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Abstract

We consider smooth, complex quasiprojective varieties U that admit a compactification with a
boundary, which is an arrangement of smooth algebraic hypersurfaces. If the hypersurfaces intersect
locally like hyperplanes, and the relative interiors of the hypersurfaces are Stein manifolds, we
prove that the cohomology of certain local systems on U vanishes. As an application, we show that
complements of linear, toric, and elliptic arrangements are both duality and abelian duality spaces.
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1. Introduction

1.1. Abelian duality and local systems. It has long been recognized that
complements of complex hyperplane arrangements satisfy certain vanishing
properties for homology with coefficients in local systems. We revisited this
subject in our joint work with Yuzvinsky, [13, 14], in a more general context.

Let X be a connected, finite-type CW-complex, with a fundamental group G.
Following Bieri and Eckmann [3], we say that X is a duality space of dimension
n if H q(X,ZG) = 0 for q 6= n and H n(X,ZG) is nonzero and torsion-free.
We also say that X is an abelian duality space of dimension n if the analogous
condition, with the coefficient G-module ZG replaced by ZGab is satisfied.
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Setting D := H n(X,ZGab), it follows that H i(X, A) ∼= Hn−i(Gab, D ⊗Z A) for
any representation A of G, which factors through Gab, and for all i > 0.

It is worth noting that the abelian duality property imposes significant
conditions on the cohomology of local systems on X . Let k be an algebraically
closed field. The group Ĝ = HomGps(G,k∗) of k-valued multiplicative characters
of G is an algebraic group, with identity the trivial representation 1. The
characteristic varieties Vq(X,k) are the subsets of Ĝ consisting of those
characters ρ for which H q(X,kρ) 6= 0. We highlight an interesting consequence
of the abelian duality space property, which was established in [14]: if X is
an abelian duality space of dimension n, then the characteristic varieties of X
propagate, that is,

{1} = V0(X,k) ⊆ V1(X,k) ⊆ · · · ⊆ Vn(X,k), (1)

or, equivalently, if H p(X,kρ) 6= 0 for some ρ ∈ Ĝ, then H q(X,kρ) 6= 0 for all
p 6 q 6 n.

The abelian duality property also imposes stringent conditions on the
cohomology groups H i(X,Z) = Torn−i(D,Z). For instance, all the Betti
numbers bi(X) must be positive for 0 6 i 6 n and vanish for i > n, while
b1(X) > n. Furthermore, as noted in [33, Theorem 1.8], the results of [14] imply
the following inequality for the ‘signed Euler characteristic’ of an abelian duality
space of dimension n:

(−1)nχ(X) > 0. (2)

1.2. Arrangements of smooth hypersurfaces. Davis et al. showed in [9]
that complements of (linear) hyperplane arrangements are duality spaces. More
generally, we proved in [14] that complements of both linear and elliptic
arrangements are duality and abelian duality spaces.

Our goal here is to further generalize these results to a much wider class
of arrangements of hypersurfaces, by which we mean a collection of smooth,
irreducible, codimension 1 subvarieties which are embedded in a smooth,
connected, complex projective algebraic variety, and which intersect locally like
hyperplanes. We isolate a subclass of such arrangements whose complements
enjoy the aforementioned duality properties, and therefore have vanishing twisted
cohomology in the appropriate range.

THEOREM 1.1. Let U be a connected, smooth, complex quasiprojective variety
of dimension n. Suppose U has a smooth compactification Y for which:

(1) Components of the boundary D = YKU form a nonempty arrangement of
hypersurfaces A.
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(2) For each submanifold X in the intersection poset L(A), the complement of
the restriction of A to X is either empty or a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

An important consequence of this theorem is that the characteristic varieties
of such ‘recursively Stein’ hypersurface complements propagate. As another
application of Theorem 1.1, we prove in Corollary 2.9 the following ‘generic
vanishing of cohomology’ result. We use here De Concini and Procesi’s [12]
construction of wonderful models for subspace arrangements, based on the notion
of ‘building sets’; see [21] for an exposition.

THEOREM 1.2. Let U be a smooth, quasiprojective variety of dimension n
satisfying conditions (1) and (2) from above. Furthermore, let G = π1(U ), and let
A be a finite-dimensional representation of G over a field k. Suppose that Aγg = 0
for all g in a building set GX , where X ∈ L(A); then H i(U, A) = 0 for all i 6= n.

Consequently, the cohomology groups of U with coefficients in a ‘generic’
local system vanish in the range below n.

Finally, let `2G denote the left C[G]-module of complex-valued, square-
summable functions on G, and let Hred i(U, `2G) be the reduced L2-cohomology
groups of U with coefficients in this module, cf. [17, 34]. We then prove in
Theorem 2.11 the following result.

THEOREM 1.3. Let U and G = π1(U ) be as above. Then Hred i(U, `2G) = 0 for
all i 6= n.

In particular, the `2-Betti numbers of U are all zero except in dimension n. A
basic fact about `2-cohomology is that `2-Betti numbers compute the usual Euler
characteristic (see, e.g., [17, Theorem 3.6.1]). Therefore, we see once again that
(−1)nχ(U ) > 0.

