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Abstract

An TV-map Iterated Fuzzy Set System (IFZS), introduced in [4] and to be denoted as (w, <I>),
is a system of N contraction maps w,; : X —*• X over a compact metric space (X, d), with
associated "grey level" maps </>, : [0,1] -> [0, 1]. Associated with an IFZS (w, <1>) is a
fixed point u e &*(X), the class of normalized fuzzy sets on X, u : X -> [0, 1]. We
are concerned with the continuity properties of u with respect to changes in the ID, and
the <pj. Establishing continuity for the fixed points of IFZS is more complicated than
for traditional Iterated Function Systems (IFS) with probabilities since a composition of
functions is involved. Continuity at each specific attractor u may be established over a
suitably restricted domain of 0, maps. Two applications are (i) animation of images and
(ii) the inverse problem of fractal construction.

1. Introduction

We consider a special class of dynamical systems over function spaces which has been
introduced in [4] and referred to as Iterated Fuzzy Set Systems (IFZS). An IFZS, to
be denoted as (w, <t>), is a system w of N contraction mappings w,(*) '• X ^ X
over a compact metric space (X, d) (the "base space"), with an associated system <J>
of mappings (/>, : [0, 1] —> [0, 1] (the "grey level maps"). The IFZS incorporates, at
least in part, the idea of set-valued contraction mappings over a compact metric space,
developed by Hutchinson [9] and Barnsley and coworkers [l]-[3], the latter referring
to such systems as Iterated Function Systems (IFS). There is, however, a fundamental
difference between the IFS and the IFZS. The IFS works with measures and a set of
probabilities p, associated with the to, which act as multiplicative weights. The IFZS
works with functions u : X -> [0, 1] and functions </>, : [0, 1] -> [0, 1] which are
composed with the u. From the viewpoint of image processing or pattern recognition,

' Department of Applied Mathematics, University of Waterloo, Waterloo, Canada N2L 3G1.
2Metodi e Mod. Mat. Sc. Appl., Universita' di Roma "La Sapienza", 00161 Rome, Italy.
© Australian Mathematical Society, 1994, Serial-fee code 0334-2700/94

175https://doi.org/10.1017/S0334270000010341 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010341


176 B. Forte, M. Lo Schiavo and E. R. Vrscay [2]

the value u(x) may be interpreted as a nonnegative grey level or brightness value at
the point (or pixel) x 6 X. The IFS component of the IFZS, a set-valued mapping w
which acts on nonempty compact subsets of X, will operate on the level sets of u. As
such, it is natural to consider u 6 &(X), the class of fuzzy sets on X; compactness
of the level sets requires that the u be restricted to the subspace J?*(X) c &(X)
of (normalized) upper semicontinuous fuzzy sets with the d^ metric [7] involving
Hausdorff distances between their level sets. (In the literature, c?*(X) continues to
be referred to as the class of fuzzy sets on X because of its historical probabilistic
interpretations.) Associated with each IFZS (w, 3>) is a contractive operator T which
possesses a unique fixed point M, the attractor of the IFZS. The support of u is a
subset of the attractor A c X of the IFS defined by w. The relevance of the IFZS
approach to image processing has been discussed in [4]. In addition, our preliminary
studies indicate that the IFZS affords a considerable simplification in the treatment of
the inverse problem of fractal or image construction [l]-[5], [10], [11].

From the viewpoint of image representation, an important advantage of an IFS-
type method over function spaces (in this paper, &*{X) with the doo-metric) is that
it permits a more direct control of grey level or brightness values at individual points
x & X. This has been realized in more recent "fractal compression schemes" [2], [10].
In another paper, a complete connection between the IFZS method and these schemes
will be provided [8].

In this paper, we are concerned specifically with the continuity properties of in-
variant sets u for //-map IFZS, particularly with respect to changes in the contraction
maps Wi and the grey level maps <£,. Barnsley [1] has shown that the attractor of
a contractive IFS varies continuously with respect to parameters in the IFS maps.
An obvious application is "animation", where IFS attractors representing images are
deformed in an apparently continuous manner in time. As well, continuity results
are clearly important for the inverse problem, where local "fine tuning" of the IFS
maps and probabilities is performed to optimize the approximation of sets or meas-
ures with IFS attractors or invariant measures. In [6], the (uniform) continuity of
IFS attractors and invariant measures with respect to arbitrary variations in the IFS
maps and/or associated probabilities was derived, a generalization of the results in [1].
The continuity followed naturally from the rather simple structure of IFS: the metrics
employed for the map vectors w and the probability vectors p are easily and directly
related to (i) the Hausdorff metric h on J^(X), the set of nonempty compact subsets
of X and (ii) the Hutchinson metric dH on ^Sf(X), the set of probability measures on
38{X), the a-algebra of Borel subsets of X.

