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ON SOME DIOPHANTINE PROBLEMS
INVOLVING POWERS AND FACTORIALS
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Abstract

In this paper the power values of the sum of factorials and a special diophantine problem related
to the Ramanujan-Nagell equation are studied. The proofs are based on deep analytic results
and Baker's method.
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1. Power values of the sum of factorials

Erdos visited Mahler a few days before his death in February 1988 and dis-
cussed with Mahler the paper, his last, on which Mahler had been working.
Mahler had investigated the following question.

Let k > 1 be an integer and consider those numbers of the form X)°!, etk'
where e, € {0, 1} such that

(1) ^ e t k ' = x * , x e Z
1=1

has infinitely many solutions (for k = 2 this is of course trivial). Mahler
conjectured that for k > 5 the equation (1) has only a finite number of
solutions. A nontrivial solution, for k = 4 , is 1 + 7 + 72 + 73 = 202 .
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On seeing Mahler's question it seems natural to ask whether it is true that

(2) f> , / ! = xz, e,e{0,l}, £>,<oo

has only finitely m a n y solu t ions in ex,... , x, z e Z wi th z > 1 . But in
this general i ty t he ques t ion is hopeless . However , i t is an old conjecture tha t

1 + n\ = x2

has only the solutions n = 4, 5, 7. We prove

THEOREM 1. For every positive integer r there is an n0 = no{r) such that
none of the integers

r

£> , ! , no<nl<--<nr
i=i

are powerful; that is, each has a prime factor which divides Y?Hi nr t0 the
first power.

Unfortunately, there seems to be no way to give an explicit value for no(r).

PROOF OF THEOREM 1. Denote by pl < • • • < p, the primes in the interval
(JMJ , « , ) . Observe that

. r

—̂  ]P «,! = 0 mod
"i" /=i L>'=1

otherwise one of the p , ' s would divide V);_, «,! to the first power only.

From the known elementary inequality I lLi / 7 , > 2^2"' we obtain

—r«!>2l/2"'

which easily implies

(3) nr > n, 1 +n r > n i [ ]

where the constant c{ depends only on r.
Now we must use a strong theorem on prime numbers for which there is

no effective proof (though such a proof could be constructed in principle).
There is an absolute constant c2 so that for large n and d > «3^4

(4) n{n + d)-n{n)>^L

(See, for example, [2, page 167].)
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Applying this result we immediately have

(5) n2 < 2p{ < n, + In]1*.

If r = 2 then from (3) and (5)

«, + p^1- < « , < « , + 2«?/4
1 logn, 2 ' l

which is a contradiction for n0 large enough.
In the sequel we may assume that r > 3 . Let 2 < s < r be the smallest

index for which

ns>nx+ 2n3/4 and ns - ns_r > (ns_{ - n

Such an s does exist by (3). Moreover, by (3) and the minimality of s we
can assume that «s_j < nY + n\lx0.

Let qx,... ,qt denote the primes between ns_x/2 and min(l/2«s, « t ) .
By (4), t > (ns_l - njilogn^) (since log«j and logn^,, differ by Iog2
at most).

Now we show that
, s-l t44
1 1=1 j=\

Indeed,
1 v^ i B. ,—n, In. , — n,)logn,

-iXn.<rn^ <n*5 l
1 (=1 y

iHence there is a prime q, which does not divide (1/n,!)
On the other hand /?, < ns_l < 2 ^ < ŵ  and qj < n{, and therefore ^

divides £ | = 1 n(.! to the first power only, which completes the proof.

2. The Ramanujan-Nagell equation and a related problem

In the book of Erdos and Graham "Old and new problems and results in
combinatorial number theory" it is asked "Is it true that the equation

(6) (p - 1)\ + a""1 = pk

in positive integers a, k, p, with p > 2 and prime, has only a finite number
of solutions?" More than 150 years ago Liouville proved that

(p - ! ) ! + ! = /
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has only two solutions: p = 3 and p = 5. For a > 1, a non-trivial solution
is given by 2! + 52 = 3 3 . It is intere
has no solution, that is, the equation
is given by 2! + 52 = 3 3 . It is interesting that if p is not a prime then (6)

(n-l)\ + an l =nk

has no solution in positive integers n, a, k with n > 2 and not a prime.
Indeed, if n is a composite number then n\(n-l)\ and nk > (w-1)! implies
k > n - n/logn . Let P be the largest prime factor of n. Then {n - 1)!
cannot be divisible by such a high power of P except, possibly, if P = 2.
In this case, n is a power of 2 and a is even. Hence 2"~1|a"~I, 2"~1|n
but 2""1 does not divide (n - 1)!.

Returning to the equation (6), we prove

THEOREM 2. There exists an effectively computable absolute constant C
such that all solutions of the equation (6) satisfy

max{/?, a, k} < C.

