
Een(f 1 g ~ W (51) Eea (£,
Hence, (3.2) implies that for y + 2 < j < n — 1 - 5, we have

(3.4) |W%ﬁ(f_ S)”LP(Ij) = meﬁ(f_ §) “]Lp(lj) ~ W“»ﬁ(xj) “f_ gHLP(Ij)
< coWa, g (%)) Eera(Fs 1) p = cowa,p (%)) Eeaa (f- 18",

~ Eeat(fs 1 Yo
In the case j = 7 + 2, (3.4) becomes

||W¢x,[i (f 511+2 ”]LP(I,,”) = CE€+1(f I,1+2)w”; p = CE€+1(fx [x2;1+2> xl])wu,l;,p-

Now, suppose that1 < j < +1 (for n — < j < n the proof is similar). We will show
that

(35) HW‘X>ﬁ (f - S) HILP(Ij) < CEg+1(f, [x2,7+2, 1])

To this end, if g € IT,,, is a polynomial of (near)best weighted approximation of f on
[x211+23 1]) i-e-;

Wq,/;,P'

”W“ ﬁ(f q)H]LF CE€+1(f> [x2q+2, 1])

bl
[x2q+2,1] Wa,5>P

then we have
res (), o,
= [wap(f _?ﬂﬂ)HLP(I») <c|wap(f - ‘J)HLP(IJ +|wap(q _?ﬂﬂ)HLP(Ij)

< cEea(filoanin]),, o+ cwap(@=Sp2) o

< Bt ( f [Xagsas ]) o +C“Waﬁ(q S’1+2)”]LP(I,,+2)

< cEea(flomin]),, o+ cwap(F= Dy o+ IWap(f =502l g,
< cEen( £ [xagi1]) o +c||wa,ﬁ(f—5rv+2)HLp(z,,+z)

< CEe+1(f> [x2n425 ])

Wy «,p> p
which verifies (3.5). Here, for the third inequality we used the fact that

(3.6) forIcJc[-1,1], [J]|<c|l] and Q €Ilpyy,
< C”Wa’ﬁQH]LP(I)’

which, in the case p < oo, follows from the proof of [9, Lemma 12.1]. In the case
p = oo, we observe that since &, 8 > 0, we have, for all x € [x,,,1],

Wap(x) <2%(1-x)P <2%(1-x,0)F < ¢ min Wa,p (1),
Uelyta
la =Sye2ll e pany < €ld =Syl 00
Hence,

Hwoc,ﬁ(q ~Sy+2) HLoo[xr]+2>1] < C‘lwa,ﬁ(q ~Sy+2) HLw(I,,”)-
Combining (3.4) and (3.5) we conclude that (3.1) is valid with v = 25 +1,if n > 25+3.
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For1 < n < 2y + 2, the statement of the theorem follows from the case for ng :=
21 + 3. Indeed, suppose that S € S}, n A is such that (3.1) is satisfied with n = n.

€+1,n9
Let s; == S |1, and define Q(x) := s1(x), x € [-1,1]. Then, evidently, Q € IT,;; N A®
and

HW(x,ﬁ (f - Q)”]LP[COS(TI/H()),I] < CE€+1(f)wa’ﬁ,p.
Now, letting P € IT,,; be such that

|wa,g(f = P) ||p < CEer1(fwypops
and using (3.6), we have
ras (s~ < lmas(s - P, +elwas- ),
< Eena(Fwapp + ¢ Wap (P - Q)H]Lp[cos(n/no),l]

< CEe+1(f)wa,/3»P +c ”W“)ﬂ (f - Q)H]LP[COS(H/”O)’I]
< CE€+1(f)W«x,l3»P’

and so (3.1) is verified with v such that I](.v) = [-1,1] for all1 < j < n. For example,
v =2y +1will do. [ ]

4 Additional Auxiliary Statements

Lemma 4.1 (1< p<oo) LetneN,1<p<oo,a,f€],andy;>0,1<j<n~-1
Then for

n-1
2p(x) = 2p( 6 (7)) = 2 il P (2)
j=1

and sufficiently large y, we have
n-1
P
s (Vo[ < € T w8 ()
=1

Proof With the notation

wa(x) = p(x) [

x_Pn(x)

x+pu(x)

w(uw)du, pu(x):=V1-x2n""+n7?

