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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF SECOND
ORDER NONLINEAR DIFFERENCE EQUATIONS

by BING LIU and JURANG YAN
(Received 9th November 1994)

In this paper we are dealing with oscillatory and asymptotic behaviour of solutions of second order nonlinear
difference equations of the form

A(r,—y Ax,_ )+ F(n,x,) = G(n, x,,Ax,),ne N(ng). (E)

Some sufficient conditions for all solutions of (E) to be oscillatory are obtained. Asymptotic behaviour of
nonoscillatory solutions of (E) is considered also.

1991 Mathematics subject classification: Primary 39A10.

1. Introduction

Recently, there has been a lot of interest in the oscillation and nonoscillation of
second order difference equations. See, for example, [1-6] and the references cited
therein. In this paper, we consider the second order nonlinear difference equation of the
form

A(rn— 1 Axn* l) + F(n’ xn) = G(na Xns AX"), (E)

where ne N(ng)={ng,no+1,no+2,...} (ny is a fixed non-negative integer) and A is the
forward difference operator defined by Ax,=x,,,—x, Moreover, F and G are
real-valued functions with x:N(ng)—R, r:N(ng)—(0, + ), F:N(ny)xR—-R and
G: N(ng) x RZ5R.

The purpose of this paper is to establish some new results on the oscillatory and
asymptotic behaviour of solutions of (E). OQur results differ greatly from those in [1-6]
and the known literature.

As is customary (see [3], [4] and [6]), a nontrivial solution {x,} of (E) is said to be
oscillatory if for every N >0 there exists a k=N such that x,x,,,; £0. Otherwise the
solution is called nonoscillatory.

In this paper, we further assume that the following conditions hold:

(H) There exist sequences {f(n)}, {g(n)} and ratio m of two odd integers such that for
all sufficiently large n
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E(—u'%‘—)gf(n) for us0,
and
G_(n;_:,_v) Zg(n) for u#0.

2. Asymptotic behaviour of nonoscillatory solutions

In this section, we assume that

S [0 —g(k)] = .

k=no

(1)

Theorem 1. Let conditions (H) and (1) hold, then any nonoscillatory solution of (E)

must belong to one of the following two types:

A.:x,—»C#0,n—>00,

Ag:x,—0, n— 0.

Proof. Let {x,} be a nonoscillatory solution of (E), then x, is eventually positive or

negative. Thus, from (E), we have

A<rn—len—l>=rnAxn _ Fn-1 Axn—l

mn m m
Xn—1 Xn Xn—1

x:l"- lrnAxn _ xnmrn— 1 Axn -1

m,m
XnXn—1

A(rn—l Axn—l) _ Axn—-lm'rn—len—l

xnm (xn - lxn)m

m .
Axp_y 1y AX,

(X,, - lxn)m

=-[/m—gm] -

By the mean value theorem
Axnm—l =mc:'_len—la

where x,., <&, <x, or x,<&,<x,_,. Thus from (2), (3) we have

m&y " ra- (Ax,—y)?

A(’—xg‘—"——) < —[f(m) -] —

n—1 (xn—-lxn)m
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=[S (n)—g(n)]. 4)
Summing (4) from ny+1 to n, we get

P AXy Fao By _ z [f (k) —g(k)]. (5)

m
xno k=no+1

Xn

If x, is eventually positive, then there exists n; € N(n,) such that x,>0 for ne N(n,),
thus from (5) and (1) we have

Ax,<0 for ne N(n,).

Hence x, is monotone decreasing, and lim,_, , x,= C=0, where C is a constant.
If x, is eventually negative, then there exists n,e N(ny) such that x, <0 for n, € N(n,),
thus from (5) and (1) we have

Ax,>0 for ne N(n,).

Hence x, is monotone increasing, then lim, ., ., x, exists and lim,_,  x,=C<0.
Thus any nonoscillatory solution of (E) must belong to the following two types: A, or
Ay The proof of Theorem 1 is complete.

Theorem 2. Let conditions (H) and (1) hold.
() If m=1, then a necessary condition for equation (E) to have a nonoscillatory solution
{x,} which belongs to A, is that

k
> LY to-si<o ©)

k=m+1 Tk i= =m+1

where n, € N(n,) is sufficiently large.
(ii) If O<m<1, then a necessary condition for equation (E) to have a nonoscillatory
solution {x,} which belongs to A, or A, is also (6).