Establishing continuity of IFZS attractors with respect to IFS or grey level maps
is more complicated, primarily because a composition of the (j> and u functions is
involved. From the Banach fixed point theorem, it easily follows that the attractor u
is continuous with respect to the IFZS operator T. However, the T operator is not
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continuous with respect to the grey level maps 0,. Thus it is not possible to use the
T operator (unlike the IFS case) to prove that u is continuous with respect to the </>,
maps. A main result of this paper is that we may bypass the use of the T operator
and establish a "local" continuity of u with respect to the </>, and u>, maps. Uniform
continuity is sacrificed, but this is not a great price, since a continuous variation in u
can still be produced by means of a controlled variation of the 0,.

The layout of this paper is as follows. In Section 2, some basic properties of IFZS
are presented in terms of the IFS and grey-level map components. In Section 3 we
derive a basic continuity property of fixed points of contractive maps. We then review
the "well-behaved" continuity properties of IFS attractors and invariant measures.
The rather trivial continuity property of an IFZS fixed point with respect to the IFS
maps Wi is then shown. Finally, we show that the contractive T operator of an IFZS
is discontinuous with respect to the grey level maps 0,. In Section 4, we define an
appropriate "local" distance function for the 0, maps and derive the continuity of u
with respect to a restricted set of $,. Section 5 is devoted to a further discussion
of these results and suggestions for future research. Appendix A contains a brief
discussion of invariant measures for IFS to help the general reader understand the IFS
continuity results outlined in Section 3.

2. Preliminaries: Iterated Fuzzy Set Systems

In this section we introduce all the relevant notation and outline the salient features
of IFZS. The reader is referred to [4] for details. An N-map IFZS, denoted as (w, O),
has an IFS component, w, on a base space (X, d) and a grey-level component, O, on
[0, 1], as outlined below.
A. The IFS component: As above, (X, d) will denote a compact metric space. Let w
denote a set of N contraction maps on X, that is, w = (iu,, w2, • • •, wN), w, : X -» X
such that for all x, y e X,

d(u;f(jc),u;1-O0)<5I-d(jel;y)> 0 < 5 , < l , i = \,2,...,N. (2.1)

We shall refer to s, as the contractivity factor of the map w,•: the contractivity factor
of the IFS w is defined as s = maX|<,<yv st.

Let Jif(X) denote the set of nonempty compact subsets of X. The Hausdorff
distance between two sets A, B e Ji?(X) is given by

,B), D(B, A)}, (2.2)

where
D(A,B) = supinf d(x,y).

xzA yeB
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(Ji?(X), h) is a complete metric space.
Given an EFS w, define the set-valued mapping w : J f (X) -» Jf?(X) as follows:

w(5) = U io,-(5), S€J4?(X), (2.3)

where w,(5) = {wt(x), x e 5}. As is well known [1, 9], there exists a unique set
A 6 Ji?(X), the attractor of the IFS, which is invariant with respect to w, that is,

A =v/(A)= U Wj(A). (2.4)

This result follows from the fact that w is a contraction mapping on (JF(X), h): for
A, B 6 Jif{X),

h{y/{A),y/{B))<sh{A,B). (2.5)

As well, from the contraction mapping principle,

h(y/"(S), A) -+ 0 as n -> oo, VS e J^(X). (2.6)

SIMPLE EXAMPLES. Let X = [0, 1] and N = 2, with wi(;c) = sx, w2(x) = sx + (1 —
5). (i) For s > 1/2, .4 = [0, 1]. (ii) For s = 0, A = (0, 1}. (iii) For 0 < s < 1/2, A
is a Cantor-like set on [0, 1]. When s = 1/3, A is the ternary Cantor set on [0, 1].

B. The grey level component: Let &{X) denote the class of functions u : X —>
[0, 1]. We consider the following subclass of functions [4], &*(X) C <?(X) : u e
J^*(X)ifandonlyif

(i) ue^(X),
(ii) u is upper semicontinuous on (X, d),

(iii) u is normalized, i.e., u(x0) = 1 for some x0 e X.