we have (see, e.g., [9, (5.1)])

(4.1) wﬁ,ﬁ(x) ~ (wﬁ,ﬁ)n(x) ~ (wz)ﬁ)n(xj), foreach xel;, 2<j<n-1
Also, for any doubling weight w, n e N,1< j<n,x e [-1,1],and y € I},

wa(x) < ey ()wa(y) and  wa(y) < cyj®(x)wn(x),

where constants c and s > 0 depend only on the doubling constant of w (see [8, Lemma
2.5]), and note that wf;’ﬁ, «, B € Jp, is a doubling weight.
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Hence, for appropriate c and s, we have for all x € [-1,1],
(4.2) (wﬁ)ﬁ)n(x)Scy/?(x)(wg)ﬁ)n(y) and

(wg)ﬁ) ()< cl//f(x)(wz)ﬁ) (%), yel.
For1< j < n -1, we estimate
1 X1
p up — p wp —.
J sttt = (f o [, o J ) igtonst i< s,

By virtue of (4.1) and (4.2), if y > (s +2)/p, we have

Je<c fx (wg,ﬁ) (PP (x)dx < cfx (wg’ﬁ) LDV (x)dx
1
< c(wg,ﬁ)n(xj) [1 W;‘P *(x)dx < c|Ij|(w5’ﬁ)n(xj) ~ |Ij|w§,ﬁ(xj),
since [y (x)dx < c|Ij| if y > 2.
In order to estimate J; (considerations for J, are similar), we note that for each
x €I, yj(x) ~ y;j(-1), so that
91 < cyt? (1) fI Wl (x)dx < en 2yt (1) (wh ) | (1)

< cn’zwyp_s(—l)(wg,ﬁ) () < c|Ij|w£’ﬁ(xj),
since

nfzt//;‘p_s(—l) <cj|, ifu>s/p.

Combining the above estimates, we conclude that for u > (s +2)/p,

1
L wl (WP ()dx < dw 4(x), 1<jsn-1.

Hence, taking into account that Z?;ll yi(x) <candyj(x) <L1<j<n—1and
denoting p’ := p/(p — 1), we have, using Holder’s inequality,

1 n-1 P
wes(Zp )y < [ wh g Soloev ()] ax
i
1 n-1 B n—-1 , P/P’
<c [l Somrv ) (S )" dx
- j=1 j=

1 n-1 n—-1
< cfl wg)ﬁ(x) > yf|1j|’11//](.” 2)p(x)dx <cy. wg)ﬁ(xj)y;’,
- =1 =1
provided y > 2 + (s +2)/p. ]

Lemma 4.2 (p=o00) LetneN,p=oo, 20, andy;20,1<j<n~1 Then for

B () = B (1)) = Ty ()
j=1
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and sufficiently large u, we have

||W,x,/;(-)Zm(-)Ho<> <c osup wapg(xj)y;.
1<j<n—-1

Proof It is convenient to denote W' := sup,_;, ; Wa,(x;)y;. Then for every x €
[-1,1], we have

Wa,p(X) 2o (¥) = ZVJWaﬁ(x)W (x)<WZ v (x)

())
= =
)

v (x)
= 1+ x;
nl x—xj|y@ X-x
<W (1+| ’|) (1+ =) ? v (2)
=t [l 111

Since |I41] > |I;|/3, this implies
n-1
Wap () Zeo (x) <3W X 9P (x) < W,
i1

since Z;’:_ll 1//;'_“_/3 (x) < c,provided p > a +  + 2. [ |

5 Convex Approximation of Quadratic Splines by Polynomials

In this section, suppose that g € S; , N A%, In other words, g is a continuous quadratic
convex spline on the Chebyshev partition. We now construct a polynomial that ap-
proximates g.

Denote by L;(x, g) the quadratic polynomial interpolating g at x;, xj_; and x;_,,

Lixg)= Y gx) [I —L

j-2<i<j jma<i<jlxi Xi — X1

For n > 2, let S be a continuous piecewise quadratic polynomial with knots at x;,
1< j<n-—1,such that

S(x)::maX{Lj(x,g),LjH(x,g)}, xelj, 2<j<n-1,
S(x):=Ly(x,g), xel, and S(x):=L,(x,g), x€l,.

Since g is convex, so is S.
We need the following lemma.

