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A Problem on Edge-magic Labelings of
Cycles
S. C. López, F. A. Muntaner-Batle, and M. Rius-Font

Abstract. In 1970, Kotzig and Rosa defined the concept of edge-magic labelings as follows. Let G be a
simple (p, q)-graph (that is, a graph of order p and size q without loops or multiple edges). A bijective
function f : V (G)∪E(G)→ {1, 2, . . . , p+q} is an edge-magic labeling of G if f (u)+ f (uv)+ f (v) = k,
for all uv ∈ E(G). A graph that admits an edge-magic labeling is called an edge-magic graph, and k is
called the magic sum of the labeling. An old conjecture of Godbold and Slater states that all possible
theoretical magic sums are attained for each cycle of order n ≥ 7. Motivated by this conjecture, we
prove that for all n0 ∈ N, there exists n ∈ N such that the cycle Cn admits at least n0 edge-magic
labelings with at least n0 mutually distinct magic sums. We do this by providing a lower bound for
the number of magic sums of the cycle Cn, depending on the sum of the exponents of the odd primes
appearing in the prime factorization of n.

1 Introduction

For the graph theory terminology and notation not defined in this paper we refer
the reader to any one of the following sources [3, 5, 8, 15]. In 1970, Kotzig and Rosa
[10] defined the concept of edge-magic labelings as follows. Let G be a simple (p, q)-
graph (that is, a graph of order p and size q without loops or multiple edges). A
bijective function f : V (G) ∪ E(G) → {1, 2, . . . , p + q} is an edge-magic labeling of
G if f (u) + f (uv) + f (v) = k, for all uv ∈ E(G). A graph that admits an edge-magic
labeling is called an edge-magic graph, and k is called the valence, the magic sum [15],
or the magic weight [3] of the labeling.

Godbold and Slater introduced the following conjecture in [9].

Conjecture 1.1 ([9]) For n = 2t + 1 ≥ 7 and 5t + 4 ≤ j ≤ 7t + 5 there is an edge-
magic labeling of Cn with magic sum k = j. For n = 2t ≥ 4 and 5t + 2 ≤ j ≤ 7t + 1
there is an edge-magic labeling of Cn with magic sum k = j.

We mention that the lower bound (resp. the upper bound) on the magic sum
comes from assigning the lowest (resp. the highest) numbers to the vertices of the
cycle. Motivated by this conjecture we introduce the following theorem. The goal of
this paper is to prove it.

Theorem 1.2 For all n0 ∈ N, there exists n ∈ N such that the cycle Cn admits at least
n0 edge-magic labelings with at least n0 mutually distinct magic sums.
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2 The Tools

Figueroa-Centeno et al. introduced the following definition in [7]. Let D be a digraph
and let Γ = {Fi}m

i=1 be a family of digraphs such that V (Fi) = V for every i ∈
{1, 2, . . . ,m}. Consider a function h : E(D) → Γ. Then the product D ⊗h Γ is the
digraph with vertex set V (D) × V and ((a, b), (c, d)) ∈ E(D ⊗h Γ) if and only if
(a, c) ∈ E(D) and (b, d) ∈ E(h(a, c)). The adjacency matrix of D ⊗h Γ, namely
A(D ⊗h Γ), is obtained by replacing every 0 entry of A(D), the adjacency matrix of
D, by the |V | × |V | null matrix and every 1 entry of A(D) by A(h(a, c)).

The following restriction of edge-magic labelings introduced independently by
Acharya and Hegde [1] and by Enomoto et al. [6] will prove to be of great help in the
rest of this document. Let G be a (p, q)-graph. Then G is a super edge-magic graph
[1,6] if there is an edge-magic labeling of G, namely f : V (G)∪ E(G)→ {i}p+q

i=1 , with
the extra property that f (V (G)) = {i}p

i=1. The labeling f is called a super edge-magic
labeling of G. All cycles are edge-magic [9]. However, a cycle C p is super edge-magic
if and only if p is odd [6]. As in [7], a digraph D is said to admit a labeling l if its
underlying graph, und(D), admits l. From now on, let Sp be the set of all 1-regular
super edge-magic labeled digraphs of odd order p, p ≥ 3, where each vertex takes
the name of the label assigned to it. Then we have the following theorem.