Now define the a-level set, [«]", of u e &*(X) as follows:
[u]a = {x 6 X : «(x) > a], forO < a < 1,

[M]° = {x e X : «(x) > 0} (the bar denotes closure).
From properties (ii) and (iii) above, the metric space (Jf?(X), h) contains all a-level
sets, 0 < a < 1, of all u e &*(X). We consider the following metric on

d^iu, v) = sup [h([uf, [vf)\, V«, v 6 &*
0<o<l

The metric space (&*(X), d^) is complete [7].
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L e t ^ + ( [ 0 , 1]) denote the set of all functions 4> : [0, 1] -)• [0, 1] with the following
properties:

(i) <p is nondecreasing on [0,1],
(ii) (p is right continuous on [0, 1),

(iii) 0(0) = 0 ,
(iv) <p (t*) > 0 for at least one C e ( 0 , l ] .

Now given an IFS w, let <1> = (fa, <p2,.... <pN) denote a set of associated grey level
maps which satisfy the following conditions:

(a) </>,e^ + ( [0 , l ] ) for /e{l ,2 , . . . ,AM,
(b) 0,-.(l) = 1 for at least one i* e {1, 2, ..., N}.

f'W))}

RGURE 1. Graphs of u,(x) = (.Tuo)(x) and u2(x) = (Tui)(x), where w0W = 4^(1 - x) and T is
the contractive operator for the following three-map IFZS on X = [0, 1]:

4>,(t) = t,

= 0.5f,
= O.75f2.

= OAx,
w2(x) = 0.5X+0.2,
w3(x) = OAt+0.6,
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The pair of vectors (w, <J>) constitutes an N-map IFZS. Properties (i), (ii) and (b)
will guarantee that the contractive operator T, to be defined below, will map &*(X)
into itself. Property (iii) is a natural assumption in the consideration of grey level
functions: if the grey level of a point (or pixel) x e X is zero, then it should remain
zero after being acted upon by the 0, maps. Property (iv) will be explained below.

We now introduce the following operator3 T : #*(X) -+

(ri i)(*)= sup [4>,(K(U,-'(*)))}, (2.7)
l<i<N

where, for B c X,

u(B):=swp{u(y)}, if B / 0,

M(0) :=0.

The action of the operator T for a simple IFZS on [0, 1] is illustrated in Figure 1.
In [4] it was proved that T is a contraction mapping on the space (^*(X), d^):

u Tu2) < sd^uu u2) VM,,M2 e 3?\X). (2.8)

Thus, there exists a unique function u e c?*(X), the attmctor of the EFZS, such that

Tu = u. (2.9)

This, in turn, implies that u is the unique solution to the following functional equation
in the unknown v e

v(x) = sup {^(COVOO)), fc(v(.w?(x))),..., <t>N(v(w^(x)))}, VxeX.
(2.10)

The attractor u for the IFZS of Figure 1 is sketched in Figure 2.
Let S'n denote the set of all contractive operators T corresponding to N-map IFZS

on(X,d). A noteworthy property of these operators is the following: fort; 6 &

[Tv]a = U WidfrovY), 0 < a < l . (2.11)

Thus, when v = u = Tu,

[u]a = U w, ([</>, o uf), 0 < a < 1, (2.12)
i=i

which is a generalized self-tiling property of a-level sets for IFZS attractors.
3Note: In [4], this operator was denoted Ts in order to emphasize the fact that the supremum function was
chosen as the associative operator on &* (X). For notational convenience, we have dropped the subscript
s in this paper.
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FIGURE 2. Histogram approximation of the attractor u = Tu for the IFZS (w, 0) of Figure 1. Note
thatu(O) = 1.

3. Continuity of fixed points and problems with the dCon(&\x)) metric

Let (Y, dy) be a complete metric space and denote by

Con{Y) = {/ : Y -> Y \ 3sf e [0, 1) : dY(f(x), f(y)) < sfdY{x, y),

Vx,yeY}, (3.1)

a set of contraction mappings on (Y, dY). Now consider the following natural metric
on this function space:

, g) = supdY(f(y), g(y)),
yeY

ConiY). (3.2)

Note that the metric space (Con(Y), dCon(Y)) itself may not be complete. Now let yf

and yg be the unique fixed points of the maps / and g, respectively, that is, /Oy) = )>/

PROPOSITION 3.1. The following inequality holds:

1 .
Sf

, g), (3.3)

where Sf is the contractivity factor of f.

PROOF.

dY(yf, yg) = dY(f(yf), g(yg))

< dY(f(yf), f(yg)) + dY(f(yg), g(yg))

< Sfd(yf, yg) + dconm(f, g),
which then yields (3.3).
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Inequality (3.3) implies continuity for the fixed point yf with respect to / , uniformly
on the set of contractive maps in (Con(Y), dCon(Y)) with contractivity factors 0 < sf <
s < 1. Such continuity would be useless when the topology induced on Con(Y) by
dconiY) is such that every element / 6 Con{Y) is isolated, that is, there exists an e > 0
such that Nt(f)\[f] = 0, where Nf(f) = {g e Con(Y) : < W > ( / , g) < e) denotes
the e-neighbourhood of / . This is, in fact, the situation for IFZS attractors as we show
below. However, in order that the reader may well appreciate the difficulties posed
by the IFZS problem, we first review the basic "well-behaved" continuity results for
"traditional" IFS attractors and measures.

3.1. Continuity results for "traditional" IFS attractors and invariant measures
The basic features of IFS with probabilities (IFSP) and their invariant measures are
given in Appendix A. In the following discussion, it will be convenient to consider
sequences of contractive IFSP, (wk, pk), k = 1,2, . . . , where

Wk = ( w k i , w k 2 , . . . , w k N ) , pk = ( p n , p k 2 , . . . , p k N ) . (3.4)

Let skj denote the contractivity factors of the wkj\ the contractivity factor of the IFS
w* is then sk = max\<jsN skj. We then define the following natural metrics for the
map and probability vectors, respectively,

d"(y/i, w2) = max sup d(wu(x), w2i(x)). (3.5)

< ( P . . P2) = m a x \Pu ~ Pul (3-6)

Using these metrics, the following continuity results were derived in [6].

PROPOSITION 3.2. Let y/\ be an N-map contractive IFS with contractivity factor S\
and attractor A\. Then for any e > 0 there exists a S > 0 such that for all N-map IFS
w2 satisfying d^(y/\, w2) < S, itfollows that h(At, A2) < €, where A2 is the attractor
ofw2.

PROPOSITION 3.3. Let (Wi, p,) be an N-map contractive IFS with probabilities, with
contractivity factor S\ and invariant measure /xj. Then for every e > 0, there exist
Si, S2 > 0 such that for all N-map IFSP (w2, p2) satisfying

itfollows that dH (/u-i, /x2) < e, where fi2 is the invariant measure of the IFSP (w2, p2).

Proposition 3.2, which follows immediately from Proposition 3.1 with S = e(l -
Si), is a generalization of Barnsley's result [1, Sect. 3.11] showing continuity of
the attractor A with respect to a parameter in the IFS maps. As for the proof of
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Proposition 3.3, let Y = Jf{X) (see Appendix A) and let Con(Y) be the space
of Markov operators corresponding to all contractive N-map IFS with probabilities.
Then define the following metric on this space:

dN
M{MuM2) = sup dH(Mni, M2fi). (3.7)

After suitably defining the <S,, the result then follows from Proposition 3.1.

3.2. Continuity results for IFZS attractors Now let (Y, dY) = (&*(X), dx) and
Con(^*(X)) = &N, the space of contractive N-map IFZS operators on (&*(X), 4*,).
It will be convenient to index the IFZS operators as Tk e J?N, k = 1, 2, 3 , . . . i with
action defined by

(7iii)(jt) = sup {<pki(u(w-\x)))}, u e &*{X), (3.8)
l / V

where the corresponding IFZS has been denoted as (v/k,

Wk = (wkl,Wk2,...,WkN), <&k = (.<Pkl,<t>k2,---,(pkN)- (3.9)

Also let uk denote the fuzzy set attractor of (w*, <t>k), that is, Tkuk = uk. Note that if
Tku = T/u for all u € &*{X), then we consider Tk to be equal to Th For example, the
action of Tk is unchanged when the wki and associated <pki maps are permuted.

In analogy to the IFS case, cf. (3.7), it appears natural to choose the following
distance function on Con{&*{X)) (see also [7]),

T,) = sup d^TkU, T,u), (3.10)

which defines a metric on S?N. (If dCon(.&'(x))(T\, T2) = 0, then ^ ( M I , U2) = 0.)
Continuity of the fixed points uk with respect to the Tk operators follows immediate
from Proposition 3.1. However, this property contains no information: as in the IFS
case, it would be desirable to formulate continuity of the uk in terms of the IFZS
components v/k and <$>k. The following result shows that continuity with respect to
the IFS maps wki is trivial.

PROPOSITION 3.4. Let (wi, <J>i) be an IFZS with contractivity factor S\, associated
operator T\ e S?' N and attractor ux e &*(X). Then for every e > 0, there exists a
S > 0 such that for any IFZS (w2, <I>i) satisfying d^(vfu w2) < 8, it follows that

u2) < e,

where u2 € &*(X) is the attractor of the IFZS (w2,
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PROOF. Given an e > 0, let w2 be such that

<C(w,,w2)<e(l-Sl).

Let T2 6 £fN be the operator associated with the IFZS (w2, <J>i). Then

dCon&'(x)){T\,T2) = sup d0O{Jxu,T2u)
U€&'(.X)

= sup sup h{[TxuT, [T2u]a)

ue&'(X)0<a<\

= SUp SUp h I U lUii([0i;OK]0), U W2j([<P\jOU]a) )

Ue&'<.x)o<a<\ ym" 'SJS/V /
< sup sup max h(wu([<puouf), w2,([<puouf))

ue&'(X)0<a<\ '5'<W

<<C<w,,w2)
< 6 ( l - 5 , ) .

Note that we have used the following property of the Hausdorff metric:
h( U Ai, U Bj) < max h(Ah Bt). (3.11)

\\<i<N \<j<N V ~~ 1<I<W

From Proposition 3.1, the desired result then follows.

In other words, with the grey-level maps fixed, the Tk operators are continuous
with respect to the IFS maps wki in the dCon(&\x)) metric and continuity of the
attractors is implied through Proposition 3.1. However, we now show that the Tk

are not necessarily continuous with respect to the grey level maps <pki. We focus on
particularly important subsets of Con(^*(X)), namely, those sections of &'N obtained
by fixing the IFS maps wk and varying the grey level maps </>*, one at a time.

DEFINITION 3.1. Let (w, <P) be an IFZS with corresponding operator T e S7N. For
i* e {1, 2, . . . , N] define Ej.(T) c S^N, the "fa-axis" of & N at T, to be the section
of&s obtained by fixing the IFS maps witi € {1,2,..., N], and the grey-level maps
fr, i e {1, 2, . . . , N}\{i*}, ofT and varying fa e ^ + ( [ 0 , 1]).

THEOREM 3.1. Let Tx e 07N, with corresponding IFZS (w, <t>0, where the IFS maps
satisfy the following condition: for some i* e [1,2,..., N],

j . = supxeu).,(X) infyew..(X)\ uiwi.mnwjmydix, y) > 0. (3.12)

(In other words, Wj.(X) differs from U Wi(X) by at least one point.) Also let T2 €

Ei'(Ti), with corresponding IFZS (w, $>2) such that <f>u. ^ <fe,. and (pi j = (f>2j, j # '*•
Then

(3.13)

https://doi.org/10.1017/S0334270000010341 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010341


[11] Continuity properties of attractors for iterated fuzzy set systems 185

independently of the <f>ki maps.

PROOF. Without loss of generality, let i* = 1. Using the notation of [3], define

/J,(er)sinf{f e [0, 1] : 0,,, > or}, ft (a) = inf {t € [0, 1] : &,, > a). (3.14)

Assume, again without loss of generality, that <t>\,\(t*) < 02,i(?*) for a certain t* e
(0, 1]. Since the functions <pti are nondecreasing and right continuous, there exists an
a* G [0, 1] such that #>(<**) < £i(«*); in fact, any a* € (0n(/*), 02i('*)) will work
since #>(a*) < f* <^,(a*).

Let J:0 e X be fixed so that >>0 = if i (x0) satisfies

uw(W,(X)n^(X)) J ) = dx, (3.15)

and let «0 £ «^"*(X) be defined as

where y32(a*) < /3 < >9,(«*). It follows that

° = {*o},
^ ^ A : , (3.17)

[01( o IIQ]"* = [02/ o Mo]"*, « = 2, 3 , . . . , N.

Then

dcon(&'(X))(.Tu T2)

= sup doo(T\u, T2u)

, T2u0)

= sup Aar.iio]", [r2«0]e)
0<a<l

= A( U u>,([0i,oMor'), U

U ( U u ; , ( [ 0

U l )'>")£'(j:. )0

and the theorem is proved.
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This theorem shows that, in general, the T operator is not continuous with respect
to the grey level maps 0,. (The condition in (3.12) is not too restrictive. In fact, it
omits only the rather special cases where each set Wj(X) is contained in the union of
all the other Wj(X).) Unlike Proposition 3.4, however, we cannot guarantee, using
the dCon(&'(x)) metric, that the d^, distance between two attractors ux and u2 will be
arbitrarily small by making the differences between the associated grey level vectors
<t>! and O2 sufficiently small.

As a final comment in this section, note that the lack of continuity does not contradict
the property that the set of IFZS attractors is dense in the space (^*(X), d<») [5]. In
this paper we are concerned only with IFZS having a fixed number, N, of IFS and
grey level maps.

4. Continuity of u with respect to w and <t>

In the previous section, the inequality in (3.3) shows that when dCon(Y) is the
"natural" metric in (3.10), then continuity of IFZS attractors u on the space Y =
&*{X) is uniform on the set of all contraction maps in (Con(Y), dCon(Y))- However,
this uniform continuity is too restrictive: Theorem 3.1 shows that given an e > 0
sufficiently small, the condition rfc<m(#-(X))(7'i. T2) < e implies that 4x>("i. U2) — 0.
In this section, we show that a more practical continuity at each specific attractor
u e &*{X) can be established, permitting a continuous variation of u as both the w
and the 4> components are perturbed. However, the perturbation of the 4> must be
performed in a controlled manner: along the 0,-axes of 3'N at the Tk (Definition 3.1)
together with restrictions as given in Theorem 4.2 below. Distance functions for the
IFZS components will be defined as follows:

(a) For the IFS map vectors, we use the metric d" (wi, w2) defined in (3.5).
(b) For the grey level maps, first define the following distance function between two

maps </>, 0 <E ^ + ( [ 0 , 1]) with respect to an element u €

; u) = sup h ([<t> o u]a, [0 o u]a), (4.1)
0<cr<l

and the corresponding pseudometric for two grey level map vectors with respect
to u e &*(X),

^ ( < D , , <D2; u) = m a x ^(</>,, , </>2,; u ) . (4 .2 )

THEOREM 4.1. Let (wk, <t>k), k = 1,2 be two IFZS with corresponding contractive
operators Tk e S^N and attractors uk, i.e., Tkuk = uk, k = 1, 2. Furthermore assume
that 0i , ( l ) = 02/(1), i = 1,2, ... ,N. Let St be the contractivity factor of\V\. Then

u u2) < - ^ — < ( O , , d>2; u{) + —!— <C(w,, w2). (4.3)
1 — S\ 1 — S\
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PROOF. Let T3 e 3?N be the contractive operator corresponding to the "mixed" IFZS
(w,,4>2). Then

i, u2) = dooiTfUf, T2u2)

< doo(Tlu1, T3Ui) + {T3ux, T2u2)

- d^(j3ux, T3U2) + rfoo(r3M2, r2«2)

-Sidooiuy, u2) +dx>(T3u2, T2u2). (4.4)

Hence
(1 — Si)doo(ui, u2) < dx{T\U\, T3U\) + dx(T3u2, T2u2). (4.5)

We now examine the two distances on the right side of (4.5). Since

N N
U U>i,([01. OMif), U U>i/([02/ O«i]°'

i = l j=\

< max h(wu([(pu o «i]a), wu([<p2i o Mi]"))
l</<Af

< st max /i ([<(>u o « , f , [ f c o u , n , (4.6)

it follows that
doo(T\Ui, T3u{) < 5id^(<l>i, 4>2; «i). (4.7)

(Note that the assumption </>i, (1) = 02/(1).» = 1, 2 , . . . , N is necessary to guarantee
that the level sets [0i, o«, ]" and [02, OH I ]" in (4.6) exist for the same range of a-values.)
Moreover,

N N

U Wu([<fai °u2]
a), U w

f=i j=\

< max h (wu{[<t>2i o u2f), u)2,([02, ° "2]"))

< ^ ( w , , w 2 ) . (4.8)

Thus, (4.5), (4.7) and (4.8) imply that

(1 — S\)d0O(u\, u2) < Sid^i&i, <J>2; Mi) + d"(\vu w 2 ) (4.9)

and the desired result follows.

The following lemmas will be useful for the proof of Theorem 4.2, the major result
of this section.

LEMMA 4.1. Given At, Bh C, G Jif(X), i = 1,2, such that

^c f l ^d , A2cfl2cc2, (4.10)

then
h(Bu B2) < max{h(A2, C,), h(Au C2)}. (4.11)
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PROOF.
D(BltB2) = sup inf d(x, y)

jrefli yeB2

< sup inf d(x, y)
xeC, yeA2

= D(CUA2)

<h(CuA2).

Similarly, D(B2, Bx) < D{C2, Ax) < h(C2, Ai). The result in (4.12) then follows.

LEMMA 4.2. Ifu e &*(X), then

(i) [uf is closed for all a € [0, 1],
(ii) IfPifi'.then

[uf -> n [uf = [uf (4.12)

in Hausdorffmetric.

Property (i) follows from the upper semicontinuity of u e «^*(X). Property (ii)
was proved in [4].

The following lemma establishes the existence of </> maps in a restricted neigh-
bourhood of a given 0 € ^ + ( [0 ,1 ] ) in terms of the distance function d,p((p,4>; u)
introduced in (4.2) and denned with respect to a given u € J?*(X). These </> maps
are obtained by suitably perturbing 4>, which is nonconstant on [0, 1]. (Recall the
definition of ^ + ( [ 0 , 1]).)

LEMMA 4.3. Let u e ^*(X) and<p e M ([0, 1]). Assume that for some a* > 0 and
some t* e (0, 1), <j>(t*) = a*. Let

P* := J3(a*) = inf {t e [0, 1] : 4>(t) > a*}.

Thenfor every € > 0, there exists an r]* ,0 < rf < fi*, such thatfor all <p € ^ + ( [ 0 , 1])
satisfying the following properties:

(a) <f>(t) = 4>(t)for0<t < P* -r)*andj3* < t < 1,

we have
d+(4>,<p;u) <€. (4.13)

PROOF. Since <p is right continuous and </>(0) = 0, it follows that P* > 0. Property (ii)
of Lemma 4.2 implies that for every e > 0 there exists an rf > 0, p~* — rf > 0 such
that

h([u]p, [uf) < e,
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Now let 0 e ^#+([0, 1])\{0} be a function that satisfies (a) and (b) above. If
0 < ax < a < a2 < 1, then for any 0 , 0 6 ^ + ( [ 0 , 1]), with

/3(a) = inf{r € [0,1] : 0(0 > a)

and
/}(«) =inf{r e [0,1] : 0(0 > a],

we have the following relations:

[0 o « r c [0 o M]° C [0 o II]°' , i.e., [u]'iai) c [«]««> c [u]^(ai),

[0 o «f2 c [0 o u]a c [0 o «]»•, i.e., [uf^ c [M]̂ a> c [

If, in particular,
a2=a\ ai = (f>0* - r,*),

and 0 satisfies the conditions (a)-(c) above, then

Ai s [ 0 o « f 2 = [ 0 o M p = A2,

C, = [0 o u]a< c [0 o ii]°' = C2.

Letting B] = [0 o «]" and B2 = [0 o M]", we have, from Lemma 4.1 and the fact that
C, c C2,

A ([0 o Mf, [0 o M]«) <A([0o « P , [0 o M]"') = h([uf\ [uf-"*) < e. (4.14)

On the other hand, by construction, /z([0 o u]a, [0 o u]a) = 0 for a e [0,0(^* -
r]*)) U(0(/J*), 1]. (Note that 4>0* - ??*) < 0(/3*), from the definition of /3* and the
right continuity of 0.) Hence

d+W, 0; II) = sup h ([0 o uf, [0 o M]«) < e
0<a<l

and the proof is complete.

We now come to the major result regarding continuity of IFZS attractor functions.

THEOREM 4.2. Given an IFZS (Wi, 4>0 with corresponding contractive operator Tx e
£? N and fixed point u\ € ^*(X), then for every e > 0 and every et, e2 > 0 such that
(see Theorem 4.1)

T^-e2 + —^—6i<€, (4.15)

there exist the following:
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(1) an IFS w2 # w, for which

<(w1>w2)<e1, (4.16)

(2) a set of grey level maps <I>2 ^ <J>, such that

#(<&i, * 2 ; «i) <*2. (4.17)

As such, the operator T2 € £7'N corresponding to (w2, <I>2) /zas a fixed point u2 e

doo(«i ,«2)<e. (4.18)

Moreover, for every e > 0, fAere exwf 5t > 0 (<5i = 6j(l — Si)""1) and 52 > 0
f52 = s^il-sx)-1)such thatd%(v/u w2) < &iandd^{^>u <P2\ «i) < 82 imply (4.18).

PROOF. Regarding (1), the existence of an IFS w2 satisfying the inequality in (1) is
straightforward, see [1]. Regarding (2), recall that for each /* e {1, 2 , . . . , N} there
exists at least one value t* e [0, 1], such that (pu-(t*) > 0. Then, from Lemma 4.3,
the following set <&2 of grey level maps satisfies condition (2):

02,, =0 . , , , i 6 { l , 2 , . . .

02.,-(O = 0i./.(O, te[0,l]\[t*-V*,n,

02./. (0 > 01./. (0. f € [ * * - » / V ) ,

where rf is such that (see Lemma 4.3)

<W,,,",02,,;«i)<e2. (4.19)

Since
4>2;«i) = sup d(02,,, 0i,,-; Mi) = ^(02,,-., 01,,-.; Hi), (4.20)

1</<V

(4.18) follows from Theorem 4.1 and the proof is complete.

Note that the conditions 0i ,( l) = 02/(1), ' = 1,2,..., N, assumed to hold in
Theorem 4.1, are essential for the existence of a <J>2 such that (4.17) holds for a
given e2 > 0 and ux. The last part of Theorem 4.2 (continuity of u at ux) is a direct
consequence of Theorem 4.1.

5. Discussion

For practical purposes, e.g., animation or the inverse problem of fractal construc-
tion, it is desirable that an IFZS attractor uk 6 &*(X) may be varied in a continuous
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fashion by varying the IFS maps wki and the grey level maps cj>ki. The IFZS attractors
uk are trivially continuous with respect to the operators Tk in the dConN(&'(Xy) metric.
However, we have shown that the Tk may be discontinuous along the sections £, (Tk)
obtained by varying the (f>ki one at a time. These sections are naturally important in
the "fine-tuning" of grey level distributions on«t. (We should mention that our use of
the Ei{Tk) sections in the above analysis is in no way restrictive: a standard triangular
inequality argument clearly shows that a continuous variation in the grey level vector
* = ($1. <fe, • • •» 4>N) with respect to the d£ metric can be achieved by moving along
the Ej(Tk) sections, i.e., varying the <pki one map at a time.)

In order to remedy this situation, a "local" metric for the grey level maps with
respect to an element u e J?*(X) was constructed. The continuity of attractors uk

with respect to the (j>ki maps was then established, subject to some restrictions on their
variations (Section 4). These restrictions are not too serious: the perturbation method
outlined in Theorem 4.2 still allows freedom in the amount of variation in the <pki. In
fact, any additional regularity in the (j>ki maps, e.g., bijectivity, will allow even more
freedom in the variation. However, the restriction that the values </>*,(l) be fixed is
essential. It can easily be shown (along the lines of Theorem 3.1) that any 5-variation
in this value produces an attractor uk whose d^ distance from uk is bounded away
from zero independently of 8.

An even greater flexibility in controlling the uk attractors could be accomplished
if the grey level maps </>*, were functions of the base space variable x e X, i.e.,
(j> : X x [0,1] —> [0, 1]. As well, it may be advantageous to consider operators
other than the T operator of (2.7) and, consequently, other metrics on &*(X) (in
order to preserve the contractivity of T or to possibly guarantee uniform continuity of
the attractors). Recently, in fact, we have succeeded in modifying the original IFZS
method [8]. One of the modifications involves a new distance function which, in
special cases, becomes the L\X) distance with respect to a measure /x on X. The
attractors of this new IFS-type method on L'(X) are then trivially continuous with
respect to the grey-level maps </>,. This new approach has been very effective in
solving the inverse problem of function approximation and image representation.
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Appendix A: IFS with probabilities and invariant measures

An N-map contractive IFS on X with probabilities (IFSP), (w, p), is a set of N
contraction maps w = (wt, u;2, • •• > wN), to, e Con(X) with associated probabilities
p = (pi, p2, • • •, PN), Pi > 0, Yl?=\ Pi = 1- The uniqueness of the attractor A
defined by the set w was discussed in Section 2.

Now let ̂ Z{X) denote the set of probability measures on 3§{X), the a -algebra of
Borel subsets of X. Consider the following metric on

dH(ji,v)= sup [ / fdfi- I fdv] n.ve^nX), (A.1)
/eLip(Jf) \_J J }

where
Lip(X) = {/ : X -+ R, \f(x) - f(y)\ < d(x, v), x, y € X}.

The dft metric has often been called the Hutchinson metric due to its use in [9]. Note
that (jft(X), dH) is a complete metric space.

Given an IFSP (w, p), define a "Markov operator" M : J({X) -* JK{.X) as
follows: for v e ^(X), let

7, V O Wi ' .

1=1

Then there exists a unique measure \x e M{X), the invariant measure of the IFSP
(w, p), for which M/x = fx. M is a contraction mapping on (jft(X), dH), i.e., for
ix, ve JK{X) [9],

i, Mv) < sdH((x, v),

where s is the contractivity factor of w.

EXAMPLES. Return to the 2-map IFS on [0, 1] given earlier in Section 2. (i) When
s = 1/2 and px = p2 = 1/2, then \x is Lebesgue measure on [0, 1]. (ii)Wheni = 1/3
and P\ = Pi — 1/2, then fx is the uniform Cantor-Lebesgue measure on the ternary
Cantor set on [0, 1].
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