1.3. Linear, elliptic, and toric arrangements. The theory of hyperplane
arrangements originates in the study of configuration spaces and braid groups.
Here we consider a broader class of hypersurface arrangements of current interest.

THEOREM 1.4. Suppose that A is one of the following:

(1) an affine–linear arrangement in Cn , or a hyperplane arrangement in CPn;

(2) a nonempty elliptic arrangement in En;

(3) a toric arrangement in (C∗)n .
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Then the complement M(A) is both a duality space and an abelian duality space
of dimension n − r , n + r , and n, respectively, where r is the corank of the
arrangement.

As mentioned previously, the first two statements already appeared in our
paper [14]; at the time, however, we were unable to address the third one.
Since then, De Concini and Gaiffi [11] have constructed a compactification for
toric arrangements, which is compatible with our approach. The claim that the
complement of a toric arrangement is a duality space was first reported in [10,
Theorem 5.2]. However, a serious gap appeared in the proof; see [8]. Part of
our motivation here, then, is to provide an independent alternative, as well as a
uniform proof of the three claims above. The argument is given in Section 3.1 and
depends on Theorem 1.1. It is worth noting that this dependency is slightly subtle.
For example, the complement U of a linear hyperplane arrangement is indeed a
Stein manifold; however, if the corank is strictly positive, hypothesis (2) is not
satisfied by the intersection of all the hyperplanes.

As a consequence of Theorem 1.4, the characteristic varieties propagate for
all linear, elliptic, and toric arrangements. The formality of linear and toric
arrangement complements implies that their resonance varieties propagate, as
well. In the linear case, a more refined propagation of resonance property was
established by Budur in [4].

If A is an affine complex arrangement, the work of Kohno [29], Esnault
et al. [18], and Schechtman et al. [36] gives sufficient conditions for a local system
L on M(A) to ensure the vanishing of the cohomology groups H i(M(A),L)
for all i < rank(A). Similar conditions for the vanishing of cohomology with
coefficients in rank 1 local systems were given by Levin and Varchenko [30]
for elliptic arrangements, and by Esterov and Takeuchi [19] for certain toric
hypersurface arrangements. In turn, we provide in Corollary 2.9 a unified set of
generic vanishing conditions for cohomology of local systems on complements
of arrangements of smooth, complex algebraic hypersurfaces.

The `2-cohomology of the complement of a linear arrangement also vanishes
outside of the middle (real) dimension: this is a result of Davis et al. [7]. The
same claim for toric arrangements appears in [10]; however, the argument given
there has the same gap mentioned above. As part of our approach here, we obtain
the aforementioned vanishing result (Theorem 2.11) for the `2-cohomology of
complements of hypersurface arrangements.

1.4. Orbit configuration spaces. As a second application of our general
results, we obtain an almost complete characterization of the duality and abelian
duality properties of ordered orbit configuration spaces on Riemann surfaces. In
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Section 3.2, we define and discuss orbit configuration spaces, following [39]; for
the purpose of this introduction, though, we remind the reader that the classical
configuration spaces are recovered by taking Γ to be the trivial group.

THEOREM 1.5. Suppose Γ is a finite group that acts freely on a Riemann surface
Σg,k of genus g with k punctures. Let FΓ (Σg,k, n) be the orbit configuration space
of n-ordered, disjoint Γ -orbits.

(1) If k > 0, then FΓ (Σg,k, n) is both a duality space and an abelian duality
space of dimension n.

(2) If k = 0, then FΓ (Σg, n) is a duality space of dimension n + 1, provided
g > 1, and is an abelian duality space of dimension n + 1 if g = 1.

(3) If k = 0, then F(Σg, n) is neither a duality space nor an abelian duality
space if g = 0, and it is not an abelian duality space if g > 2.

Hence the characteristic varieties propagate for the orbit configuration spaces
FΓ (Σg,k, n), where either k > 1, or k = 0 and g = 1, for any finite group Γ acting
freely on Σg,k .

2. Hypersurface arrangements

2.1. Open covers for hypersurface arrangements. Let Y be a smooth,
connected complex manifold, and let A = {W1, . . . ,Wm} be a finite collection
of smooth, connected, codimension-1 submanifolds of Y . Let D =

⋃m
i=1 Wi be

the corresponding divisor, and let M(A) := YKD be the complement of the
arrangement A.

We will assume that the intersection of any subset of A is also a smooth
manifold, and has only finitely many connected components. Moreover, we
require that, for each point y ∈ D, there is a chart containing y for which each
element of the subcollection Ay := {Wi | y ∈ Wi} is defined locally by a linear
equation. In other words, the hypersurfaces comprising A have intersections
which, locally, are diffeomorphic to hyperplane arrangements. This definition
is taken from Dupont [16], though similar notions appear in the literature; in
particular, we refer to the paper of Li [31].