Proof. (i) if m=1, let {x,} be a nonoscillatory solution of (E) which belongs to A.. If
C>0, then x, is eventually positive. From the proof of Theorem 1, we have that Ax, is
eventually negative and from (1), there exists n, € N(ngy) such that x,>0, Ax,<0, and

fem+1 Lf()—g(i)] >0 for ne N(n,). Summing (4) from n, + 1 to n, it follows that

'f"n<ﬂx_l_ 3 RUCEEGIESS Zﬂtf(n) g(i)),
this is,
Ax’:"g “71,, z LA ) — ()] ()
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Let g(t)=x,+(t—n)Ax,, n<t<n+1. Then ¢'(1)=Ax,<0, and 0<x,,,;Zq(t)<x, for
n<t<n+1. Hence

§oan s My, £,

k=m+1 Xk  k=nm+1 k=m+1 & q(0)

= i [log q(k + 1) —log g(k)]

k=n+1
= ). [logx,,,—logx]
k=m +1

=log x,+ 1 —10g Xy, +1- (8)
Thus from (7) and (8), we have

n k
s LS rro-g00

k=ni+1 Tk i=n +1
élog xn1+1_10gxn+la
from which letting n— oo and noting lim,_, . x,=C>0, we obtain (6).

(i) If 0<m<1, let {x,} be a solution of (E) which belongs to 4, or A,. As shown in
the proof of case m=1, we can obtain

Ax, 1 z . ]
Shs—— Y f)-gl)] ©)
xn rn i=m+1
and
- Axy 1-m
Z —sS(1- m)[xnl+l Xn+1 1 (10)
k=n +1 Xk

From (9) and (10) we have

S LS [ —e@ls—m -,

k=m+1 Tk i=n +1

from which letting n— o0, and noting O0<m<1 and lim,_. x,=0 or lim,_ ,x,=C>0,
we obtain (6), that is.

S Ly i-gil<e.

k=n+1 Tk i=nm+1

If {x,} is eventually negative, similarly we can show that (6) holds. Thus the proof
Theorem 2 is complete.
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3. Oscillation of solutions

Theorem 3. Let conditions (H), (1) and the following condition hold,

3 l=oo. (11)

k=n+1 Tk
Then all solutions of (E) are oscillatory.

Proof. Suppose on the contrary that there exists a nonoscillatory solution {x,}.
Without loss of generality, we assume that x, is eventually positive. From the proof of
Theorem 1, we have that Ax, is eventually negative and from (1), there exists n, € N(ng)
such that x,>0, Ax, <0 for ne N(n,) and

Z": [f(i)~g()]1=0 for ne N(n,).

i=n+1

Summing (E) from n, +1 to n, we have

n

Ty Axn = rm Axru - Z [F(k, xk) - G(k’ Xys Axk)]

i=n1+1

Sr Ax,— 3 XPLA(K)—g(k)]

k=m+1

n n—1 k
=t Ax—x7 ¥ [f)-g®]+ X A Y [f()—g()]

k=n+1 k=ng+1 i=n+1

n n—1 k
=ty Ax,—x7 Y [f(K—gll+ ¥ m~'Ax) Y [f()—g@)] (12)

k=n+1 k=m+1 i=m+1

where x, . <&, <x,.
From x,>0, Ax, <0 for ne N(n,) and (12), we have

r,Ax,sr, Ax,,.

Thus
Ax,,§ir,ll Ax,,. (13)
r'l
Summing (13) from n; +1 to n—1, we get
n—1 1
xlléxn|+l+rn1 Axll[ Z - (14)
k=n+1 Tk
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from (14), letting n—oco and using (11) and Ax, <0, we have x,——co, which
contradicts x,>0. Thus Theorem 3 is proved.

Theorem 4. Let conditions (H) with m=1, (11) and the following conditions hold,
(i) There exists a sufficiently large n, € N(ny) such that for ne N(n,), f(n)—g(n)=0 and

S [f()—gk)] <oo. (15)

k=ni+1

(ii) There exists positive sequence {C,} such that

S CLIk)—gk]= oo 16)

k=m+1
and

i (AG,-y)?

ol Suo-ao)
k-1 i=

Then all solutions of (E) are oscillatory.