Lemma 51 Letl < p <oo,neN, «xeNyandG eSSy, |>1 Then forall
1< j<n-1, wehave

(5.1) e () E1 (G, I1), < cE1(G, 1),y .

Proof First, we note that (5.1) is obvious if I () ¢ [Xn-1,%1]. Thus, we assume that
le I(K) (the case for —1 ¢ I( ) is analogous). Then I( <) = =[x 1] with j <k +1.
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Suppose that P € I1; is such that
(x)
e (G =Pl 0, < G Ly
Then for 1 < p < oo, we have

p (x)\P p p
WepCDEGLN < wl () G =PI o,

jtK

_.,P p 4

= wh 5 () 216 PIf, ) +1G Pl )
jt+x

p 4 p
<wh () 2; 1G=PIZ 1y +€IG =PI (1aniy)

jtx
<c Zz [wap (G =P 1+ lwas(G=P)I] o v

<c HW,X,[;(G - P)HJll),P(I](,")) < CE[(G,[}K)){’V“,B,I,,

where for the second inequality we used the fact that (G — P) |y, is a polynomial of
degree I, and for the third inequality we have applied (3.3). The case for p = oo is
analogous. This completes the proof. ]

In particular, it follows from Lemma 5.1 that forany 1< j < n -1,

(52) Wag (£ Es (& 1§)p < cE3(& 15w gup-
Now, in view of the fact that g |;,€ IT5, 1 < i < 1, we have, with p j denoting the best
quadratic approximant to g in ILP(I](.I)), 1<j<n,

653)  Es@I)e <llg=pill_ oy = max llg-pillcy

j-1<igj+l

<l max g pylle, < el P Es(g, 1),

Jj1i<j+1

Similarly, for all 2 < j < n -1, we have

(5.4) [0 %> X1 %25 €] = [Xjs1> X Xjo1, %5258 = ]
-3
<. — b
<dii” max |g-pil,_

<P Es (g, 1),
Now, using (3.6), (5.2), (5.3), and Whitney’s inequality, we obtain, forall1< j<n -1,
55 |wap(g =y 1) < Wapx) 18-Sl
< CWa,ﬁ(xj)|Ij|1/p lg- S‘|Lm(lj)
< awa ()P ws (g 101 1Y)
< cwa,[;(xj)|1j|l/pE3(g, I](}))o0
< cwe,p(xj)Es (g, I](.l))p < cEs(g, I](.l))wu)ﬁ,p.
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Similarly, in the case j = n, we have
(5.6) |wa,p(g - S)“]Lp(zn) < cWap(%n-1) 18 = Slle, 1,
< cwap(xn1)n P g - Sleon)
< ewap(en-)n” w3 (g IV 1Y)
< cWa g (xXn)n P E3 (1)) oo
< cwap(xn1)E3 (1) p < cE5(8, I Y, pop-

It was shown in [6, Section 4] that all knots x;, 1< j < n — 1, can be separated into
classes I, II, III, and IV so that S has the following representation

S(x) =qg2(x) + > Al (e = %) (x = %)+ — (x = x;)7]

2<j<n—1,x;€lUIII

+ > (Aj)[ (= xj1) (x = x))4 + (x - x)7 ],

1<j<n—2,x€lIUIII
where
q2(x) = g(=1) + ([xns Xn-138] = [no1, X2 8] + [y 23 g]) (x + 1)
+ (X Xnt> Xn-2: 8] (x +1)7,
and
Aj =[x x5 58] - [x) o, xj038), 2<j<n-1,

issuch that A; >0if x; e IUIIL, and Aj;; < 0if x; e ITUIIL
Then the polynomial

Py(x) := Pu(x,g) = q2(x) + > Ajl (xj1 = x7)05(x) = Rj(x) ]

2<j<n—-1,x;€lUIIL

+ > (—Aj)[ (%) = xj41)05(x) + Rj(x)]

1< j<n—2,5%;€lIUIII
of degree < cn is convex on [-1,1], since by (2.2),
P/(x)>8"(x)>0, xe[-11], x#xj, 1<j<n-L
Also, by (2.1) and (5.4),

n-1

[Pu(x) = S(x)] < ¢ 30 AP w (x)
j=2

-1

n
SCZ

| [xj+1,xj, Xj-1 x}'—z;g” |Ij|31//j'4 (%)

-
[

=
|
—

<Y LYY (x)Es (g, 15,

j=2

-
Il

Hence, in the case 1 < p < oo, using Lemma 4.1 and (5.2), we have

n-1 n-1
[wess (Pa =)} < e Yo wl ((x)Es(g 1) < e 3 Ea (g 1S,
j=1 j=1
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and, combining with (5.5) and (5.6), we conclude that
67) [wes(Ba - DI <0 Bx(e 1)
. apFn =8|, < 38845 " Jwappe
=1

In the case where p = oo, using Lemma 4.2 and (5.2) we have

Hw,x,ﬁ(Pn - S)”oo <c sup wapg(x;)Es(g, I;l))oo <c sup Es(g, IEI))wa,ﬂ,w
1 1

<jsn- 1<j<n-1

and, combining with (5.5) and (5.6), we get
(58) [wa,p(Pu = 8)] < sup Es(g 1), 00
1<j<n

We will now show that the first derivative of the polynomial P, approximates the
first derivative of g (if it exists). This fact will be used to obtain the estimates in the
monotone case as a corollary. Suppose that g € C'[-1,1].

For1< j<mn -1, wehave

|wap(g" - S/)HL,,(Ij) <cwap(x)) g - S,HL,,(I,-)
< ewa s )T g = Sly 1)
< ewa g I VP as (g, 110, 1)
< ewa g eI o (VLI
< we g (P Es (8 1 Yoo < CEa (815 Yo pops

where for the second inequality we used the fact that (g — S) |;;€ IT3. Similarly (as in
(5.6)),
Hwtx,ﬁ (g, - Sl) ”]Lp(fn) <cE, (g,> ISII) )Wu,ﬂ»P'
Also, for all x € [-1,1] ~ {xj};l:—ll)
[P (x) = 8'(x))

< Y 1Al G x]e) () - x| + [R)(x) —2(x - %)) ]

2<j<n—1,x;€IUIIL

Y Al G- x| 0 () - ()] + Ry () - 2(x - x7). ]

1<j<n~2,x;€lIUIII

n-1 n-1
<c), |Aj||1j|1/’f(x) <e )| XX Xjo, X2 8| |Ij|21//§4(x)
j=2 j=2

n-1 n-1

< P LY () Es (. 1) < ¢ Y 1LY () Ea (8 1)),
j=2 j=2
Therefore, Lemmas 4.1, 4.2 and 5.1 imply that

n-1
[was (Pr = S[? < ¢ 3 Ea(g IOV, po if 1< p < oo,
j=1

https://doi.org/10.4153/CJM-2015-034-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-034-4

Constrained Approximation with Jacobi Weights 125

and
[P =), < sup Ex(g, 1)y, 5,00 if p=oo.
<jsn—
Hence,
69 [wap(Py- g < cjilgz(gg oy if1< p < oo,
and
(5.00) | wa,p(P, - g')Hoo < Cél;fn Ez(g',IJ(l))wa,ﬁ,oo, if p = oo.

6 Constrained Approximation by Polynomials

Suppose that £ = lor £ =2,1< p < oo, a, B € Jp, f € ]L;’ﬁ N A% and let n € N be
sufficiently large. Corollary 3.3 implies that there exists g¢ € Spi1,, NC[-1,1]n A¢ and
v € N such that

(6.1) [wes (f = 80, 1 < cBenr(f I Vo 1< i<

Therefore,

62 |wus(f- g0 - Z was(F -l <c ZE(f K
if1 < p<oo,and

(6.3) Iwap (f - go)| < ¢ sup Eea(f18 )1, p o0

if p=oo.
We note that (6.1) implies, for any k e Ngand 1< j < n,

(64) Ee+1(ge; I]('K))Wu,ﬁ,p < CEZ+1(fs I]('K))Wu,ﬁ,p +cC HW:x,ﬁ(ge - f)H]LP(I(.K))
J

<cEen(f, I;(‘WK))Wa,ﬁ’P‘

6.1 Convex Approximation

Suppose that £ = 2, thus g, is a continuous piecewise quadratic convex spline on
[-1,1]. Let P, ( -, g») denote the polynomial associated with g, satisfying (5.7) or (5.8).
Then it follows from (6.2), (6.3), and (6.4) that

n n
[weus (F = Pu(@2))[} < ¢ LE(f I p+e zlEg(ng;“)f;“,p,p
J= J=

n
1
<c Y Es(f, 1) L
j=1
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if1 < p<oo,and

[Wa,s(f = Pa(g2))].. <€ sup Es(fo18 ), p00 + € SUP Es(g25 15 Va0

1I<j<n 1<j<n

<c sup E3(f, I§v+1))wa,p,°°’

1<j<n

if p = oco.
The statement of Theorem 1.5 in the case £ = 2 now follows from Corollary 2.4.

6.2 Monotone Approximation

If € = 1, then g is a continuous piecewise linear monotone spline on [-1,1].
We now define G(x) = [ ¢i(u)du. Then G € S3 , nC'[-1,1] n A%. Let P, (-, G)
be the polynomial associated with G satisfying (5.7) and denote Q,(x) := P} (x, G).
It follows that Q,, € A', and estimates (5.9) and (5.10) imply

n
[was(Qu = g0 = wap(PL(G) = G) [} < ¢ Y- Ea(gi IV, .o
j=1

if1 < p<oo,and

[wep(Qu =)l = [wep(PL(G) = G') .. < e sup Ealgi, [} Yo

1<j<n

if p = oo.
Hence,

[Wa (f ~ Q,,)Hi <Y E(fIM e Ea(en IO,
: <

j=1
2 (v+1)\p
< CZEZ(f’ Ij )Wa,/s,P’
j=1
if1 < p < oo, and

Hw,,,;;(f— Qn)”oo <c sup Ex(f, I;v))wa)ﬁ,oo + ¢ sup Ez(gl,lj(.l))wa,ﬂ,oo

1<j<n 1<j<n

< ¢ sup E>(f, I](.Wl))wa,ﬁ,m,

1<j<n
if p=oo.
The statement of Theorem 1.5 in the case where € = 1 now follows from Corol-
lary 2.4.

7 Weighted L, Approximation of Constrained Unit Spheres in L;"‘B ,
1<g<p<Loo

The following result was proved in [7].
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Theorem 7.1 ([7, Theorem 1.1]) Let€eN,1<g<p<oo, a,f €], f € L;’ﬁ nAf
and 0 < § < 1/4. Then,

(7.1) wg(f, 1,8)Wu)ﬁ,q < cYg’ﬁ(E,q,p) Hw,x,ﬁf‘ o

where
o%a-2lp ife>2,and (£,q,p) # (2,1, 00),
82|In 4| if=2,q=1p=o0,and (a,B) = (0,0),
82 if=2,9=1p=o00,and(a,B)=(0,0),

p o
5T (B0P) = gy if € =1and p < 2q,
8V4|In 8|20 ife=1and p = 2q,
ov/a if¢=1and p > 2q.

is best possible in the sense that (7.1) is no longer valid if one increases (resp. decreases)
any of the powers of 8 (resp. |In ) in its definition.

Now, let Sg’ﬁ be the unit sphere in ]Lg’ﬁ, ie, f e Sg’ﬁ if and only if ||wa)l;pr =1,
and denote

E(X, M) w,q =SupEn(f)w,q and 8(6)(X,Hn)w,q = supEff)(f)w,q.
fex fexX

Theorem 7.1 and Corollary 1.8 imply the following result.
Corollary 72 Letf=1orf=21<q<p<ocoanda, >0. Then

EO(A NS T ) g < Y}E (L g p), forall meN.

Finally, applying [7, Theorem 1.5] and using the fact that
E(X, Ty ) g < EO (X, L, ) g
we obtain the following corollary.

Corollary 73 Let€=1or€=2,1<gq< p<oo,anda, >0. Then for any n € N,

8(8)(A€ n Sg)ﬁ> Hn)w,,,/;,q ~ E(Ae n Sz)ﬁ7 Hﬂ)wu,;s,q

n~2/1+2/p ife=2and (q,p) # (1,0),
~{n? ift=2qg=1p=o0,anda=f=0,
n~min{2/a=2/pV/a} ifp =1 and p + 2q.

Ift=2,q9=1p=o0,and (a,f) # (0,0), then
en? < E(A NS T,y 40 < EP (A NSEP L)y, 40 < cn 2 In(n +1).
If¢=1and p = 2q, then

cn M1 < (A NSDF

o T pq < ED (A NSSE Ty, 0 < cn VA In(n +1) 0D,
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