Let L(A) denote the collection of all connected components of intersections
of zero or more of the hypersurfaces comprising A. Then L(A) forms a finite
poset under reverse inclusion, ranked by codimension. We will write X 6 Y if
X ⊇ Y , and write r(X) = codim X for the rank function. For every submanifold
X ∈ L(A), letAX = {W ∈A | X ⊆W } be the closed subarrangement associated
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to X , and let AX
= {W ∩ X | W ∈ AKAX } be the restriction of A to X .

We write
DX =

⋃
Z∈L(A):Z<X

Z . (3)

Then the complement of the restriction of A to X is M(AX ) := XKDX , for each
X ∈ L(A). Finally, let TAX be the hyperplane arrangement in the tangent space
to Y at a point in the relative interior of X , guaranteed by our hypothesis on the
intersection of hypersurfaces.

One of the main tools we will need in this note is a spectral sequence developed
in [13], which we summarize in the next theorem.

THEOREM 2.1 [13]. Let A be an arrangement of hypersurfaces in a compact,
smooth manifold Y . Let M be the complement of the arrangement, and let F be
a locally constant sheaf on M. There is then a spectral sequence with

E pq
2 =

∏
X∈L(A)

H p+r(X)
c (M(AX ); H q−r(X)(M(TAX ),FX )), (4)

converging to H p+q(M,F ), where FX is the corresponding restriction of F to
M(TAX ).

REMARK 2.2. This is a special case of [13, Corollary 3.3]. The indexing differs
slightly since [13] indexes by dimension, rather than codimension. ♦

2.2. Wonderful compactifications. From here on, we will consider
arrangements A of smooth, algebraic hypersurfaces in a smooth, connected
complex projective variety Y . For each x ∈ Y , there is a linear hyperplane
arrangement TAX in the complex vector space V = Tx Y tangent to AX , where

X =
⋂

x∈Z∈L(A)

Z . (5)

We apply De Concini and Procesi’s construction of the wonderful model of
a subspace arrangement [12] to the linear arrangement TAX inside the affine
space V . The construction blows up the arrangement to one with simple normal
crossings; let p : Ṽ → V denote the blowup. The (total) divisor components are
indexed by a ‘building set’ GX . A subset S ⊆ GX indexing divisor components
that have nonempty intersection is called a ‘nested set,’ and the collection of all
nested sets forms a simplicial complex, called the nested set complex. The nested
set complex N (TAX ) depends on the choice of building set; however, we will
assume a fixed choice is made for each X and omit the building set from the
notation, since the choices are not important to what follows.
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2.3. An injectivity result. We recall from [13] that the fundamental group
of the complement of a linear arrangement contains certain distinguished free
abelian subgroups of finite rank. We review the definition of these subgroups
briefly, referring to [13, 21] for unexplained terminology.

We consider the wonderful model for TAX in the tangent space V = Vx for
a point x in the relative interior of X . For a nested set S ∈ N (TAX ) of size r ,
let DS denote the corresponding intersection of r divisor components in Ṽ . For a
point z in the relative interior of DS , let Dz be a sufficiently small closed polydisc
in Ṽ centered at z, as shown in Figure 1. Then US := Dz ∩ M(TAX ) ' (S1)r . It
is shown in [13, Theorem 4.6] that the inclusion fX,S : US ↪→ M(TAX ) induces
an injective map of fundamental groups, ( fX,S)] : π1(US, zX,S) ↪→ π1(M(TAX ),

zX,S). Let CS denote the image of this homomorphism. This is a free abelian
subgroup of G X := π1(M(TAX )) of rank r , well defined up to conjugacy.

Our goal now is to show that CS also injects in the fundamental group of the
hypersurface complement. Let D be a closed polydisc in V = Vx centered at the
origin, and set VX := DK

⋃
W∈AX

Tx W ∩D. Let h denote the diffeomorphism that
trivializes T Y |D, and let Dx be the image of D under h. Let UX = h(VX ); then
UX = DxK

⋃
W∈AX

W ∩ Dx .
Consider the diagram

US M(TAX ) VX UX M(A)

D Y

fX,S g h

j

i

(6)

Here, g is the usual deformation retraction of a central, linear arrangement
complement, and the composite of the maps on the top row, US→ M(A), induces
a homomorphism αX,S : π1(US)→ π1(M(A)).

Our argument for the injectivity of this map uses some rational homotopy
theory. We start with a technical lemma. A connected CDGA (A, d) is said to
be 1-minimal if A =

∧
V , the free CDGA on a vector space V concentrated in

degree 1, and V is the union of an increasing filtration by subspaces {Vi}i>0 such
that d = 0 on V0 and d(Vi+1) ⊂

∧
Vi . (The differential d is then decomposable,

and thus A is a minimal Sullivan algebra in the sense of [24].)

LEMMA 2.3. Let A be a 1-minimal CDGA, and let ϕ,ψ : A → B be two
homotopic CDGA morphisms. Suppose dB = 0 and ϕ1

: A1
→ B1 is surjective.

Then ψ1
: A1
→ B1 is also surjective.
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Figure 1. Small tori in M(A).