< o0. )

Proof. Suppose that there exists a nonoscillatory solution {x,}. Without loss of
generality, we assume that x,>0 for ne N(n,). Hence (4) holds. Now, we show that
Ax, <0 for sufficiently large n and that this will lead to a contradiction.

Case (a). If there exists n, e N(n,) such that Ax,,=0, then summing (4) from n,+1
to n, we have

A% T B% S g()]

Xn xnz k=n2+1

Z": LS (k) —g(k)].

k=n3+1

Thus from (15), we have Ax,<0 for ne N(n,). Hence summing (E) from n;e N(n,) to n,
we can obtain that

lim x,= —o0

n~*a
which contracts x,>0.

Case (b) If Ax,>0 for ne N(n,). Similarly to (4) we have
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A (i—x—Ai—) < —Lf(n)—g(m)].

n—1

Summing (18) from n+1, ne N(n,), to N and letting N — 0, we have

0 lim WA LTA% _§ o o)
N—-+ o XN Xn k=n+1
Thus
Y (k) —gR)] s 2%
k=n+1 Xn

From Ax,>0 for ne N(n,), we have

1

| —

i [f (k) ~g(kj] S - Ax,.

~

n ny

Hence

A('n-lcrr-l Axn—l>=rnCnAxn _ rn—lcn—l Axn—l

Xp-1 Xn Xn-1

_Cn(rnAxn_rn—l Axn—l)+cnrn—l Axn—l - rn—lcn—l A'xn—l

Xp Xn Xn—1

=C G(") Xn Axn) _ F(n’ xn) _ Cnrn— I(Axn— 1)2 + Acn— 1Tn-1 Axn—l

Xn XnXn-1 Xp—1

é _ C,.[f(n) _g(n)] _ rn; 1%Xn [\/E: Ax,,_ 1 __ ACn— l:|2 +rn— 1(Acn- 1)2 . Xn

4C,

X, 2./C,
n—l(ACn-l)z_ Xn
4Cu Xp-1

< —C,[f(n)—g(m]+>

Tn— I(Acn— 1)2

< -G/~ gm]+ =07

n-1 Axn-l .(Acn—l)z
4C, Ax,_, '

=—C,Lf(n)~g(m)]+-

Summing the following inequality from n; +1 to n+1,

re-1 Ax, - £ —x, [ f(k)—g(k)],
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we find that

n—1
Fao1Ax,_ S1,, Axy, — Z xi[f (k) —g(k)]
k=ny+1
X, AX,,=M,. (21)
Using (21), (19), and (20) we have
A rn—lcn—len—l
xn—l
M,-(AC,_)*

—C,[f(n)—g(m)]+

4xm-C< lkz [/ g(k)])

= —CLf()—gmI+M- (AC,-)" , 22)

( ”Z Lr)— g(k)])

where M =M y/4x,,. Summing (22) from n, +1 to n, we have

oCa s TG B S 1) —gh]

Xny k=nm +1

Xn

c ACn-l 2
5 ( )

(——z[fo) g(z)])

Fe-1i

+M

Letting n—co and noting (16), (17), we get

lim rnCalbx,

n—w xn

Thus there exists n, € N(n,) such that Ax,<0 for ne N(n,), which contradicts Ax,>0 for
ne N(n,).

Thus from Cases (a) and (b} we can show that there exists nyeN(n,) such that
Ax,, <0. Summing (4) from n;+1 to n we have

A% Tl § - g].

xn xn; k=n3+1

Hence Ax,<0 for ne N(n,). Similarly to the last part of the proof of Theorem 3 and
from (11) we have lim,_, , x,= — o0, which contradicts x,>0. Theorem 4 is proved.
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For the purpose of illustration we consider the following example.

Example. Consider the difference equation

A(znl +6Axn—l)+nl+5xn+4(n+ 1)1+6(Ax,,)2 =0’ neN(nO), nozl

where 0<d<1. Let C,=n, f(n)=1/n'*? and g(n)=0, ne N(ny), then we find that
conditions (H), (11), and (15)—(17) are satisfied. Thus from Theorem 4 all solutions of (E)
are oscillatory. In fact, {x,}={(—1)"} is such a solution. We believe that the conclusion
is not deducible from the oscillation criteria in [3, 4, 6] and the known literature.
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