CONNECTIVITY AND REDUCIBILITY OF GRAPHS
DIANE M. JOHNSON, A. L. DULMAGE, axp N. S. MENDELSOHN

1. Introduction. Corresponding to every graph, bipartite graph, or directed
bipartite graph there exists a directed graph which is connected if and only if
the original graph is connected.

In this paper, it is shown that for every directed graph there exists a certain
bipartite graph such that the directed graph is connected if and only if the
bipartite graph is irreducible. Other connections between reducibility and
connectivity are established.

2. Definitions. A directed graph D is defined relative to a set V of vertices.
An edge of D is an ordered pair of vertices (vy, vs), v1 #Z v2, 91 € V, v, € V. If
v1, U2 is any pair of vertices then there are various possibilities for the two
ordered pairs (1, v2) and (vs, 1). Either both are edges or one and only one
is an edge, or neither is an edge. If (1, v2) is an edge we say that it connects
v; to v (but not v, to v1). A set of edges (v, v2), (s, v3), . . ., (¥u_1, v,) ordered
in such a way that the second member of any edge is the first member of its
successor is a chain of edges connecting v; to v,. A directed graph D is con-
nected if and only if for every pair of vertices vy, v2 of D there exists a chain
of edges connecting v; to v, and a chain connecting v, to ;.

A graph G is defined relative to a set V of vertices. An edge of G is an
unordered pair of elements [v1, vs] with v, € V, 92 € V. v1 # v2. A pair of
vertices need not be an edge. If [v1, v2] is an edge, we say that it connects the
vertices v; and v.. A set of edges [v1, v2], [v2, 3] . .. [vn_1, ¥,] ordered in such
a way that every consecutive pair of edges has a vertex in common is a chain
of edges connecting v; and v,. A graph G is connected if and only if for every
pair v1, 92 of vertices there exists a chain connecting #; and v,.

For every graph G we define a corresponding directed graph D(G) by agree-
ing that D(G) has the same vertex set as G and that if the unordered pair
[v1, 2] is an edge of G then the ordered pairs (v, v2) and (vs, 1) are edges of
D(G). Thus D(G) has twice as many edges as G. D(G) is connected if and
only if G is connected.

A bipartite graph B has two sets of vertices S and 7. An edge of B is an
unordered pair [s,t], s € S, t € T. An unordered pair [s,t] need not be an
edge. If [s,1] is an edge we say that it connects the vertex s of S and the
vertex t of 7. A set of edges [si, t1], [s2, t1), [Se, 2] . . . [su, £x] ordered in such
a way that every pair of consecutive edges has a vertex in common is a chain

Received July 14, 1961. This research was supported by the Air Force Office of Scientific
Research.

529

https://doi.org/10.4153/CJM-1962-044-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-044-0

530 DIANE M. JOHNSON, A. L. DULMAGE, AND N. S. MENDELSOHN

connecting s; and £,. A bipartite graph B is connected if and only if, corre-
sponding to every pair of vertices s, (s € S,t € T) there exists a chain of
edges connecting s and ¢.

For every bipartite graph B we define a corresponding graph G(B). The
vertex set V of G(B) is the union of the vertex sets Sand T of B. The unordered
pair [s,t), s €S, t € T is an edge of G(B) if and only if [s,t], s€ S,t € T
is an edge of B. The graph G(B) is connected if and only if the bipartite
graph B is connected. Moreover, the directed graph D(G(B)) is connected
if and only if B is connected.

A directed bipartite graph C has two vertex sets S and 7. An edge is an
ordered pair (a, b) with one of a and b belonging to S and the other to 7. For
every pair s,t(s € S,¢t € T) there are various possibilities for the ordered
pairs (s,¢) and (¢, s). Either both are edges of C or one and only one is an
edge or neither is an edge. If (a, b) is an edge, it connects a to b (but not b
to a). A set of edges (si, t1), (f1, S2), (Se, £2) . .. (Sn, t,) ordered in such a way
that the last member of any edge is the first member of the next is a chain
connecting s; to f,. Similarly, a set of edges (¢, s1) (51, 82) . .. (fy, Sy) 1S @
chain connecting #; to s,. A directed bipartite graph C is connected if and
only if, corresponding to every pair of vertices s, {(s € S, ¢ € T') there exists
a chain connecting s to ¢ and a chain connecting ¢ to s.

For every directed bipartite graph C we define a corresponding directed
graph D(C). The vertex set V of D(C) is the union of the vertex sets S and T
of C. The ordered pair (a, 8), a € V, b € V is an edge of D(C) if and only
if (a, d) is an edge of C. The directed graph D(C) is connected if and only
if the directed bipartite graph C is connected.

A directed graph D with n vertices is simply connected if and only if D
contains a subgraph H (that is, every edge of H is an edge of D) consisting
of the n edges (v1, v2) (s, v3), (U3, v4) . .. (24, v1) in which v; 5 v; for 7 # j.
Such a subgraph H may be called a closed chain of rank #. Each of the =
vertices of D is a first member of an edge of H and a second member of
another. Every simply connected directed graph is connected.

We use K to denote the complement of a set K and »(K) to denote the
number of elements in K. We continue to use a round bracket () to enclose
an ordered pair and a square bracket [ ] to enclose an unordered pair.

In what follows we use the symbol L to denote a graph, a directed graph,
a bipartite graph or a directed bipartite graph. A subgraph of the graph L
is a graph of the same type as L, having as its vertex set some subset V'
of the vertex set 7 of L and, as its set of edges, some subset of those edges
of H for which both vertices belong to V’. We note that a subgraph which
has a single vertex is connected, for in such a graph there are no pairs of
vertices.

Let Vi and V. be the vertex sets of two subgraphs .S; and .S, of the same
graph L. The union of S; and Sy is defined as the subgraph of L for which
the vertex set is the union of the sets V; and V, and the set of edges is the
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union of the sets of edges of .S; and Ss. The intersection of S; and S; is similarly
defined. The subgraphs S; and S, are said to be disjoint if and only if V; and
V, are disjoint.

If we select a vertex v of a graph L and form the union of all the connected
subgraphs of L which have v as a vertex the resulting connected subgraph is
called a maximal connected subgraph of L. Thus any connected graph L is
a maximal connected subgraph. At the other extreme, a maximal connected
subgraph may have a single vertex (and hence no edges). Any two maximal
connected subgraphs of H are disjoint.

Let U be the union of all the maximal connected subgraphs of a graph L.
The vertex sets of U and L are identical. If L is a directed graph D or a
directed bipartite graph C then L may have edges which are not edges of
U. However, if L is a graph G or a bipartite graph B, the sets of edges for
L and U are identical and we have L = U.

If a graph L is the union of two disjoint subgraphs S; and S; then there
is no chain of edges connecting a vertex of S; to a vertex of .S; and hence L
is not connected. If a bipartite graph B or graph G is disconnected then it is
the union of at least two disjoint maximal connected subgraphs. Thus a
graph G or a bipartite graph B is connected if and only if it is not the union
of two disjoint subgraphs.

As in (2) we use U X V to denote the bipartite graph with vertex sets U
and V such that [u,v] is an edge of U X Viforallu € U,v € V.

An induced bipartite graph was defined in (2, § 2) for any partitioning of
the vertex sets.

THEOREM 1. If the vertex sets S and T of a bipartite graph B are partitioned
so that S =8 JS:JU... IS, and T =TI T,J...\JIT and if the
subgraphs (S; X T;) M B are connected for © = 1,2, ..., k, then B is connected
if and only if the induced graph B’ is connected.

Proof. If B’ is the union of two disjoint subgraphs then B is the union of
two disjoint subgraphs.

If B is the union of two disjoint subgraphs B; and B, then each of the
subgraphs (S; X T';) M B of B is a subgraph of B; or B,, for, if not, such a
subgraph is the union of 2 disjoint subgraphs and hence is not connected. Thus
there exist complementary subsets \, p of 1,2, ..., k such that B; has vertex
sets S; = \U;aSi,, T1=\Y;al; and B, has vertex sets S = U;.S;,
Ty = \U;T. Let By and By be the induced graphs of B; and B: using
these partitionings. Clearly B’ and B, are disjoint subgraphs of B'.

Consider a bipartite graph with vertex sets S and 7. A pair [4, B] of
subsets, 4 C .S, B C T is a cover or exterior pair of the bipartite graph if, for
every edge [s, t] either s € 4 or ¢t € B. One of 4 and B may be the null set ¢.
A cover [4, B] is minimum if v(4) 4+ v(B) is minimum. If there exists a
minimum cover [4, B] in which 4 # ¢ and B # ¢, then the bipartite graph
is reducible. 1f there exists a minimum cover [4, B] in which either 4 = ¢
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or B = ¢ and if there is no other minimum cover, then the bipartite graph is
semi-trreducible. 1 [S, ¢] and [¢, 7] are minimum covers and if no other
cover is minimum, then the bipartite graph is irreducible. If a bipartite graph
is semi-irreducible, then »(S) # »(7); if it is irreducible then »(S) = »(T). A
disconnected bipartite graph is the union of two disjoint subgraphs and hence
is reducible. A minimal semi-irreducible graph was defined in (2) as a semi-
irreducible bipartite graph which is not the union of two disjoint semi-irre-
ducible subgraphs. If a semi-irreducible bipartite graph B is the union of
two disjoint subgraphs, then these subgraphs must be semi-irreducible, for
otherwise B would be reducible. Thus a minimal semi-irreducible bipartite
graph is not expressible as the union of two disjoint subgraphs. It follows
that every irreducible or minimal semi-irreducible graph is connected. Using
Theorem 1, we have the following generalization of this result. The general-
ization refers to the core of the canonical decomposition of a bipartite graph
as described in (1) and (2).

TuroreM 2. If B’ is the bipartite graph induced by the partitioning of B by

means of the vertex sets of the irreducible and minimal semi-irreducible subgraphs
which constitute the core of B, then B’ is connected if and only if B is connected.

3. An induced directed graph. Let D be a directed graph with vertex

set V = (v, v2, 03, ..., 7). lf we partition Vinto r disjoint sets Vy, Vs, ..., V,
we can define a directed graph D’ which is induced by this partition. The
vertices of D' are Vi, Vs, ..., V,. The ordered pair (V,, V,); p # ¢ is an

edge of D’ if and only if there exists v; € V,, v; € V, such that the ordered
pair (v4, v;) is an edge of D.

THEOREM 3. Let the vertex set V of a directed graph D with n vertices be parti-
tioned into disjoint sets Vi, Vs, . .., V,in such a way that for everyp = 1,2, ..,7r
either V, consists of a single vertex v; of V or the directed subgraph D, of D con-
sisting of all edges (vy, vy) such that vy € V, and v, € V, is connected. The
graph D' induced by such a partitioning is connected if and only if D is con-
nected.

Proof. Let the vertices of D be vy, v, . . ., v,. Suppose that D is connected.
Consider any two vertices V;, V;, of D’. There exists at least one vertex
v; € V; and at least one vertex v;, € V. Since D is connected there exists
a chain (v, vx,) (Vs Us) - . . (04, v5) connecting v, to ;. Now replace each
vertex v, which is a first or second member of an edge of this chain by the
vertex of D’ to which it belongs. This yields the set of ordered pairs

(Vily Vhl) (Vhly th) LR (Vhpy Viz)'

If both vertices in any of these ordered pairs are identical, delete this ordered
pair from the set. The resulting set of ordered pairs is a chain of edges of D’
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connecting V; to V. Similarly there exists a chain of edges connecting V,
to V.

Now suppose D’ is connected. Let v;,, v;, be any pair of vertices of D. We
must construct a chain connecting v;, to v;. There exist unique vertices 7,
Vi, of D’ such that

v, € Vi, V5, € Vi
Since D’ is connected there exists a chain
(Vay Vi), (Vi Vi) o oo (Vi V).
We have v;, € V. Since (V, V) is an edge of D’ there exists
Uy € Vi, vy € Vi

such that (v,, v,,) is an edge of D. If v;, = v, let (v, v,,) be the first edge
of a chain. If not, since D, is connected, there exists a chain of edges of D,
which connects v, to v,,. Add the edge (2., v,,) to this chain. Since (Vy, Vi,)
is an edge of D’ there exists

Vy € th Vzg € th

such that (v, v,,) is an edge of D. If v,, = v,,, (v, v,,) is the next edge of the
chain. If not, since D, is connected, there exists a chain of edges of D,
connecting v, and v,. Add these edges to the chain and then add (v,, v.,).
Continuing in this way we construct the chain of edges connecting v, to v;,.

4. Connectivity and irreducibility. Corresponding to every directed
graph D with vertex set V = (v, v, . . ., v,) wWe define a bipartite graph B (D)
as follows. The vertex sets of B(D) are S = (s1, 8s,...,5,) and T = (¢, fs,
..., ty),and [s4 ¢;] is an edge of B(D) if and only if (v, v,) is an edge of D.

The graph B*(D) is defined as the bipartite graph with the same vertex
sets S and T as B(D). Every edge of B(D) is an edge of B*(D) and in addition

the »# unordered pairs [s; ¢:], 2 = 1, 2, ..., n are edges of B*(D). B*(D) will
be called the augmented bipartite graph corresponding to the directed graph D.
The edges (s t:], 2 =1,2,...,n will be called the main diagonal edges
of B*(D).

THEOREM 4. If B*(D) is the augmented bipartite graph corresponding to the
directed graph D then D is connected if and only iof B*(D) is irreducible.

Proof. If B*(D) is reducible there exist proper subsets 4 of S and B of T
such that [4, B] is a minimal exterior pair for B*(D). Let M be the subset
of the indexes 1,2, 3,...,n for which s; € 4 and N the subset of indexes
for which ¢; € B. Since the edge [s;, ¢;] is covered by [4, Blfori =1,2,3, ...,
n, there exists no 7 such that s; € A, ¢; € B. It follows that if 5s; € 4, we
have ¢; € B and hence M C N and »(4) < »(B). Similarly »(B) < »(4).
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Since B*(D) contains the subgraph consisting of [s;, #;] for all 7, its exterior
dimension is #. Thus »(4) 4+ »(B) = n and »(A) + »(B) = n. Accordingly
v(A) = y(B) and M = N. M and N are complementary subsets of 1,2,
3,...,n

Let s, and s; be two vertices of B*(D) such that s;, € A and s, € 4.
Since 7; # 19, the vertices v, and v;, of D are distinct. If there exists a chain
of edges of D,

(vilr 7}1'1) (7).7'1: 7}.7'2) (vjzr 'Uja) oo (vjny viz)v

connecting v; to v;, the corresponding set of edges of B*(D) is

[Say taly i tindy [S0 Eig) + oo [Symr tis].

Since sy € A and [4, B] is a covering, t;, € B. Since j; € N and N = M,
sy € A. Repeating the argument we find t;, € B, s;, € A and finally ¢,, € B
and hence s;, € A. This contradicts s, belonging to 4. It follows that D is
not connected.

If B*(D) is irreducible, then for every vertex & of S or 7', there are at least
2 vertices of the other set connected to k by a single edge. This enables us to
form a chain

[silv til] v[sin tiz] [Sizv tiz] [Siz’ tis] e

in which every other edge is a main diagonal edge. We eventually find an
index repeated. Thus we get a closed chain of 2r edges which involves r
vertices in both .S and 7" Such a chain has been defined in (1) and (2) as a
cycle of rank 7. For definiteness, let the vertices of B*(D) and D be re-indexed
so that the cycle is [sy, t1], [s1, 2] [Se, t2], [So, 3] - . . [ss, &), [sr, £1]. The off-
diagonal edges of this cycle, namely [si, t2], [ss, £3], . . ., [ss, £1] correspond in
D to the set of edges (vi, v2), (vs, v3), (3, 9s) ... (v, v1) Which constitutes a
closed chain in D.

Let Vi = (1, s, ...,7,) and let D, be the directed graph which has vertex
set V; and has as its set of edges those edges (v;, v;) of D such thatv,, v; € V1.
Since D, has the closed chain (vy, v2), (v2, v3), ..., (vs, v1) as a subgraph, D,
is simply connected and hence connected. Now consider B*(D), the corre-
sponding augmented bipartite graph. B*(D) has vertexsets S; = (s, s2, . . . , $7)
and 7'y = (¢, 82, ...,t;) and has as edges those edges [s;, ¢;] of B*(D) such
that s, € Sy and ¢; € T1. B*(D) has the cycle of rank 7 as a subgraph and
hence by Theorem 2 of (2) is irreducible (in fact, simple irreducible). As
outlined in § 4 of (2) it may be possible to find other cycles in B*(D) with
half of their edges main diagonal edges, such that no two of these cycles have
a vertex in common. Ultimately we find a partitioning of .S into disjoint sets
Sy, Sey ..., S, of T into disjoint sets T, T, ..., T and of V into disjoint
sets Vy, Vo, ..., Vn such that

v(S) = v(Ty) =»(V) > 1,  »(S) =»(Tw) =»(Vi) >1
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for k. =2,3,...,m, and s; € S; if and only if ¢; € T} and ¢; € T} if and
only if v; € V. For k= 2,3,...,m there are two possibilities. The first is
that Vj consists of a single vertex v; in which case S; and T} are vertex sets
for a bipartite subgraph of D with a single edge [s, #;]. The second possibility
is that we have a subgraph D; of D which has V} as vertex set and has as
edges those edges (v;, v;) of D such that v; € Vi, v; € V. The corresponding
augmented bipartite graph B*(D;) has vertex sets Sy, T%. D is a connected
directed graph and B*(Dy) is irreducible.

Let D’ be the directed graph induced by the partition Vi, Vs, ..., V; and
let [B*(D)]’ be the bipartite graph induced by the partitions Sy, Se, . . ., Si;
Ty, Ty, ..., Ty It is immediate that [B*(D)] = B*(D'). By Theorem 3 (2)

since B*(D) is irreducible, B*(D’) is irreducible. Clearly as in (2) there exists
an integer s such that, if we carry out the process of partitioning and forming
the induced graph s times, the augmented bipartite graph B*(D) is found
to contain a cycle of rank equal to the number of vertices in each vertex
set. Thus B*(D®) is simple irreducible. It follows that D® has a closed
chain of rank equal to the number of vertices in its vertex set. Thus D® is
simply connected and hence is connected. By Theorem 1, D is connected if
and only if D’ is connected, D’ is connected if and only if D® is connected
and finally D¢~V is connected if and only if D® is connected. Since D is
connected, D is connected.

Combining the introductory remarks of § 2 with this theorem we see that
a graph G is connected if and only if B*[D(G)] is irreducible, a directed
bipartite graph C is connected if and only if B*[D(C)] is irreducible and a
bipartite graph B is connected if and only if B¥*[D{G(B)}] is irreducible.

In § 4 of (2) the authors outlined a method of determining whether or not
a bipartite graph with the same number 7 of vertices in S and T is irreducible.
In this method it is necessary, first of all, to determine the exterior dimen-
sion. If the exterior dimension is less than # the graph is reducible. If the
exterior dimension is 7 it is necessary to find a diagonal, that is, a subgraph
having # edges and exterior dimension #. For a bipartite graph B*(D), the
exterior dimension is # and a diagonal is (sy, t1), (52, f2), - . ., (S, £n). Starting
with this diagonal, and using the method of § 4 (2), a computational procedure
can be programmed for determining irreducibility and hence the connectivity
of any type of graph which we have considered.

The following examples are interesting.

Example 1. 1t is possible for B*(D) to be connected without D being con-
nected. For let D have vertex set V = (v, v2, v3) and edges (v4, v2) (v1, v3). D
is not connected. B*(D) has vertex sets S = (si, $2, $3), T" = (84, £2, £3) and
edges [si1, t1] [s2, £2] [s3, £3] [s1, £2] [s1, £3]. B*(D) is connected. B*(D) is, of
course, reducible. '

Example 2. Let the bipartite graph B have vertex sets V; = (vy, v2, v3) and
Ve = (v4, v5, v6) and edges [v1, 5] [vs, 5] [v3, v4] [v2, v4] [v2, v6]. B is connected
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and reducible. G(B) has vertex set V = (vy, vs, v3, 94, ¥5, 96) and is connected
as is D{G(B)}. B*[D{G(B)}] has vertex sets S; = (s1, 3, 3, S4, S5, S6) and
T = (tl, to, t3, L4, L5, tﬁ) and edges [Sl, ta] [55, tl] [83, ts] [85, ta] [53, t4] [84, t;;] [82, t4]
(54, 2] [s9, ts] [se, t2] together with the edges [s;, t], ¢ = 1,2,3,4,5,6. B* is
irreducible.

Example 3. Let the directed bipartite graph C have vertex sets V; = (vy, v2)
and V. = (v;) and edges (vy,v3) (v3, v1) (v3, v3). C is not connected. The
directed graph D(C) has vertex set V = (v1, 92, v3) and is not connected.
B*[D(C)] has vertex sets S = (sy, s2, 83), I = (f1, s, t3) and edges (si, t3)
(83, tl) (82, ta) (Sl, tl) (Sz, tz) (Sg, tg) B*[D(C)] iS reducible.

5. The class of D(B) graphs. Let us call a bipartite graph with » vertices
in each vertex set, an n X n bipartite graph. Corresponding to an # X n
bipartite graph B with vertexsets S = (s1, S2, . . ., Sp) and T = (fy, b2, E3, -« « 4tn)
we define a directed graph D(B) with vertex set V = (v, ...,7,) by
agreeing that (v;, v;) is an edge of D(B) if and only if [s;, ;] is an edge of B
and 7 # j. D(B) is not uniquely determined by B but is also a function of
the indexing of the vertices of S and 7. We see at once that, for any directed
graph D, we have D{B*(D)} = D. Also, for any » X n bipartite graph B,
we have B¥*{D(B)} = Bifandonlyif [s;, ¢;]isanedgeof Bforz =1,2,..., n.
However, since every edge of B is an edge of B*{D(B)} it follows that if B
is irreducible, B*{D(B)} is irreducible and hence D(B) is connected.

If we re-index the vertex set S = (s1, S2,...,5,) of an n X n bipartite
graph B leaving T unaltered, the irreducibility and connectivity of B are
unchanged but the structure and connectivity of D(B) may be altered. For
consider the 4 X 4 bipartite graph B with edges [s1, t2] [sq, £3] [s3, 4] [s2, t1]. B
is disconnected and reducible and D(B) is disconnected. However, if we
re-index S so that s’ = sy, 52’ = 54, 53’ = 53, 54/ = s2 then B has edges [s//, 2]
[so', ts], [ss', ts] and [s4, 1] and D(B) is connected.

If the exterior dimension of an # X # bipartite graph is n, there exists a
diagonal consisting of # edges and we can index B in such a way that this
diagonal is the main diagonal consisting of the »n edges [s;, t:],7 = 1,2,..., n.
With this indexing B = B*{D(B)} and hence B is irreducible if and only if
D(B) is connected.

We have proved the following theorem.

THEOREM 5. If B is an trreducible n X n bipartite graph then D (B) is con-
nected for every indexing of B.

If B is an n X n bipartite graph then either the exterior dimension of the

graph is less than n so that B is reducible, or it is possible to index the vertex
sets S and T in such a way that B is irreducible if and only if D(B) is connected.

6. The canonical decomposition. In this section we consider the canonical
decomposition of the bipartite graph B*(D) corresponding to a directed
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graph D Let the % disjoint irreducible subgraphs in the core of B*(D) be
denoted by Gy, Gy, . . ., Gi. Corresponding to Gy, ¢ = 1,2, ..., k there exists
a unique subgraph D; of D such that B*(D,) = G,. These directed subgraphs
Dy, D, . .., Dy are disjoint. By Theorem 3, since B*(D,) is irreducible, the
directed graph D, is connected for< = 1,2, ..., k. To see that Dy, Ds, . . ., D,
are maximal connected, consider any connected subgraph E of D. The set
of edges of the main diagonal of B*(E) is a subset of the main diagonal of
B*(D). Since B*(E) is irreducible it is a subgraph of G; for some ¢ and hence
E is a subgraph of D, for some <. Accordingly, we have the following theorem.

THEOREM 6. For any directed graph D, let the core of B*(D) consist of Gy,
Gey...,Gr. If Dyy ©=1,2,...,k is the unique subgraph of D such that
B*(D,) = G, then Dy, D, ..., D, are the disjoint maximal connected sub-
graphs of D.

If B*(D) has no inadmissible edges, D is the union of Dy, D,, ..., D; and
B*(D) is the union of Gy, G, ..., Gs. In such cases, the method outlined in
§ 4 of (2) can be applied to B*(D), using the main diagonal, to construct the
disjoint maximal connected subgraphs Dy, D, ..., D; of D. There are many
such cases, for if B*(D) is symmetrical about the main diagonal (that is, if
for all pairs (¢,7),7=1,2,...,n,j=1,2,...,n, 1% j (v;v,) is an edge
of D if and only if (v;,v;) is an edge of D) then, considering the canonical
decomposition of B*(D), we see that B*(D) has no inadmissible edges. Such
symmetry occurs if D is of the type D(G) or D{G(B)}.

Consider any bipartite graph B and let Gy, Gs, ..., Gy be the irreducible
subgraphs of B* which constitute its core. To each G; there corresponds a
unique subgraph B; of B such that G; = B*[D{G(8B,)}]. By Theorem 3, the
subgraphs By, Bs, ..., By are connected. They are the disjoint maximal con-
nected subgraphs of B. If B, has no inadmissible edges then it is identical with
one of the irreducible or minimal semi-irreducible subgraphs which constitute
the core of B. If B; has inadmissible edges than these edges are inadmissible
in B also, and the core of B, is the union of two or more of the irreducible
or minimal semi-irreducible subgraphs of the core of B.

Finally, consider an augmented bipartite graph of the type B*(D) or
B*[D(C)]. Such a B* is not in general symmetrical about the main diagonal,
and hence, although its core consists of % disjoint irreducible subgraphs, these
subgraphs need not be symmetrical about the main diagonal. Moreover such
a B* may have inadmissible edges. As in § 4, let the vertex set of D (or D(C))

be V = (v1,9s ...,9,) and let the vertex sets of B* be S = (s1,52,..., Sy)
and T = (t1, 82, ..., t). As in (2) § 3, let the % irreducible subgraphs of the
core of B* have vertex sets S; and T, 2 = 1,2,..., k and index the sub-

graphs D; of D so that D, corresponds to the irreducible subgraph G; =
(S; X T,) M B* of the core of B*. Since the edges of the main diagonal of B*
belong to the core of B*, we see that if S; consists of s, 4, ..., s;, then T
consists of £;, ¢4, . . ., i, The set of inadmissible edges of B* is the union
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of the sets of edges of the subgraphs (S; X T';) N\ B* for all 4, j such that
1> j. Let D;; (> j) be the subgraph of D (or D(C)) corresponding to the
subgraph (S; X 7)) \"B* of B*. If S; = (s, Sipy - ., 545) and T = (¢,
iy ..., ;) then D;; has p + ¢ distinct vertices

7)1'1, ‘U’izy LRI 9vip’ 7}]’11 vjE! LI | vjq'
Every edge of D;; connects one of

Viry Vigy « v oy vip
to one of
Ujiy Vjay + + » vvjq‘

The subgraphs D;;(i > j) define a partial ordering of the subgraphs D, D,
..., Dy if we agree that D; < D, provided D;; has at least one edge. This
partial ordering is consistent with the total ordering D; < D, < ... < D;.

7. A connection with ordering relations. As an example consider a
finite set 4 = (a4, @, as, . . ., a,) and a binary relation R(a;, a;) connecting
certain ordered pairs (a4 @;). We say that R is consistent with an ordering
relation if for every r = 2, 3,4, ..., n, there do not exist elements a,, a,,,
..., aq such that

R(ay, ap), R(ay, ag), - . ., R(aq, y, ag,), R(ag,, ag)

all hold. Any relation consistent with an ordering relation can be extended
to a total ordering.

Define D as the directed graph with vertex set V = (vy, vy, ..., 7, such
that (v;, v;) is an edge of D if and only if R(ay, a;). It is easily seen that R
is consistent with an ordering if and only if the core of B*(D) consists of
irreducible subgraphs each consisting of a single edge (s;, ¢;) 1 =1,2,..., n.
For if R is consistent with an ordering and one of the blocks of the core
contained at least two edges, then D would have a connected subgraph with
at least two vertices v; and v;. This implies there is a chain connecting v;

and v; viz. 9; = Vg, Vg . . ., Vg, = U; and a chain connecting v; and v; namely
Vj = Vg Vgt g1y -+ o9 Ugr = Vg = Vs
But then
R(ay, ap,), R(ag, ag), - . ., R(a,,, ay),

a contradiction. Conversely, let the core of B*(D) consist of # irreducible
subgraphs (s;, £;). In the notation introduced in (2) to describe the canonical
decomposition, if G, = (S, X T3) M B*(D) consists of the single edge (s;,, ¢:,)
for p =1,2,...,n then (sy,t;,) is an edge of B*(D) only if ¢ > p. The
total ordering

ay <y < agy... < ay,

is consistent with the relation R, that is, whenever R(a,, a,), then a; < a,.
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More generally, let R be any relation and let the canonical decomposition
of B*(D) consist of k irreducible subgraphs G, = (S, X T,) N\ B*(D) for
p=1,2,3,...,k and let n, be the number of vertices in each vertex set
of G,. If all the edges (s, ¢;) of G, which are below the diagonal are deleted
from the graph B*(D) and if the relation R is modified by deleting the corre-
sponding R(as a;) then the modified relation R is consistent with an ordering.
Thus minimal number of pairs which must be deleted from an arbitrary
binary relation R to make it consistent with an ordering is not more than

3 M=y

p=1 2

The actual minimum number of such pairs could be found as follows. In each
subgraph G, permute the rows and columns in such a way that the main
diagonal is unaltered but the number of edges below the main diagonal is
minimal. Let this minimum number be m,. The minimum number of pairs
which must be deleted to convert R to a relation consistent with an ordering

is X,_i'm,.

8. Applications. The results of this paper can be used in the construction
of an algorithm which yields the complete canonical decomposition of an
n by m bipartite graph. This algorithm can be applied to the optimal assign-
ment problem to determine the dimension of the space of dual solutions and
to reduce the problem of finding all dual solutions to the case when there is
only one primal solution.

The results can be applied also in investigating the structure of powers
of matrices with non-negative elements and in determining properties of
characteristic roots of such matrices with particular reference to stochastic
matrices. Again, stochastic matrices form a semi-group under multiplication.
Graphical concepts can be used to study the ideals of this semi-group and in
particular the structure of finitely generated ideals.

Another application is to the study of matrices with non-negative entries
with assigned row and column sums. Such matrices form a convex set. An
algorithm can be found for expressing any such matrix as an average of
vertex matrices.

This work will be described in subsequent publications by two of the
present authors.
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