Proof. Suppose ψ1 is not surjective. Let us view C := k ⊕ B1/ im(ψ1) as a
(connected) CDGA with zero differential, and let pr : B → C be the projection
map, which sends the graded ideal generated by im(ψ1) to zero. Clearly, the
CDGA maps Φ = pr ◦ϕ and Ψ = pr ◦ψ are homotopic, and Ψ = 0; thus, Φ
is null-homotopic. By [24, Example 1, p. 151], the map Φ is constant: that is,
zero in positive degree. This implies that ϕ1 is not surjective, a contradiction.

The complement of an arrangement of hypersurfacesA in a smooth, projective
variety Y has a rational CDGA model, given by the E2-page of the Leray spectral
sequence of the inclusion j : M(A)→ Y . In the normal crossing case, this is the
classical Morgan model; for configuration spaces it was used by Totaro [38]; in
our more general context, we refer to Dupont [16] and Bibby [2]. We will denote
this model for M(A) by B(A).

LEMMA 2.4. Let A be an arrangement of smooth, complex subvarieties in a
smooth, complex projective variety Y . Then, for every X ∈ L(A) and every nested
set S ∈N (TAX ), the homomorphism αX,S : π1(US)→ π1(M(A)) is injective.

Proof. Restriction along the map i : D→ Y gives a map of sheaves Q→ i∗Q on
M(A), which in turn gives a map between the E2-pages of the respective Leray
spectral sequences,

i∗ : H p(Y, Rq j∗Q) // H p(D, Rq j∗Q) . (7)

We note that, for each q > 0, the sheaf Rq j∗Q is the direct image of a
constant sheaf on a contractible space, cf. [2, Lemma 3.1]; it follows that
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H p(D, Rq j∗Q) = H q(UX ,Q) for p = 0, and is zero otherwise. Thus, the
E2-page on the right side of (7) is a CDGA with zero differential, isomorphic
to the Orlik–Solomon algebra OSX := H.(M(TAX ),Q), and a rational model
for UX .

Now recall from [16] that the CDGA B(A) contains distinguished elements
in bidegree (0, 1), which we denote by {eW | W ∈ A}, that restrict locally to
logarithmic 1-forms around the components ofA in Y . Since their images i∗(eW )

for W ∈ AX are the standard generators of OSX , the map i∗ is surjective.
Recall also that we identified the group π1(US) with Zr , for some r > 0. By
[22, Proposition 2], or the proof of [13, Corollary 4.7], the map f ∗X,S : OSX →

H.((C∗)r ,Q) is surjective in degree 1. Hence, the composite p = f ∗X,S ◦
i∗ : B(A) →

∧
(Qr ) is a surjective map of CDGAs, where the differential in∧

(Qr ) is zero.
As is well known, every CDGA A has a 1-minimal model, M(A), which is

unique up to homotopy; see e.g. [28]. Such a model comes equipped with a
morphism π : M(A)→ A inducing an isomorphism on H 1 and a monomorphism
on H 2. We thus obtain a commuting square,

M(B(A))

π

��

//

ψ

%%
π ′

��

M(
∧
(Qr ))

=

��
B(A)

p // ∧(Qr )

(8)

noting that the rational exterior algebra is its own minimal model. Let ϕ = p ◦ π .
Since both H 1(p) and H 1(π) are surjective, the map H 1(ϕ) is also surjective.
Since the differential of

∧
(Qr ) is zero, the map ϕ itself is surjective in degree 1.

Let m(G) be the pronilpotent Lie algebra associated to G = π1(M(A), x).
As it is again well known, m(G) coincides with the Lie algebra dual to the 1-
minimal model M(B(A)); we refer to [28] and also [37, Section 7] for discussion
and further references. Let ψ : M(B(A))→

∧
(Qr ) be the CDGA morphism dual

to the Lie algebra map m(αX,S) : m(Zr ) → m(G). By minimality of M(B(A)),
the map ψ lifts to a map π ′ : M(B(A)) → B(A); see [24, Lemma 12.4]. By
construction, π ′ is a classifying map for the 1-minimal model of B(A); thus,
π ' π ′, and so ϕ ' ψ . By Lemma 2.3, the map ψ is surjective in degree 1; hence,
m(αX,S) is injective.

Let (αX,S)Q : (Zr )Q → GQ be the induced homomorphism between rational,
prounipotent completions. By the above, this homomorphism is also injective.
Since Zr is a finitely generated, torsion-free abelian group, the natural map ι =
Zr
→ (Zr )Q is injective, as well. Hence, the map αX,S = (αX,S)Q ◦ ι itself is

injective, and we are done.
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2.4. The main result. The cohomological vanishing results in [13] made use
of the following condition on G-modules.

DEFINITION 2.5. Let k = Z or a field, let R = k[Zn
] for some n > 1, and let

I1 be the augmentation ideal of R. We say that an R-module A is a maximal
Cohen–Macaulay (MCM) module provided that depthR(I1, A) > n. We note that
this is slightly weaker than the usual notion, since we do not assume A is finitely
generated, and we allow the possibility that ExtR(R/I1, A) is identically zero, in
which case we take depthR(I1, A) = ∞.

