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Abstract

In this work, we give some theorems on (mild) weighted pseudo-almost periodic solutions for some
abstract semilinear differential equations with uniform continuity. To facilitate this we give a new
composition theorem of weighted pseudo-almost periodic functions. Our composition theorem improves
the known one by making use of a uniform continuity condition instead of the Lipschitz condition.
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1. Introduction

The qualitative theory of differential equations involving almost periodicity has been
an attractive topic for nearly a century because of their significance and applications
in areas such as physics, mathematical biology, and control theory. As a result, several
concepts were introduced as generalizations or restrictions of almost periodicity, such
as asymptotic almost periodicity, almost automorphism, and pseudo-almost periodicity
(see, for example, [5, 11, 13–16]). Consequently, differential equations, partial
differential equations, and functional differential equations with these properties have
been of great interest to many authors and there is a vast literature on the subject (see,
for example, [1–7, 9, 11–16] and the references therein).

Recently, Diagana [8, 10] introduced a new class of functions called weighted
pseudo-almost periodic functions, which are a natural generalization of the classical
pseudo-almost periodic functions, and discussed the properties of this new class
of functions, including a composition result. As applications, some existence and
uniqueness theorems for weighted pseudo-almost periodic solutions for abstract
differential equations were obtained. We notice that a Lipschitz condition is needed in
the composition theorem and its applications in abstract differential equations (see [10,
Theorems 3.7, 4.2]). So it is interesting and worthwhile to consider the same problem
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under a uniform continuity condition instead of the Lipschitz condition. This seems
reasonable and necessary since the uniform continuity condition is the main condition
needed for the composition theorems of almost periodic functions and pseudo-almost
periodic functions (see [11, 12]).

The aim of this paper is to give some theorems on (mild) weighted pseudo-almost
periodic solutions of the abstract semilinear differential equation

u′(t)= Au(t)+ f (t, u(t)), t ∈ R, (1.1)

under a uniform continuity condition. For this purpose, we give a new composition
theorem for weighted pseudo-almost periodic functions, which improves the one given
in [10] by making use of a uniform continuity condition instead of the Lipschitz
condition (see Remark 3.3).

The paper is organized as follows. Some notation and preliminary results are
presented in Section 2. A composition theorem for weighted pseudo-almost periodic
functions under a uniform continuity condition is proved in Section 3. Then, in
Section 4, an existence theorem of mild weighted pseudo-almost periodic solutions
for the abstract semilinear differential equation (1.1) is obtained by making use of
Schauder’s fixed point theorem and the composition theorem obtained in the previous
section. Moreover, a theorem on the weighted pseudo-almost periodic solutions
for (1.1) is presented. At the end of this paper, an example involving the heat equation
is given, where the uniform continuity condition is satisfied and the Lipschitz condition
is not satisfied.

2. Preliminaries

Throughout this paper, we assume that (X, ‖ · ‖), (Y, ‖ · ‖) are Banach spaces.
Let BC(R, X) (respectively, BC(R× Y, X)) be the space of bounded continuous
functions u : R→ X (respectively, u : R× Y→ X). BC(R, X) equipped with the sup
norm defined by

‖u‖ = sup
t∈R
‖u(t)‖

is a Banach space. Furthermore, C(R, X) (respectively, C(R× Y, X)) denotes the
space of continuous functions from R to X (respectively, from R× Y to X).

Let U denote the collection of functions (weights) ρ : R→ (0,+∞), which are
locally integrable over R. If ρ ∈U and for T > 0, we then set

µ(T, ρ) :=
∫ T

−T
ρ(t) dt.

Denote
U∞ :=

{
ρ ∈U : lim

T→∞
µ(T, ρ)=∞

}
and

UB :=

{
ρ ∈U∞ : ρ is bounded with inf

x∈R
ρ(x) > 0

}
.

Obviously, UB ⊂U∞ ⊂U , with strict inclusions.
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Let ρ1, ρ2 ∈U∞. Then ρ1 is said to be equivalent to ρ2, that is, ρ1 ≺ ρ2, if
ρ1/ρ2 ∈UB . Then ‘≺’ is a binary equivalence relation on U∞ (see [10]). Let ρ ∈U∞,
s ∈ R, and define ρs by ρs(t)= ρ(t + s) for t ∈ R. We denote

UT = {ρ ∈U∞ : ρ ≺ ρs for each s ∈ R}.

It is easy to see that UT contains plenty of weights—for example, 1, (2+ t2)/(1+ t2),
et , and 1+ |t |n with n ∈ N.

DEFINITION 2.1.

(i) A function f ∈ C(R, X) is said to be almost periodic if for each ε > 0 there
exists `(ε) > 0 such that every interval of length `(ε) contains a number τ with
the property that ‖ f (t + τ)− f (t)‖< ε for each t ∈ R. Denote by AP(X) the
set of all such functions.

(ii) A function F ∈ C(R× Y, X) is said to be almost periodic in t ∈ R uniformly
in y ∈ Y if for each ε > 0 and any compact set K ⊂ Y there exists `(ε) such
that every interval of length `(ε) contains a number τ with the property that
‖F(t + τ, y)− F(t, y)‖< ε for each t ∈ R, y ∈ Y. Denote by AP(Y, X) the set
of all such functions.