This equation is a little eccentric but the proof of Theorem 2 is rather
interesting. We shall show that for every solution

where C{ and C2 are effectively computable absolute constants. Both the
lower and upper bounds in (7) are proved by Baker's method and, surpris-
ingly, the lower bound is much larger in p than the upper one. The second
part of (7) is a simple consequence of the following more general result on
the Ramanujan-Nagell equation.

THEOREM 3. Let D be a nonzero rational integer. Then all the solutions
of the equation

(8) x 2 + D = p k

in p o s i t i v e integers x , p , k with k , p > 1 satisfy

k
j — ^ < C3{p log/? + log \D\)p logp

where C3 is an effectively computable absolute constant.

This upper bound for k is near to the best possible in D.
The proofs of Theorems 2 and 3 are based on the following deep results

on linear forms in logarithms.
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Let a{,... , an be nonzero algebraic numbers and let A{, ..., An be
positive real numbers satisfying

Aj > m a x { / f ( a > ) , e ) , \<j<n

where H{-) is the usual absolute height function.

LEMMA 1 (Philippon and Waldschmidt [4]). Let bx, ... , bn be rational
integers such that

Let B be a real number satisfying

B > max 16,1 and B > e.

Then |a*'•••<**" - 1| > exp(C4log^, • - l o g ^ l o g t f ) where C4 is an ef-
fectively computable constant depending only on n and on the degree of
Q(a 1 ; . . . ,an) over Q.

The following lemma is a special simple case of Yu's result for linear forms
in the p-adic case.

LEMMA 2 (Yu [5]). Let ax, a2 be odd integers with |a , | \a2\ > 1 and let

bx, b2 be rational integers such that af'a*2 ^ * • further, let q > 2 be a
prime for which

Then
ord2(a?'a52 - 1) < C

where B = max{2, \bx\, \b2\) and C5 is an effectively computable absolute
constant.

PROOF OF THEOREM 2. From (6) we immediately have a> p, k >p and

(9) l/2(p - 1) < ord2ip - 1)! = ord2(/>Vp - 1).

Preparatory to an application of Lemma 2, we prove the existence of a
prime q > 2 for which

<7<21ogloga and [Q(p1/g, alq): Q] = q2.

Indeed, there is a prime 2 < q < 2 log log a such that a is not a qth power,
otherwise

a > 3A with A = [ J P (Pprime)
P<2 log log a
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which is a contradiction. If a1^ does not generate an extension of
of degree q then, by Kummer theory, a = prbq where 0 < r < q, r e Z
and b € Q. This is not possible since a is not a q\h power and (a, p) = 1.
Thus we may apply Lemma 2 with an appropriate q, obtaining

(10) OT&2(p
ka~p - 1) < c6log/?logalogfc(logloga)7

with c6 = 26c5. In the sequel c1,... ,cXi will denote effectively computable
positive absolute constants. Comparing (10) with (9) we have

hip - I)2 < c6(logp)(logap-l)(logk)(logloga)7 < c7fc(logfc)8(logp)2

and that yields p3^2 < cgk. Combining this inequality with (6) we have

\ap~1p~k - 1| = k < exp-c9fclog/> < exp-c10ploga.

However, from Lemma 1

\(/~lp~k - 1| > exp-cnlogalogplogfc.

The last two inequalities imply e x p c 1 2 l ^ < k.

To prove the second part of (7) we set x = a^'1^2 and D = (p - 1)!.
Then

x2 + D=ph

and Theorem 3 gives k > cl3p
3 which completes the proof of Theorem 2.

PROOF OF THEOREM 3. We factorize equation (8) in the field )

Let e be the fundamental unit for Q(y/p) with

1 < |e| <expc14plog/>.

The norm of the factors (y/p)k ± x is D or -D. Hence the factors can be
written in the form

(11) (y/p)k + x = dxe , (y/p)k - x = d2e~' (t € Z)

where dx and d2 are conjugate to one another (over Q) and where we may
assume that

(12) | log |^,| | < c15i? log/? + log |Z>|, i = l , 2

(see for example [1, Lemma 3]). Let {1, co} be an integral basis for Q(y/p)
with co e {y/p, (1 + y/p)/2} and e = u + vco. Then

~ > 1K'<>
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and from (11) and (12)

|;| < <r,6|/| log |e| < cl6(log((y/p)k +x) + \ log\dl|) < c17klogp,

under the assumption that k > max{/?, log|Z)|}, for otherwise, Theorem 3
is proved. Obviously,

k

Hence

A = WVpf^ | < ^
1 \(y/P)k+x\

But from Lemma 1,

A > exp -cls(logp)(plogp)(plogp + log\D\) logk,

which proves Theorem 3.
REMARK. A /?-adic version of a recent result of Mignotte and Waldschmidt

[3] would lead to a sharper bound for k.
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