Now let A be an arrangement of smooth, complex subvarieties in a smooth,
complex variety Y , and let G = π1(M(A)). From now on, we will assume Y is
compact. In view of Lemma 2.4, we will let CS,X denote the conjugacy class of
the subgroup αX,x(CS) < G, a free abelian group of rank |S|. We then extend the
previous definition to this context, as follows.

DEFINITION 2.6. Let A be a (left) k[G]-module. We say that A is an MCM
module provided that the restriction of A to each subalgebra k[CS,X ] is MCM,
for all flats X ∈ L(A) and all nested sets S ∈N (TAX ).

Before proceeding, we need to recall some well-known facts about Stein
manifolds; see e.g. [26, 27]. A complex manifold M is said to be a Stein manifold
if it can be realized as a closed, complex submanifold of some complex affine
space. Alternatively, holomorphic functions on M separate points, and M is
holomorphically convex. The Stein property is preserved under taking closed
submanifolds and finite direct products. Furthermore, every Stein manifold of
(complex) dimension n has the homotopy type of a CW-complex of dimension n.

We are now in a position to state and prove our main vanishing-of-cohomology
result.

THEOREM 2.7. Let A be an arrangement of hypersurfaces in a compact,
complex, smooth variety Y of dimension n. Suppose that M(AX ) is Stein for each
X ∈ L(A). Then, for any MCM module A on M(A), we have H p(M(A), A)= 0
for all p 6= n.

Proof. We use Theorem 2.1 and imitate the proof of [13, Theorem 6.3]. For each
X ∈ L(A), we recall that the restriction of the Hopf fibration C∗→ M(TAX )→

U (TAX ) identifies a central, cyclic subgroup in G X ; let γX ∈ Z(G X ) be a
generator. By the MCM hypothesis and the discussion from [13, Section 4.2],
the coinvariant module AγX is an MCM module over π1(U (TAX )) = G X/〈γX 〉,
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and
H i(M(TAX ), A) ∼= H i−1(U (TAX ), AγX ) (9)

for all i > 0. Furthermore, this latter group vanishes for i 6= r(X), by [13,
Theorem 5.6]. By hypothesis, though, M(AX ) is a Stein manifold of (complex)
dimension n− r(X). Thus, the factor of (4) indexed by X is zero for p+ r(X) <
n − r(X).

Combining these facts, we see that E pq
2 = 0, unless p + q > n; therefore,

H p+q(M, A) = 0, unless p+q > n. On the other hand, M = M(A) = M(A0̂) is
itself Stein, so H p+q(M, A) = 0 unless p + q 6 n. The conclusion follows.

REMARK 2.8. The Stein hypothesis in Theorem 2.7 is indispensable. Indeed, let
X = Cn , with n > 2, and let A = {0}. Then the complement U = CnK{0} is
not Stein, and also not an abelian duality space, since U ' S2n−1. Nevertheless,
complements of hypersurfaces in Stein manifolds are again Stein [15, Satz 1]. ♦

2.5. Vanishing of twisted cohomology. As an application of Theorem 2.7, we
can now prove the first theorem from the Introduction.

Proof of Theorem 1.1. Let G = π1(U ). From the definition, we need to show
that H p(U, A) = 0 for p 6= n, and H n(U, A) is torsion-free, for A = Z[G] and
A = Z[Gab

].
For this, we need to check that A is an MCM module. By our injectivity result

(Lemma 2.4), the restriction of A to Z[CS,X ] is a free module, for each local
free abelian group CS,X , and free modules are MCM. Applying Theorem 2.7
completes the proof.

Another application is the following vanishing result, which proves Theorem
1.2 from the Introduction. Recall that, for each stratum X ∈ L(A) one can choose
a building set GX : for each g ∈ GX there is a corresponding boundary divisor in
the wonderful model for TAX , as well as a generator for each free abelian group
CS for which g ∈ S. Let γg ∈ G denote the image of such a generator under the
homomorphism αX,S from Lemma 2.4.

COROLLARY 2.9. Let A be an arrangement of hypersurfaces satisfying the
hypotheses of Theorem 2.7. Suppose A is a finite-dimensional representation
of G = π1(M(A)) over a field k. If Aγg = 0 for all g ∈

⋃
X∈L(A) GX , then

H i(M(A), A) = 0 for all 0 6 i < n.

Proof. First we note that the hypothesis makes sense: γg ∈ G is only defined up to
conjugacy; however, the property that 1 is not an eigenvalue of the representating
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matrix for γg is invariant under conjugation. As noted in [13, Lemma 5.7],
the hypothesis implies that the k[G]-module A is MCM, and Theorem 2.7
applies.