For ρ ∈U∞, the weighted ergodic space PAP0(X, ρ) and PAP0(Y, X, ρ) are
defined by

PAP0(X, ρ) :=
{

f ∈ BC(R, X) : lim
T→∞

1
µ(T, ρ)

∫ T

−T
‖ f (t)‖ρ(t) dt = 0

}
,

PAP0(Y, X, ρ)

:=


F ∈ BC(R× Y, X) : F(·, y) is bounded for each y ∈ Y and

lim
T→∞

1
µ(T, ρ)

∫ T

−T
‖F(t, y)‖ρ(t) dt = 0 uniformly in y ∈ Y

.
DEFINITION 2.2 [10].

(i) Let ρ ∈U∞. A function f ∈ BC(R, X) is called weighted pseudo-almost
periodic (or ρ-pseudo-almost periodic) if it can be expressed as f = g + φ,
where g ∈ AP(X) and φ ∈ PAP0(X, ρ). Denote by PAP(X, ρ) the set of all such
functions.

(ii) Let ρ ∈U∞. A function F ∈ C(R× Y, X) is called weighted pseudo-almost
periodic (or ρ-pseudo-almost periodic) in t ∈ R and uniformly in y ∈ Y if it
can be expressed as F = G +8, where G ∈ AP(Y, X) and 8 ∈ PAP0(Y, X, ρ).
Denote by PAP(Y, X, ρ) the set of all such functions.

The functions g and φ (or G and 8) in Definition 2.2 are called the almost
periodic and the weighted ergodic perturbation components of f (or F), respectively.
Moreover, the decomposition g + φ of f (or G +8 of F) is unique, and PAP0(X, ρ)
and PAP(X, ρ) are all Banach spaces with the norm inherited from BC(R, X)
(see [10]).

https://doi.org/10.1017/S0004972710001772 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001772


[4] Weighted pseudo-almost periodic solutions 427

3. Composition theorem

In this section, we give a composition theorem for weighted pseudo-almost periodic
functions under the following uniform continuity condition for f ∈ PAP(Y, X, ρ)with
ρ ∈U∞:
(H1) f (t, ·) is uniformly continuous in each bounded subset of Y uniformly in t ∈ R.

More explicitly, given ε > 0 and K ⊂ Y bounded, there exists δ > 0 such that
x, y ∈ K and ‖x − y‖< δ imply that ‖ f (t, x)− f (t, y)‖< ε for all t ∈ R.

The following lemma will be used in the proof of the composition theorem.

LEMMA 3.1. Let ρ ∈U∞ and f ∈ PAP0(X, ρ). Then, given ε > 0,

lim
T→∞

1
µ(T, ρ)

∫
M(T,ε, f )

ρ(t) dt = 0,

where M(T, ε, f )= {t ∈ [−T, T ] : ‖ f (t)‖ ≥ ε}.

PROOF. Suppose, on the contrary, that there exists ε0 > 0 such that

1
µ(T, ρ)

∫
M(T,ε0, f )

ρ(t) dt

does not converge to 0 as T →∞. Since ρ is positive, there exists δ > 0 such that for
each n,

1
µ(Tn, ρ)

∫
M(Tn,ε0, f )

ρ(t) dt ≥ δ for some Tn ≥ n.

Then

1
µ(Tn, ρ)

∫ Tn

−Tn

‖ f (t)‖ρ(t) dt ≥
1

µ(Tn, ρ)

∫
M(Tn,ε0, f )

‖ f (t)‖ρ(t) dt

≥
ε0

µ(Tn, ρ)

∫
M(Tn,ε0, f )

ρ(t) dt

≥ ε0δ,

which contradicts the fact that f ∈ PAP0(X, ρ), and the proof is complete. 2

We are now ready to give the composition theorem of weighted pseudo-almost
periodic functions.

THEOREM 3.2. Let f ∈ PAP(Y, X, ρ) and h ∈ PAP(Y, ρ) with ρ ∈U∞. Assume that
condition (H1) and the following condition hold:
(H2) f (R, K )= { f (t, x) : t ∈ R, x ∈ K } is bounded for every bounded subset

K ⊂ Y.
Then f (·, h(·)) ∈ PAP(X, ρ) with almost periodic component fap(·, hap(·)), where fap
and hap are the almost periodic components of f and h, respectively.
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PROOF. Since h ∈ PAP(Y, ρ)⊂ BC(R, Y), we know that f (·, h(·)) ∈ BC(R, X).
Let f = fap + fe and h = hap + he with fap ∈ AP(Y, X), fe ∈ PAP0(Y, X, ρ),
hap ∈ AP(Y) and he ∈ PAP0(Y, ρ). Then

f (t, h(t))= fap(t, hap(t))+ f (t, h(t))− f (t, hap(t))+ fe(t, hap(t)).

It is clear that fap(·, hap(·)) ∈ AP(X) (see [11, Theorem 1.9]). So we only need to
show that

f (·, h(·))− f (·, hap(·))+ fe(·, hap(·)) ