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OBTAINING PRESCRIBED RATES OF 
CONVERGENCE FOR THE ERGODIC THEOREM 

G. L. O'BRIEN 

1. Introduction. Let {Yn, n e Z} be an ergodic strictly stationary 
sequence of random variables with mean zero, where Z denotes the set of 
integers. For n e N = {1, 2, . . . }, let S„ = Y\ + Y2 + . . . + Yn. The 
ergodic theorem, alias the strong law of large numbers, says that n~l S„ —» 
0 as n —> oo a.s. If the 7,/s are independent and have variance one, the law 
of the iterated logarithm tells us that this convergence takes place at the 
rate (2n~l log log nf in the sense that 

(1) lim sup n~]Sn(2n~] log log n)~z = 1 a.s. 

It is our purpose here to investigate what other rates of convergence are 
possible for the ergodic theorem, that is to say, what sequences [b„, n = 
1} have the property that 

(2) lim sup bn Sn = 1 a.s. 

for some ergodic stationary sequence {Ym n G Z}. Theorem 1 shows that 
the class of such sequences is quite large. We will say { Yn, n G Z} is 
symmetric if it and the sequence { — Ym n G Z} have the same distribution. 
For symmetric sequences, (2) obviously implies that 

lim inf bn Sn = — 1 a.s. 

THEOREM 1. Let {bu = b(n), n G N} be a sequence of positive real 
numbers such that 

(3) lim bn = oo 

and 

(4) lim inf n~~]bn = 0. 
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1130 G. L. O'BRIEN 

Then there exists a { —1, \}-valued symmetric ergodic stationary sequence 
{ Yw, n G Z} st/c/z that (2) /zo/ds. 

The hypothesis (4) is necessary for (2) to hold, by the ergodic theorem 
itself. The condition (3) is not necessary but it cannot be dropped 
altogether since the left side of (2) is not measurable with respect to the 
a-field of shift-invariant sets for {Yn} if {bn} converges. Some further 
discussion of (3) will be given at the end of this paper. 

In Section 2, we describe a class of ergodic stationary sequences which 
are used in Section 3 to prove Theorem 1. This class, which may have 
other applications, first evolved in connection with the work of O'Brien 
and Vervaat (1983) on self-similar processes. H. Kesten has suggested 
privately that it might also be possible to prove Theorem 1 using renewal 
processes. We have not pursued this idea. In Section 4, we consider the 
analogue of Theorem 1 for two-dimensional arrays. 

Several authors have obtained results related to Theorem 1. Halasz 
(1976) has proved (among other things) that convergence in the ergodic 
theorem can be arbitrarily fast in the sense that, if {bn, n i^ 1} is 
non-decreasing and diverges to infinity, then there exists an ergodic 
stationary sequence { Ym n = 1} for which 

lim sup bn \Sn\ ^ 1 a.s. 
«—»oo 

On the other hand, Krengel (1978) has proved that if n~ xbn —> 0 as n —» oo, 
then there is an ergodic stationary sequence { Ym n ^ 1} for which 

lim sup bn Sn = oo a.s. 
n—*oo 

These two results obviously follow from Theorem 1. Kakutani and 
Petersen (1981) have shown that for any sequence {cm n = 1} of 
non-negative reals for which 

oo 

2 Cn = OO, 

there exists an ergodic stationary sequence { Yn9 n i^ 1} for which 

k 

| 2 cnn~lSn\ 

is almost surely unbounded as a function of k. Our theorem does not 
directly imply their result, but the construction in our Section 2 can be 
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used to obtain their result if the parameters appearing in our construction 
are chosen appropriately. We omit the details since they do not add much 
new insight. The reader should note that the authors cited above all start 
with an arbitrary probability space (£2, J^ P) and an arbitrary invertible 
non-atomic ergodic measure preserving transformation T : £2 —» £2 and 
then show that for some real-valued function/on £2 the sequence {f(Tn) } 
has the required property. We have not attempted to strengthen Theorem 
1 in this direction. These authors all use a lemma due to Rohlin (cf. 
Halmos (1956), p. 71 or Friedman (1970), p. 108), which states that for any 
€ > 0 and any positive integer «, there exists a set E G. J^such that E, 
TE, . . . , Tn~xE are disjoint and 

P(E U TE U ... U Tn~x E) ^ 1 - €. 

In our construction, (£2, ^ P) and T are chosen in advance in such a way 
that this holds for certain values of n even with c = 0, so that in addition 
we get TnE = E, modulo a null set, for these values of n. 

Aaronson (1981) has considered the sequence bn Sn for the case in 
which n~xbn is non-decreasing and diverges to infinity. Then 

lim sup bn \Sn\ = oo a.s. or lim bn Sn = 0 a.s. 

The latter case is automatic if EY\ exists; he makes no such restriction. 
This result is in marked contrast to ours. A related result is that of Kesten 
(1975), who showed that 

lim inf n~lSn > 0 a.s. if Sn —» oo a.s. 

2. A class of ergodic stationary random sequences. In this section, we 
define a class of sequences {Ym n G Z} which will be used in the next 
section to prove Theorem 1. The construction depends on a sequence 
»i, «2, • • • of even integers, all at least 4, and a sequence m\, m^ . . . of 
integers such that 

(5) l S / n ^ j nk 

for all k. These parameters will be specified later. Let 

N(k) = Nk = n\U2 . . . «£ , M(k) = M^ — m\rri2 . . . m^ and 

Ak = {0, 1 , . . . , ^ - 1 } , /c = 1,2, 

Also, let 7V0 = MQ = 1 and A0 = {1, — 1}. Henceforth, [•] will denote the 
greatest integer function. 
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We take as our probability space (fl, ̂  P) where Q, = A0 X A\ X A2 

X . . . , J^is the a-field generated by the cylinder sets in £2, and P is the 
product of the uniform probability measures on A0, A\, A2, . . . . We will 
define an invertible ergodic measure-preserving transformation Ton ( f l , ^ 
P) and will define { Ym « G Z} in terms of T. The above choice of (£2, J^ 
P) is no.t essential, but it facilitates our definition of T and {Yn}. 

For k ^ 1, define numbers JC^O'), ' G ^ by 

!

+ 1 if / is even or if i = 2[\rmk nk\ — 1 
for r = 1 , 2 , . . . , m^, 

— 1 otherwise. 

In particular 

(7) x*(0) = xk(nk - 1) = 1 

for all fc. Note that xk(i) = 1 for \nk H- m^ values of / and x^(/) = — 1 
for the remaining \nk — mk values of i, so that 

nk-\ 

(8) 2 **(0 = 2mk. 
/ = 0 

We will refer to the + l's which occur at odd values of i as "reversed" 
+ l's. 

Define a transformation T:$l —> £2 as follows. Let <o = (COQ, COI, . . . ) e £2. 
If cûk = nk— 1 for all /: ^ 1, let T<o = (<o0, 0, 0, 0, . . . ). Otherwise, there is 
a least £ > 0 such that uk < nk — \. Then define Tco by 

wo** (<o* )**((*>* + 1) if 7 = 0, 
0 if 0 < j < k, 
uk -f 1 if y = k, and 
Wy if 7 > /C. 

The transformation r can be interpreted as follows. It adds one to the 
first component (i.e., co\) if possible. Otherwise, it still adds one modulo ri\ 
but then one is "carried", in the sense of decimal system arithmetic, to the 
second component. The carrying is continued further if necessary (i.e., if 
<°2 = n2 ~ 1 as well). The role of <o0 is to provide a parity check for this 
arithmetical operation. Suppose k is the least positive integer such that o)k 

<nk- l .By(6) , 

Xj( (Tu)j) = XJ(Ù)J) 

for all positive y ¥= k. Thus (7co)0 = COQ or — œ& according to whether 
xj( (Tcû)j) differs from Xj (coy) for an even or odd number of positive 

(9) (7YA = 
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coordinates j , respectively. This interpretation extends in an obvious way 
to the two special points <o for which uk = nk — 1 for all k ^ 1. 

We have the following result. 

THEOREM 2. The transformation T is measurable, measure-preserving, 
invertible and ergodic. 

Proof. The measurability and invertibility are obvious and the 
measure-preservation follows immediately from a consideration of cylin­
der sets in £2. For to = (too, O)\, . . . ) G 12, let co* = (— too, U\9 . . . ). For 
any event E e. J*" let 

E* = {(o*:co e E) = {w:co* G E}. 

Now let is be an event such that P(E) > 0 and TE = E. We will prove T is 
ergodic by showing that P(E) = 1. Let E\ = E n is*. Since 7(co*) = 
(Tto)* for all co, we have 

(10) TEX = TE n 7(£*) = TE n (TE)* = E H E* = E\. 

Since isj c is, it is sufficient to prove that P(E\) = 1. 
We first show that P(EX) > 0. Fix e such that 

(11) 0 < € < (13) - 1 P(E). 

Let E' be a cylinder set in £2, depending on coordinates 0, 1, . . . , k — 1 for 
some k, such that 

(12) P(E A E') < c, 

where A denotes the symmetric difference. Since TE = E, 

(13) P(E A TnE') = P ( r ^ A r 7 £ ' ) = />(rw(£ A F ) ) < C 

for any « G Z. By (12), 

(14) P(£*) = P(E) > P ( F ) - e = P((E')*) - c. 

Let 

E» = {a> e F:x*(<o*) = - 1 } . 

By (5), (6) and (12), 

(15) />(£") â \ P(E') ^ i (P(E) - e). 

If co = (to0, <*>i,...) G is", then xk(cok + 1) = 1 so that 

TNik~])(o)) = ( - co0, 6)b . . . , co*-!, œk + 1, a>k+h . . . ). 
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Combining this with the fact that E' does not depend on the £'th 
coordinate, we see that for co e E", co* e E if and only if 

Applying (14), this last fact, (13), (12), (15) and (11), we obtain 

P(EX) = P ( £ n E*) 
> P(£ n £" n (£')*) - e 

(16) = P ( £ n £" n r~*<*-i) F ) - £ 
g />(£") - 3e 
^ i (P(£) - c) - 3€ > 0. 

Now let co G. E\ and let co' e 12 be such that cô . = <o£ for all but finitely 
many fc's. Then co' - T"o> or co' - Tnu* for some « G Z. By (10), co' G EX. 
It follows that ^i is a tail event for the random sequence (co0, coj, . . . ) of 
independent random variables. By (16) and Kolmogorov's 0 — 1 law, 
P(E\) = 1. This proves Theorem 2. 

We immediately obtain the next corollary. 

COROLLARY 1. Let (12, J^ P) and T be as defined above. Then the sequence 
of random variables {Ym n e Z} defined by 

(17) Y„(u) = (r"co)0 

is {— 1, l}-v#/w£<i, symmetric, ergodic and stationary. 

Remarks. The requirement in Theorem 2 that m^ ^ |% is only used to 
prove the ergodicity of T. Some such restriction is necessary, but we do 
not know a necessary and sufficient condition. A weaker sufficient 
condition for ergodicity is 

lim inf mknk < |, 
&—>oo 

while a necessary condition is 

2kMkNk
 l -> 0 as k -> oo. 

It is much easier to show the invariant set E of the foregoing proof must 
have probability 0, \, or 1. The ergodicity in Theorem 1 can then be 
obtained by conditioning on an invariant set E for which P(E) = {, if 
such a set exists. The advantages of actually proving ergodicity in 
Theorom 2 are that we can then represent the sequence required in 
Theorem 1 explicitly, the proof of (2) is easier, and the symmetry 
condition of Theorem 1 can also be obtained. 
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If a stationary sequence {Yn} satisfies some suitable mixing condition, 
then (1) still holds, except for some constant factor. This was first shown 
by Ibragimov (1962). Thus, a sequence satisfying (2) for 

bn ¥= {en log log n)1 

can be expected to exhibit long range dependence. The sequence {Yn} of 
Corollary 1 has the property that, for any /c, the sample paths consist of 
successive blocks of length Nk, any two of which are either identical or 
negatives of each other. Thus, the long range dependence is very strong. 

3. Proof of theorem 1. 

Step 1. Reduction to the monotonie case. We first show that the sequence 
{bn } may be assumed to have certain monotonicity properties, but that in 
exchange for this simplification we must prove a slightly stronger result. 
Let {/A/, / G N} be an increasing sequence of positive integers defined as 
follows. First, choose /xj so as to minimize 6(/xD- This is possible by (3). 
Now assume /xj, /x2,. . . , ft have been chosen and choose ft+1 so as to 
minimize 6(ft + 1) subject to the constraints that 

Mi + i > Mi and /z/ + 1Z>(ft + 1) < ft ft(ft). 

This is possible by (3) and (4). Now define a sequence {an = a(n),n G N} 
by linearly interpolating between the points (ft, 6(MI) ), / G N. 
Specifically, let 

a = fbfaù if n = Mb 
\Z>0O + (n- /A/)(6(/X / + 1) - 6(Mi ))(/*/+1 - Mi) ' 

if ft ^ n ^ ft+1. 

The sequence {<z„, n ^ 1} has the following properties: 

(18) a (ft) - 6 (ft) for all / G N, 

(19) a„ ^ />„ for all n G N, 

(20) <*„ S fl/l + 1 for all n G N, 

(21) lim flw = oo, 

(22) / i - 1a„ ^ (w-f l)~lan + i for all « G N, and 

(23) lim n~xan = 0. 
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It follows from (18) and (19) that in order to prove Theorem 1 it suffices to 
prove the following result. 

THEOREM 3. Let {an = a(n), n e N} be a sequence of real numbers 
satisfying (20), (21), (22) and (23). Let [fin i <E N} be an increasing sequence 
of positive integers. Then there exists a { —1, \}-valued symmetric ergodic 
stationary sequence { Yn, n e. Z} such that 

(24) lim sup an Sn = 1 a.s. 
//—>oo 

and 

(25) lim sup (a(iLj) )~]S(ii,) ^ 1 a.s. 

The rest of this section is devoted to the proof of Theorem 3. We will 
actually prove a slightly stronger result than Theorem 3; we will show 
that, for any 8 <= (0, 1), Theorem 3 holds with (25) replaced by 

(26) lim sup min {n~xan /i/S,,:Sju/ = n = LI,} i^ 1 a.s. 

The purpose of this extension is to facilitate a certain application of this 
result to self-similar processes (cf. Section 1). The proof of Theorem 3 is 
not significantly altered by the extension. 

Step 2. Specification of the parameters. Let {Yn} be a sequence of the 
type defined in Corollary 1. We will show that {Yn} meets the 
requirements of Theorem 3 if the parameters n\, n2, . . . and mj, m2, . . . are 
chosen so as to satisfy the following condition for all k e N: 

(27) mk = [a(Nk)2~kMklxl 

(28) mk g *, 

(29) nk ^ 4*3mA., 

(30) a( [k~2mk
lNk] ) ^ (2k + 7)Û(JVA._,), 

and 

(31) (1 - k~])Nk ^ vk ^ (1 - (2ky])Nk, 

where vk = /x, for some / ^ 1. 
Let us now verify that such choices are possible. For some k = 1, 

assume «j, A?2, . . . , nk- \ and m\, mi, . . . , mk ._ j have been chosen. Treat HJ. 
as a variable and define mk in terms of nk by (27). By (21), (28) holds for nk 

sufficiently large. By (27) and (23), 
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mknk
 l ^ a(Nk)Nk

 X2 k MkllNk-l -> 0 as nk -» oo. 

This implies that (29) and, again using (21), (30) hold for sufficiently large 
nk. As nk varies, the possible values of Nk form an arithmetic sequence. 
Thus, every sufficiently large integer /x lies between (1 — k~ l)Nk and (1 — 
(2k)~~])Nk for some choice of nk, so that (31) can be achieved for infinitely 
many nk. Thus nk and mk can be chosen so as to satisfy (27), . . . , (31) for 
all k. 

By (28), mk —> oo as k —> oo so that (27) implies 

(32) 2"kMk
Xa(Nk) -> 1 as k -> oo. 

It is clear from Corollary 1 that {^} is { — 1, 1}-valued, symmetric, 
ergodic and stationary. It only remains to prove (24) and (26), which we 
do in Steps 3, 4 and 5. 

Step 3. Some preliminary bounds. A block is defined to be a finite 
possibly random set of successive integers. More specifically, a k-block for 
the sequence {Y„, n e Z} is a random set 

5 = {#, R + 1,. . . , # + Nk,- 1} 

of successive integers such that (TRco)j = 0, y = 1, 2, . . . , k. For each y > 
k, (Tfl co)j is constant over all n e B. We see that the set of integers is 
composed of juxtaposed /:-blocks. We say a /c-block 5 = {#, R + 
1, . . . , R + A .̂ — 1} is positive if YR = + 1 and negative otherwise, and 
write sign (5) = + 1 or — 1 respectively to indicate the two cases. Note 
that sign (B) is also random. A partial k-block C is a block which is 
contained in a &-block. We will study Sn by examining the contributions 
to Sn from the complete and partial /c-blocks which intersect {1, 
2, . . . , « } . 

Any /c-block B is composed of nk juxtaposed (k— l)-blocks C0, 
Cj, . . . , C/ljt_i, which are assumed to be ordered in the obvious way. It is 
clear that sign (C0) = sign (B) and, in general, the signs of the C/s 
alternate except for the mk "reversed" (k— l)-blocks whose locations 
match those of the reversed + l's among the numbers xk(i), i e Ak\ in 
other words, 

(33) sign (Ct) = xk(i) sign (C0). 

Consider any collection of X successive (k— l)-blocks, not necessarily 
contained in a single /:-block. Suppose that / of these are reversed 
(k— l)-blocks. These / are spaced approximately mk nk apart by (6) so 
that / is roughly \mknk . More precisely, for some r, 
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À =i (2[\(r + 1+1) m~k\k] - 1) - (2[{rm^nk] - 1) - 1 

= i ( / + \)mk'nk + 1. 

Combining this with a similar lower bound for A, we obtain 

(34) \l-\mknk\ tk 1 + mknk
X â 2. 

Let 5 be any &-block. If k = 1, then 

| 2 r„l = 2m, = 2M, 

by (8). By (7), it follows that 

2 Yn = sign {B)2MX. 

For A: > 1,5 can be decomposed into nk (A — l)-blocks of which, by (33), 
2mk more have the same sign as B than the opposite sign. By induction, 

(35) 2 Yn = sign (B)2kMk 

for all A ^ 1. Recalling (32), we note that (35) suggests (24) and (26) are at 
least feasible. 

Now let C be any partial /c-block which is contained in a A-block B. 
Assume initially that C contains the left end-point of B. In the notation 
used above (33), 

C = C0 U C\ U . . . U Cr- i U D for some r 

where D is a (possibly empty) subset of Cr. If A = 1 (so that each Cz is a 
singleton) and B is positive, then each negative Q is preceded by a positive 
one. A similar statement holds if B is negative. Thus, 

0 ^ sign (B) 2 Yn = 2Afh 

Now take A > 1. Assume the contribution to Sn from D satisfies 

0 ^ sign(C r) 2 y„ ^ 2 * - ^ - , . 
«GZ) 

The roughly alternating pattern of signs among the C/s then gives 

(36) 0 g sign (5) 2 y„ ^ 2*M*, 
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by (35). Next suppose C contains the right end-point of B. Let D be the 
complement of C in B. Since 

2 Y„ = 2 Y„ + 2 y„ 

and D contains the left end-point of B (unless C = B), we see from (35) 
and (36) applied to D that (36) holds for C in this case also. Finally, 
suppose C contains neither end-point of B. Let D be the part of B which 
precedes C. An argument like that of the previous case shows that 

(37) | 2 Yn\ ë 2kMk 

in this case. 

Step 4. The proof of (24). The idea of the proof is as follows. Suppose the 
block B = {1, 2, . . . , n) intersects X fc-blocks. If X is small, then it is 
unlikely that any of these are reversed /c-blocks, so that Sn can be bounded 
by cancelling the contributions of adjacent /c-blocks in B, which are 
opposite in sign. This cancellation allows a little leeway for those n for 
which only a small number of reversed /c-blocks intersect B. On the other 
hand, if many reversed Ar-blocks intersect B, then the error allowed by (34) 
is negligible, which enables us to get an accurate bound on Sn. 

First, then, we consider n such that 

(38) Nk^n^(k+ \)~2mklxNk + x. 

Such n exist by (29). The block 

Ck = { U [ ( H i r V + 1 % 1 ] } 

is composed of at most (k+\)~~2mk+lnk+\ complete /:-blocks and at 
most two partial /c-blocks. The contributions to the sum of the complete 
/c-blocks alternate in sign except for the reversed ones and the latter are 
separated by at least mk + \nk + \ — 3 other /c-blocks. It follows that the 
probability that Ck intersects any of the reversed /c-blocks is at most 

(39) ((k+\r2mklxnk + x + 2)(mk^nk+] - 3)" 1 g 2(/c+l)~2 

for large k, where the final inequality follows from (29). By the 
Borel-Cantelli Lemma, Ck intersects a reversed /c-block for at most finitely 
many k, with probability one. Let 2? = {1,2, . . . , « } where n satisfies (38) 
for some k and suppose Ck and hence B do not intersect any reversed 
/c-blocks. Each pair of adjacent /c-blocks in B contributes a total of zero to 
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Sn since the ^-blocks have opposite signs. If the contributions of /c-blocks 
are cancelled in pairs in this way, we are left only with the contributions of 
one of the following: 

(a) a single complete or partial /c-block, 
(b) two partial /c-blocks of opposite signs, or 
(c) a complete /c-block of one sign and one or two partial /c-blocks of the 

other sign. 
Since n i? Nk, the partial /c-blocks in all cases include an end-point of the 
/c-blocks which contain them. Applying (35), (36), (27) and (20), we then 
obtain 

(40) \S„\ =i 2kMk =i a{Nk) g a{n) 

for n sufficiently large and satisfying (38) for some /c, almost surely. 
Next, consider n satisfying 

(41) (£+irV+i^+i ^ n^ (k+l)m^xNk+u 

for large k. For such n, B = {1, 2, . . . , « } intersects at most 
(k+ \)mk + xnk+\ complete /c-blocks. By (34), there are at most 

(42) ( ( H l ) m H 1 « H i ) m H ] nk+] + 2 = H 3 

reversed /c-blocks among these. Also, B intersects at most two additional 
partial ^-blocks. By (42), (35), (37), (27), (30) and (20), we have 

|S„| ^ (2(/c + 3) + l)2kMk + 2(2kMk) 

= (2k + 9)2kMk 

^ (2k + 9)a(Nk) 

^a([(k+\y2m;l]Nk + ,]) 

â a(n\ 

for n satisfying (41). 
Finally, consider n such that 

(44) (k+l)m^xNk^ ^n ^ Nk + h 

The block B = { 1 , 2 , . . . , « } intersects at most nNk complete /c-blocks 
and at most two additional partial /c-blocks. Of the complete ones, there 
are at most nmk + ]Nk^] + 2 reversed ones, by (34). By (35), (37), (27), 
(22), (30) and (20), 
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\Sn\ ^ (2(nmk+xNklx + 2) + \)2kMk + 2(2*M*) 

= nlk+xMk + xNklx + 7(2*M*) 

(45) ^na{Nk+x)Nklx + 7a(tf*) 

^ a(/i) + 7*" V [(*+!)" V ^ * + i l ) 
^ a{n){\ + 7JT1), 

for « satisfying (44). Combining (40), (43) and (45) yields (24). 

Step 5. Proof of (26). By (31), we may choose an increasing subsequence 
{vk, k ^ 1} from the sequence {/A,, / = 1} such that 

(46) (1 - k~l)Nk § vk. g (1 - (2*)- ' )#* 

for t ^ 1. For each A, let £A be the event that B = {1, 2, . . . , vk) is 
contained in a single A-block. The second inequality in (46) assures us that 
B intersects at most (1 — (2k)~])nk + 2 (fc — l)-blocks. Thus Ek occurs if 
1 lies in any of the first (2k)~ xnk — \ (k — l)-blocks of some fc-block, i.e., 
if (Tœ)k takes any of the values 0, 1, . . . , (2k)~]nk — 2. This latter event 
has probability 

((2kyxnk - I)/?,"1 >(4A-)"1 

by (29). Since (7w)i, (7\o)2, . . . are independent, we deduce from the 
Borel-Cantelli Lemma that 

(47) P(Ek for infinitely many k) = 1. 

Now suppose Ek holds for some large k. Let n be an integer such that 

8vk ^ n ^ *>A, 

and let B = {1, 2 , . . . , n). Then 5 contains at least nNk^.] — 2 
(k — l)-blocks and at most two additional partial (k — l)-blocks. By (34), 
B contains at least 

(wiV*-i ~ 3)mknk - 1 ^ nmkNk - 2 

reversed (k - l)-blocks. By (35) and (37), 

\Sn\ ^ (2(nmkNk
X - 2) - l)2A"1MA.-i " 2 ( 2 ^ X - i ) 

^2knMkNk
X - l(2k-xMk-X). 

Applying (28), (32) and the fact that n ^ {8Nk, we have 

\S„\ ^na(Nk)Nk\l + o( l )) , 
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where o(\) —> 0 as k —» oo. By (20) and (31), we then deduce that 

n^a~Xvk\S„\ è n-\a(Nk))-\l - k-{)Nk\Sn\ 

g ( l - /c- 'Xl + o(l)) 

= 1 + o(l). 

By (47), we thus have 

(48) lim sup min {n~xan vk\Sn\\8vk ^ n ^ vk) ^ 1 a.s. 

Since {Ym n e Z} is symmetric, the inequality in (26) must hold with 
probability at least one half. Since an —» oo, the left side of (26) is in the 
a-field of shift-invariant events. Since {Yn} is ergodic by Theorem 2, (26) 
must hold. This completes the proofs of Theorem 3 and Theorem 1. 

4. Two-dimensional arrays. A two-dimensional array is defined to be a 
collection {Yrm r e N, n e Z} of random variables such that the 
sequences [Yrn, n G Z}, r G N, are independent and identically 
distributed. Given such an array, let 

n 

Sr^n = S(r, n) = 2 Yrj-
i=\ 

It is our purpose to examine the following question: given a sequence 
{bn = b(n), « Ê N} of positive real numbers such that (3) and (4) hold 
and given an increasing sequence {jun r G N) of positive integers, does 
there exist a two-dimensional array {Yrm r G N, n G Z} such that for 
each r the sequence {Yrn) is { — 1, l}-valued, symmetric, stationary and 
ergodic and such that 

(49) lim sup (Z>0v) )~lS(r, /ir) = 1 a.s. ? 

Our purpose is primarily that we need a positive answer to this question 
for our aforementioned application to self-similar processes, but we note 
that two-dimensional arrays (and more particularly triangular arrays with 
ixr = r) have received much attention in connection with the law of the 
iterated logarithm. Our methods do not seem to provide an answer to the 
question as asked, so we impose some additional conditions. First, we 
simplify matters by assuming that {bm n G N} satisfies the monotonicity 
requirements 

(50) b„ T oo and n~xbn I 0. 
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This means that we can go directly to the analogue of Theorem 3, 
bypassing Step 1 of the proof of Theorem 1. Second, we impose a roughly 
geometric minimum rate-of-growth condition on {ft, r ^ N}. Assume that 
for some constant K, 

r 

(51) 2 ft ^ Kixn r i= 1. 
/ = i 

Under these assumptions we can obtain a result which is sufficient for our 
needs and which can be proved by making minor modifications to the 
proof of Theorem 1. 

THEOREM 4. Let {bn, n e N} satisfy (50) and let {ft, r e N} satisfy (51) 
for some K. Let S e (0, 1). Then there exists a two-dimensional array { Yrn } 
such that for each r the sequence {Yrm n e N} is {—1, 1}-valued, 
symmetric, ergodic and stationary and such that 

(52) lim sup max { (b(iir))~
lSrn:Sixr ^ n = ft} = 1 a.s., and 

r—>oo 

(53) lim sup min { (nbn)~
lfirSrn:ôixr ^ n ^ fir} = 1 a.s. 

Pr6>o/. Construct the array [Yrm r G N, n e Z} by constructing {>Ym « 
G N} as in the proof of Theorem 3. Make the obvious notational changes. 
Most of the bounds in Steps 3-5 of that proof are non-random and hence 
carry over directly. The only difficulties occur at the two points involving 
the Borel-Cantelli Lemma. The second of these points presents no 
problem: the assumed independence of {Yrm n G N) for different values 
of r actually simplifies the proof somewhat. We will provide the details 
only for the modification required when the Borel-Cantelli Lemma is 
applied in Step 4. 

Fix k and suppose r is such that (38) holds for some n between ôjur and 
ft. The block Dr = {1, 2, . . . , ft} is composed of at most ftA^ k-
blocks and at most two partial /c-blocks. Thus, the probability that Dr 

intersects any of the reversed /:-blocks is at most 

(ftJV^1 + 2)(nk + xm^lx - 3)" 1 ^ 4ftJVA
-+,mk +} 

for large k. Summing over all r as described above, for which all ft are at 
most 

8-\k+l)-2mklxNk + h 
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we see that the probability that Dr intersects any reversed ^-blocks fçr 
any r is at most 

(Kô-\k + l ) - 2mA :+
1

1^+ 1 ) (4m, + 1 ^ 1 ) = 4K8-\k+\r2 

for large k. With probability 1, therefore, there are only finitely many Ar's 
for which any Dr intersects a reversed /c-block.Thus, there are only finitely 
many r's for which Dr intersects a reversed /:-block, where k is determined 
by (38) and 8\xr tk n ta fir. 

Remark. If we drop the requirement that (51) holds, we can obtain a 
similar result to Theorem 4 but with a weaker conclusion. If n satisfies (38) 
for some k, then B = (1 , 2 , . . . , AI} intersects at most one reversed 
A:-block. It follows by an argument like that leading to (40) that then 

\SJ ^ 3(2AM,) ^ 3bfV 

We see that the conclusions of Theorem 4 hold with the right side of the 

inequality in (52) replaced by 3. 

5. Complements. One of the properties of the random sequences { Ym n 
e Z} constructed in Section 3 is that 

(54) P{SiN(k) ^ 0 for infinitely many k) = 0 a.s. 

This is easily deduced from the arguments leading up to (40). 
One consequence of (54) is that we may modify the sequence {bn} in 

such a way that lim inf bn = 0; specifically, let bn = k~] if n = 2Nk and 
leave bn unchanged otherwise. The same sequence {Yn} still satisfies the 
requirements of Theorem 1. Thus (3) is not necessary. 

Let us suppose now that {bn} is a sequence of positive real numbers 
such that 

(55) lim sup bn < oo 

and that {Yfl} is integer-valued. Since the sequence {/?„} is bounded, it is 
clear that, if (2) holds, then {Sm n ^ 1} is bounded above and {Sn, n ^ 0} 
achieves its maximum a.s. By applying the stationarity of [Yn}< it is clear 
that 

P(Sn ^ 0, n è 0) 

= P( {Sn, n ^ 0} achieves its maximum at n = 0) > 0. 
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Thus (2) is impossible. If (55) holds and {Yfl} is real-valued, then 

P(lim sup Sn < e) > 0 for every € > 0, 
n—>oo 

so that a necessary condition for (2) is that 

lim sup bn = oo or lim inf bn = 0. 
n—*oa n—>oo 

The following example shows that (55) does not preclude (2). Let b„ = 
2 _ / if n = 2'k where k is an odd integer and /' is a non-negative integer. 
Obviously, 

lim sup bn = 1 < oo. 

Let U\, U2, . . . be independent random variables with 

P(Un = 0) = P(U„ = 1) = \ for all n. 

Divide Z into juxtaposed blocks, each composed of two successive 
integers, so that each block has the form {2n — 1, In) if U\ = 0 and each 
has the form {2n, In + 1} if ^ = 1. In each block {«, « + 1}, Yn > 0 
and y„ + i = — yw. Every second block, using L^ to decide which ones, 
has the values Yn = î and Y„ = + 1 and y „ + ] = — \. Of the remaining 
blocks, every second one has the values | and — |. Of those still remain­
ing, every second one has the values I and — |, and so on. If U\ = 0, 
then ^2,, = 0 for all n and S2n-\ takes each value 1 — 2~k infinitely often, 
k = 1, 2, . . . . Since &2w-i = 1 ^or al^ w^ w e have (2) when U\ = 0. Now 
suppose (/1 = 1. Then Y\ = — 1 + 2 _ / for some / ^ 1. It can be seen that 
Sn = 0 except for n of the form kll for k odd. If « = /c2' for odd /c, then 5,, 
takes each value 2 _ / — 2~v, 7 > /, infinitely often, so that 

lim sup b~lS„ = lim sup (bk20~lSk2' = sup (2" /)~ 1(2" / - 2~>) 
/?-^oo k—*oo J 

k odd __ 1 

Thus (55) is not incompatible with (2). We note however that this 
example does not have the symmetry property of Theorem 1. 

It follows from the construction in Section 3 that the sequence 
{bn Sn} is tight; in fact 

P( \b~lS„\ > 1 + c) -> 0 for every € > 0. 

Thus, there exists at least one weakly convergent subsequence, whose limit 
distribution is concentrated on [—1, 1]. By (54), there is a subsequence 
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which converges to 0 (even almost surely). It can be seen from the 
arguments in Step 5 of the proof of Theorem 3 that 

P(PviN(k)^ViN(k) = 0 = 3 

for all k, so that there is a subsequence which converges to a distribution 
Q with Q( [{, 1] ) ^ {. Thus there are subsequences of {bn Sn} with a 
non-degenerate weak limit. Note the contrast with the i.i.d. case, where the 
law of the interated logarithm has a larger denominator than the central 
limit theorem. 

It was pointed out to me by W. Vervaat that the dynamical system (i.e., 
(Œ, ^ P) and T) introduced in Section 2 can be viewed in the following 
way. The set Q,' — A\ X yl2 X . . . is a group under component-wise 
addition, with carrying in the sense described in Section 2. Then T'\ £2' —> 
fi', obtained from T by ignoring AQ9 simply adds (1, 0, 0, . . . ). The 
ergodicity of T' can then be obtained from the general theory of 
topological dynamics on groups. See for example Walters (1975). This 
provides an alternative to our use of Kolmogorov's 0 — 1 law. 

Acknowledgements. I am indebted to H. Kesten, M. Keane and W. 
Vervaat for useful comments. 
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