Theorem 2.1 ([7]) Let D be a (super) edge-magic digraph, and let h : E(D)→ Sp be
any function. Then und(D⊗h Sp) is (super) edge-magic.

The key point in the proof (see also [11]) is to rename the vertices of D and each el-
ement of Sp after the labels of their corresponding (super) edge-magic labeling f and
their super edge-magic labelings respectively and to define the labels of the product as
follows: (i) the vertex (i, j) ∈ V (D⊗hSp) receives the label: p(i−1)+ j and (ii) the arc
((i, j), (i ′, j ′)) ∈ E(D⊗hSp) receives the label: p(e−1)+(3p +3)/2−( j + j ′), where
e is the label of (i, i ′) in D. Thus, for each arc ((i, j), (i ′, j ′)) ∈ E(D ⊗h Sp), coming
from an arc e = (i, i ′) ∈ E(D) and an arc ( j, j ′) ∈ E(h(i, i ′)), the sum of labels is
constant and equal to p(i + i ′ + e− 3) + (3p + 3)/2. That is, p(σ f − 3) + (3p + 3)/2,
where σ f denotes the magic sum of the labeling f of D. Therefore, we obtain the
following proposition.

Proposition 2.2 Let f̌ be the edge-magic labeling of the graph und(D⊗hSp) obtained

in Theorem 2.1 from a labeling f of D. Then the magic sum of f̌ , σ f̌ , is given by the
formula

(2.1) σ f̌ = p(σ f − 3) +
3p + 3

2
,

where σ f is the magic sum of f .

Corollary 2.3 Let D be an edge-magic digraph and assume that there exist two edge-
magic labelings of D, f and g, such that σ f 6= σg . If we denote by f̌ and ǧ the edge-magic
labelings of the graph und(D⊗h Sp) when using the edge-magic labelings f and g of D
respectively, then we get |σ f̌ − σǧ | ≥ 3.
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Proof Since σ f 6= σg , we get the inequality |σ f − σg | ≥ 1. Thus, by using (2.1) we
obtain that |σ f̌ − σǧ | = |p(σ f − σg)| ≥ 3.

The following two results appear in [15].

Theorem 2.4 ([15]) Every odd cycle Cn has an edge-magic labeling with magic sum
3n + 1 and an edge-magic labeling with magic sum 3n + 2.

Theorem 2.5 ([15]) Every even cycle Cn has an edge-magic labeling with magic sum
(5n + 4)/2.

Next, we state the following two structural results. We denote by
−→
Cn and

←−
Cn the two

possible strong orientations of the cycle Cn, where the vertices of Cn are the elements
of the set {i}n

i=1.

Theorem 2.6 ([7]) Let h : E(
−→
Cm) → {−→Cn,

←−
Cn} be any constant function. Then

und(
−→
Cm ⊗h {

−→
Cn,
←−
Cn}) = gcd(m, n)Clcm[m,n].

Theorem 2.7 ([2]) Let m, n ∈ N and consider the product
−→
C m ⊗h {

−→
C n,
←−
C n} where

h : E(
−→
C m) → {−→C n,

←−
C n}. Let g be a generator of a cyclic subgroup of Zn, namely

〈g〉, such that |〈g〉| = k. Also let Ng(h−) < m be a natural number that satisfies the
congruence relation m− 2Ng(h−) ≡ g (mod n).

If the function h assigns
←−
C n to exactly Ng(h−) arcs of

−→
C m, then the product

−→
C m ⊗h {

−→
C n,
←−
C n}

consists of exactly n/k disjoint copies of a strongly oriented cycle
−→
C mk. In particular, if

gcd(g, n) = 1, then 〈g〉 = Zn, and if the function h assigns
←−
C n to exactly Ng(h−) arcs

of
−→
C m, then

−→
C m ⊗h {

−→
C n,
←−
C n} ∼=

−→
C mn.

Corollary 2.8 Let n ≥ 3 be an odd integer and suppose that m ≥ 3 is an integer such

that either m is odd or m ≥ n. Then there exists a function h : E(
−→
Cm)→ {−→Cn,

←−
Cn} such

that −→
Cm ⊗h {

−→
Cn,
←−
Cn} ∼=

−−→
Cmn.

Proof We have that 〈1〉 = Zn, and since n is odd, the congruence relation m−2r ≡ 1
(mod n) can be solved, with 0 < r < m. Therefore, inheriting the notation of
Theorem 2.7, by considering any function h with N1(h−) = r, we get the desired
result.

3 Proof of the Main Result

We start this section by showing four edge-magic labelings of C3 with consecutive
magic sums in Figure 1.

We are now ready to prove Theorem 1.2.

https://doi.org/10.4153/CMB-2013-036-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-036-1
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Figure 1: Edge-magic labelings of C3.

Proof of Theorem 1.2 We already know that C3 admits 4 edge-magic labelings with
4 consecutive edge-magic magic sums (notice that the labeling corresponding to
magic sum 9 is super edge-magic). Call these labelings l1, l2, l3, l4, where the magic
sum of li is less than the magic sum of l j if and only if i < j (i, j ∈ {1, 2, 3, 4}), and
denote by C li

3 the copy of C3, where each vertex takes the name of the label that li has
assigned to it. Also let

−→
C li

3 be the digraph obtained from C li
3 with the edges oriented

cyclically. Recall that, we denote by
−→
C3 and

←−
C3 the two possible strong orientations of

C3, where the vertices of C3 are labeled in a super edge-magic way. Let γ = {−→C3,
←−
C3}.

By Corollary 2.8, for all i ∈ {1, 2, 3, 4} there exists a function hi : E(
−→
C li

3 ) → Γ

such that und(
−→
C li

3 ⊗hi Γ) ∼= C9. Also, any two magic sums of the labelings obtained

for
−→
C li

3 ⊗hi Γ differ, by Corollary 2.3, by at least three units. But we know by Theorem
2.4 that magic sums 28 and 29 appear for different edge-magic labelings of C9. Hence,
the cycle C9 admits at least 5 edge-magic labelings with 5 different magic sums. Let
the labelings that provide these magic sums be l1i , where the magic sum of l1i is less
than the magic sum of l1j if and only if i < j (i, j ∈ {1, 2, . . . , 5}).

If we repeat the process with
−→
C l1i

9 ⊗h1
i
Γ, where h1

i : E(
−→
C l1i

9 )→ Γ is a function as in
Corollary 2.8, we obtain 5 edge-magic labelings of C27 with 5 different magic sums.
But, again by Corollary 2.3, either magic sum 82 or magic sum 83, does not appear
among these 5 magic sums, since among these 5 magic sums no two magic sums are
consecutive. But we know by Theorem 2.4 that these two magic sums, 82 and 83,
appear for an edge-magic labeling of C27. Hence, there are at least 6 magic sums for
edge-magic labelings of C27.

Repeating this process inductively, we obtain that each cycle of order 3α admits at
least 3 + α edge-magic labelings with at least 3 + α mutually different magic sums.
Therefore, we get the desired result.

Notice that, using a similar idea to the one in the proof of Theorem 1.2, we can
obtain the following theorem.

Theorem 3.1 Let n = pα1
1 pα2

2 · · · p
αk
k be the unique prime factorization (up to order-

ing) of an odd number n. Then Cn admits at least 1 +
∑k

i=1 αi edge-magic labelings

with at least 1 +
∑k

i=1 αi mutually different magic sums.

Using Theorem 2.5 and the previous construction, we can prove the next theorem.
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Theorem 3.2 Let n = 2αpα1
1 pα2

2 · · · p
αk
k be the unique prime factorization of an even

number n, with p1 > p2 > · · · > pk. Then Cn admits at least
∑k

i=1 αi edge-magic

labelings with at least
∑k

i=1 αi mutually different magic sums. If α ≥ 2, this lower

bound can be improved to 1 +
∑k

i=1 αi .

Proof Assume first that α ≥ 2. By Theorem 2.5, the cycle of order 2α has an edge-
magic labeling l with magic sum 5 · 2α−1 + 2. Let C l

2α be the copy of C2α where each
vertex takes the name of the label that l has assigned to it, and for each i = 1, 2, . . . , k
let

Γi = {
−→
C pi ,
←−
C pi},

where the vertices of C pi are labeled in a super edge-magic way. Also let
−→
C l

2α be the
digraph obtained from C l

2α such that the edges have been oriented cyclically.

By Theorem 2.6, any constant function h : E(
−→
C l

2α)→ Γ1 gives

C2α·p1
∼= und(

−→
C l

2α ⊗h Γ1).

Notice that, by Proposition 2.2, the induced edge-magic labeling on C2α·p1 has magic
sum

p1(σl − 3) +
3p1 + 3

2
= 5p1 · 2α−1 +

p1 + 3

2
.

Since by Theorem 2.5, the cycle C2α·p1 has an edge-magic labeling with magic sum
5p1 · 2α−1 + 2, we get that C2α·p1 admits two edge-magic labelings with two different

magic sums. Assume that
∑k

i=1 αi ≥ 2 (otherwise the result is proved) and call these
labelings l1, l2, where the magic sum of l1 is less than the magic sum of l2. Denote
by C li

2α·p1
the copy of C2α·p1 where each vertex takes the name of the label that li has

assigned to it. Also let
−→
C li

2α·p1
be the digraph obtained from C li

2α·p1
such that the edges

have been oriented cyclically.
By Corollary 2.8, for each i ∈ {1, 2} and for some fixed j ∈ {1, 2, . . . , k}, there

exists a function

hi : E(
−→
C li

2α·p1
)→ Γ j

such that und(
−→
C li

2α·p1
⊗hi Γ j) ∼= C2α·p1 p j . We take j = 1 when α1 > 2, and j = 2

when α1 = 1. Also, by Corollary 2.3, the two magic sums of the labelings obtained
from

−→
C li

2α·p1
⊗hi Γ j differ, by at least three units. Moreover, the minimum of them,

that is p j(σl1 − 3) + (3p j + 3)/2 = 5p1 p j · 2α−1 + (p j + 3)/2, is bigger than the
magic sum guaranteed by Theorem 2.5. Hence, the cycle C2α·p1 p j has at least three
edge-magic labelings with at least three mutually different magic sums.

Repeating this process inductively, following the order of primes, we obtain that

each cycle of order 2αpα1
1 pα2

2 · · · p
αk
k admits at least 1 +

∑k
i=1 αi edge-magic labelings

with at least 1 +
∑k

i=1 αi mutually different magic sums.
Assume now that α = 1. In this case, we proceed as in the case α ≥ 2, but starting

with the cycle of length 2αp1. Therefore, we get the desired result.

https://doi.org/10.4153/CMB-2013-036-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-036-1
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3.1 Conclusions

Interest seems to be growing on the study of the magic sums of edge-magic and super
edge-magic labelings (see [12, 13] for instance). In this paper we have concentrated
our efforts in the study of the set of edge-magic magic sums for cycles. This is an old
problem that appeared in [9] and that has remained unsolved for 15 years. Very little
progress has been made towards a solution of it since then. In fact, for many years
only four magic sums have been known for Cn, except for small values of n where the
problem has been treated using computers (see [4]). It was not until 2009 that a paper
appeared [14], in which the author proved a result similar to the one introduced in
this paper. However, the method used in [14] and the method introduced in this
paper are absolutely different. We feel that to try to combine both methods could be
a very interesting line of research in the future. So far, we remark that concerning
this problem about the valences of Cn we have only two different methods that allow
us to show that the number of magic sums of the cycle Cn grows unbounded for the
values of n. However the original question found in [9] remains unsolved, and we
feel that, at this point, we are very far away from a final solution.
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[11] S. C. López, F. A. Muntaner-Batle, and M. Rius-Font, Bi-magic and other generalizations of super

edge-magic labelings. Bull. Aust. Math. Soc. 84(2011), no. 1, 137–152.
[12] , Perfect super edge-magic graphs. Bull. Math. Soc. Sci. Math. Roumanie 55(103)(2012),

no. 2, 199–208.
[13] , Perfect edge-magic graphs. Bull. Math. Soc. Sci. Math. Roumanie, to appear.
[14] D. McQuillan, Edge-magic and vertex-magic total labelings of certain cycles. Ars Combin. 91(2009),

257–266.
[15] W. D. Wallis, Magic graphs. Birkhaüser Boston Inc., Boston, MA 2001.
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