REMARK 2.10. The vanishing of cohomology in Corollary 2.9 is generic, in
the following sense. For each g in some building set GX , the representations
A ∈ Hom(G,GLr (k)) for which Ag

= 0 form a Zariski open set. Since there
are finitely many such g, the representations Z ⊆ Hom(G,GLr (k)) that satisfy
the hypotheses of the corollary above form an open subvariety. If Z is nonempty
and the representation variety is irreducible, then Z is Zariski-dense. ♦

2.6. Vanishing of L2-cohomology. Finally, we show that the same hypotheses
also imply Theorem 1.3 from the Introduction. We refer to the survey of
Eckmann [17] and the book of Lück [34] for background on the subject. Related
vanishing results can be found in [9, 10] (but see the caveat from the Introduction),
as well as in the recent preprints [32, 33].

Once again, let A be an arrangement of hypersurfaces in a compact, complex,
smooth variety Y of dimension n, and let G = π1(M(A)).

THEOREM 2.11. Suppose that M(AX ) is Stein for each X ∈ L(A). Then the
reduced L2-cohomology groups Hred i(M(A), `2(G)) vanish for all i 6= n.

Proof. We follow the approach of [7], which we explain briefly here. Let N (G)
denote the group von Neumann algebra of G; that is, the algebra of (right) G-
invariant bounded endomorphisms of `2(G). We have an algebra homomorphism
C[G] → N (G) sending g ∈ G to left multiplication by g. Instead of working
as usual in the abelian category of C[G]-modules, we let T be the subcategory
of N (G)-modules of dimension zero, and E be the (Serre) quotient of N (G)-
modules by T . Then it is known that E is an abelian category and the quotient
construction is exact, so our spectral sequence computation of H.(M(A), `2(G))
may be carried out in E .

To show that the reduced L2-cohomology of the universal cover of M(A) is
concentrated in cohomology degree n, we compute in E . For this, suppose CS,X

is a free abelian subgroup generated by γ1, . . . , γr as in Definition 2.6, where
r = |S|. Let R = C[CS,X ]. In order to imitate the proof of Theorem 2.7, we will
show that

Hred i(CS,X , `2(G)) = 0 in E for all i . (10)

For this, let V = (γ1 − 1)`2(G), and we show that V = `2(G), where
denotes closure in the `2-topology. Noting that `2(G) is a Hilbert space with an
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orthonormal basis {g : g ∈ G}, we can do this by checking that V
⊥

= V⊥ = 0, as
follows. For any c ∈ `2(G), we may write

c =
∑

i∈Z,Zg∈Z\G

cg,iγ
i
1 g, (11)

for some coefficients cg,i ∈ C, choosing right coset representatives for Z ∼= 〈γ1〉.
If c ∈ V⊥, then

0 = 〈c, γ i
1 g − γ i−1

1 g〉 for all i ∈ Z, and Zg ∈ Z\G,
= cg,i − cg,i−1.

So, for each g, the coefficient cg,i is independent of i . Since by assumption∑
|cg,i |

2 <∞, it must be the case that cg,i = 0 for all i , which implies c = 0.
Similarly, we show that, for c ∈ `(G), if (γ1 − 1)c = 0, then c = 0. Writing c

as in (11), we see then γ1c = c if and only if cg,i = cg,i+1 for all i . Once again,
square summability implies each cg,i = 0.

Combining, we obtain a short exact sequence

0 // `2(G)
γ1−1 // `2(G) // `2(G)/V // 0, (12)

where `2(G)/V ∈ T . Applying H.(CS,X ,−) to (12) gives a long exact sequence,
which reduces to isomorphisms

0 // Hred i(CS,X , `2(G))
H(γ1−1) // Hred i(CS,X , `2(G)) // 0

in the quotient category E for each i .
On the other hand, γ1 − 1 is in the augmentation ideal of CS,X , so it acts by

zero on H i(CS,X , A) for any coefficient module A, hence also on its image in E .
It follows that Hred i(CS,X , `2(G)) = 0, for each i , as required.

3. Applications

3.1. Linear, toric, and elliptic arrangements. We need the following
consequence of a result due to De Concini and Gaiffi [11].

PROPOSITION 3.1. If A is a toric arrangement in T := (C∗)n , there exist
a compactification Y and an arrangement of subvarieties L in Y for which
U (A) = YK

⋃
K∈L K and, for each connected stratum X ∈ L(L), the relative

interior U (AX ) ⊆ X is a Stein manifold.
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Proof. De Concini and Gaiffi [11] construct a compact toric variety Y = Y∆ for
which U (A) = YK

⋃
K∈L K and L is an arrangement of subvarieties. Given a

stratum X ∈ L(L), we may write it as X = gK ∩ YC , where gK ∈ L(A) is a
coset of a torus in T, and YC is a closed torus orbit in Y , indexed by a (closed)
cone C in ∆, the rational fan of Y∆.

Let N = Hom(C∗,T) denote the lattice of 1-parameter subgroups, and let VK

denote the subspace of N ⊗Z R given by restriction to the subtorus K . By [11,
Theorem 3.1], the closure gK is again a toric variety, and X is an affine toric
subvariety corresponding to the chamber C in VK [11, Proposition 3.1]. Then

U (AX ) = X
∖ ( ⋃

F∈L :
F 6⊇gK

F ∪
⋃

C ′∈∆ :
C ′ 6⊆C

YC ′

)

= gK
∖ ⋃

F∈L :
F 6⊇gK

F, (13)

which is the complement of a toric arrangement in the torus gK . Since toric
arrangement complements are affine varieties, we conclude that U (AX ) is a Stein
manifold.

REMARK 3.2. The proof of Proposition 3.1 relies on a special recursive property
of the construction from [11]. In general, though, complements of hypersurfaces
in toric varieties need not be Stein (see, however, [40] for an interesting case in
which they are). ♦

REMARK 3.3. It should also be noted that Stein manifolds need not be abelian
duality spaces. Indeed, let X be the complement of a hypersurface in Cn with
k components, where k < n, n > 2, and bn(X) > 0. Then X is Stein and has
homological dimension n, but b1(X) = k, and so X cannot be an abelian duality
space of dimension n, by [14, Proposition 5.9].

As a concrete example, let X be the complement of the irreducible hypersurface
C3 defined by the Brieskorn polynomial f = x3

+y3
+z3. Then the Milnor fiber of

f is homotopic to a wedge of eight spheres, while the characteristic polynomial of
the algebraic monodromy is∆(t)= (t−1)2(t2

+t+1)3. The Wang exact sequence
of the Milnor fibration now shows that b1(X) = 1 and b2(X) = b3(X) = 2. ♦

We are now in a position to prove the second theorem from the Introduction.

Proof of Theorem 1.4. (1) If M(A) ⊆ Cn is the complement of an affine–linear
arrangement, by adding a hyperplane, it is also the complement of an arrangement
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in Pn , and this result appeared in [13, Theorem 5.6]. We note that central
arrangement complements are a special case.

(2) This result was also reported in [13, Corollary 6.4]; however, the proof
given there is incomplete. One reduces to the essential case and notes that the
restrictionsAX are again essential, hence Stein, by [13, Proposition 6.1]. To verify
that Z[G] and Z[Gab

] are MCM, one needs to know that the maps αX,S : CX,S →

G are injective, the proof of which was omitted, but is now covered by Lemma 2.4.
(3) By Proposition 3.1, the toric arrangement complement admits a

compactification, which satisfies the conditions of Theorem 1.1. The claim
follows.

3.2. (Orbit) configuration spaces of Riemann surfaces. Let Γ be a discrete
group that acts freely and properly discontinuously on a space X . The orbit
configuration space FΓ (X, n) is, by definition, the subspace of the cartesian
product X×n consisting of n-tuples (x1, . . . , xn) for which the Γ -orbits of xi and
x j are disjoint for all 1 6 i 6= j 6 n. If |Γ | = 1, then FΓ (X, n) = F(X, n),
the classical (ordered) configuration space. Orbit configuration spaces were first
investigated in the thesis of Xicoténcatl [39], and further studied, for instance,
in [5, 6].

In the case when X = M is a smooth manifold of dimension d , and Γ

acts by diffeomorphisms, the orbit configuration space FΓ (M, n) is a smooth
manifold of dimension dn. Perhaps the most studied case (and the one we are
mainly interested here) is when M = Σg,k is a Riemann surface of genus g
with k > 0 punctures, and Γ is finite. Note that, if k = 0, the complement in
Σ×n

g of FΓ (Σg, n) is the union of an arrangement of smooth, complex algebraic
hypersurfaces.

Xicoténcatl showed that the classical Fadell and Neuwirth [20] fibration applies
in the more general case of orbit configuration spaces:

FΓ (Σg,k+|Γ |, n − 1) // FΓ (Σg,k, n) // Σg,k . (14)

Consider the ‘tautological’ compactification of the orbit configuration space
U = FΓ (Σg,k, n), namely Y = Σ×n

g . The components of the boundary divisor,
D = YKU , form an arrangement of hypersurfaces,

Bn := {H
γ

i j | γ ∈ Γ, 1 6 i 6= j 6 n} ∪ {Ki,l | 1 6 i 6 n, 1 6 l 6 k}, (15)

where H γ

i j is given by the equation xi = γ · x j and Ki,l by xi = pl , where p1, . . . ,

pk ∈ Σg are the punctures of Σg,k .
The intersection poset L(Bn) can be described in terms of labeled partitions via

a slight generalization of the Dowling lattice. To describe it, we write Π � [n] to
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denote a set partition Π of [n]. We regard Π as a category whose objects are the
set [n], and for which there is a (unique) morphism i → j if and only if i ∼ j
in Π . The action of Γ on Σg,k extends continuously to an action on Σg. We let
C := C(Γ,Σg) denote the category whose objects are {Σg,k, {p1}, . . . , {pk}}, a Γ -
equivariant partition of Σg. For a pair of objects S, T , by definition [γ ] : S → T
is a morphism whenever [γ ] ∈ Γ/ stab(S) and γ (S) ⊆ T . Composition is induced
by the group operation.

Given a point x ∈ Y = Σ×n
g , let Πx be the partition determined by x for which

i ∼ j if and only if (Γ · xi) ∩ (Γ · x j) is nonempty. Then xi = γi j x j for some
γi j ∈ Γ . For a point x ∈ Σg, we let [x] be the object of C containing x . Define a
functor fx : Πx → C by f (i) = [xi ], for each i ∈ [n], and let fx( j → i) = [γi j ],
for all i ∼ j . It is easy to check that fx is well defined, and has the following
property.

LEMMA 3.4. For all i, j ∈ [n], a point x ∈ Y is on the hypersurface H γ

i j if and
only if fx( j → i) = [γi j ]. A point x ∈ Y is on the hypersurface Ki,l if and only if
fx(i) = {pl}.

Now we can describe the stratification of Y . Let

Pn = {(Π, f ) : Π � [n], f ∈ Funct(Π,C)}. (16)

Consider the function Φ : Y → Pn given by Φ(x) = (Πx , fx). Let XΠ, f =

Φ−1(Π, f ) for each pair (Π, f ) ∈ Pn .

PROPOSITION 3.5. For any pair (Π, f ) ∈ im(Φ), the space XΠ, f coincides with
M(BX

n ), where

X = XΠ, f

=

⋂
i, j,γ :

f ( j→i)=[γi j ]

H γ

i j ∩
⋂
i,l :

f (i)={pl }

Ki,l . (17)

Proof. By Lemma 3.4, a point x belongs to XΠ, f if and only if it is in the
intersection (17), and x is not contained in any other hypersurface. But this is
exactly the space M(BX

n ).

PROPOSITION 3.6. If k > 0, then for each X ∈ L(Bn), the complement M(BX
n )

is a Stein manifold.

Proof. First we check the case X = Y , where BX
n = Bn . Here, M(Bn) is a

hypersurface complement in Σ×n
g,k . As mentioned previously, the product of open
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Riemann surfaces is Stein, and a hypersurface complement in a Stein manifold is
again Stein; thus, the base case is proved.

In general, for a stratum XΠ, f defined above, it is easy to see from
Proposition 3.5 that the arrangement BX

n is again an orbit configuration space,
FΓ (Σg,k,m), where m is the number of diagonal blocks of Π . This reduces the
claim to the case X = Y treated above.

Now we may characterize the duality properties of orbit configuration spaces
of points in Riemann surfaces.

Proof of Theorem 1.5. For g > 0 and k > 0, we see that FΓ (Σg,k, n) is both a
duality space and an abelian duality space of dimension n: by Proposition 3.6, the
configuration space satisfies the hypotheses of Theorem 1.1.

For k = 0, we note that Σg is a (Poincaré) duality space of dimension 2.
Noting also that FΓ (Σg,1, 1) = Σg,1, we see that FΓ (Σg, n) is a duality space
of dimension n + 1 for all n > 1 by induction, using the fibration sequence (14)
and a classical result of Bieri and Eckmann [3, Theorem 3.5].

If k = 0 and g = 1, the configuration space FΓ (Σg, n) is an elliptic arrangement
complement, hence an abelian duality space by Theorem 1.4. However, if k = 0
and g > 2, it need not be an abelian duality space. The (easy) case n = 1 appears
as [14, Example 5.8]: Σg,k is an abelian duality space if and only if k > 1. For
n > 2, we restrict our attention to the case where Γ is trivial (and k = 0).

Again from the fibration sequence (14) and by induction on n we see that
F(Σg, n) is a CW-complex of dimension at most n + 1. Furthermore, it is known
that b3(F(Σg, 2)) = 2g (see e.g. [1, Corollary 12]) and that bn+1(F(Σg, n)) 6= 0,
for all n > 3 (see [35, Proposition 1.4]). Thus, if F(Σg, n) were to be an abelian
duality space, it would have to be of (formal) dimension n + 1. On the other
hand, by [25], the generating series for the Euler characteristics of the unordered
configuration spaces of Σg is given by

1+
∑
n>1

χ(C(Σg, n))tn
= (1+ t)2−2g. (18)

Therefore, (−1)nχ(C(Σg, n)) > 0, and hence (−1)nχ(F(Σg, n)) > 0, also. In
view of (2), we conclude that F(Σg, n) is not an abelian duality space.

Last, we consider the genus g = 0 case. If k > 0, then FΓ (Σ0,k, n) is an affine–
linear hyperplane arrangement complement of corank 0. By Theorem 1.4 again,
it is both a duality space and an abelian duality space of dimension n.

It remains to show that if g = 0 and k = 0, then F(Σ0, n) is neither a duality
nor an abelian duality space. For n 6 2, this is clear, since then F(Σ0, n) ' S2

from (14). For n > 3, we have (see, e.g., [23])

F(Σ0, n) ∼= PGL2(C)× F(Σ0,2, n − 2), (19)
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where F(Σ0,2, n − 2) is the complement of an affine–linear hyperplane
arrangement in Cn−2

⊆ Pn−2. This is both a duality space and an abelian
duality space but PGL2(C) ' SO(3) is neither, from which the conclusion
follows.
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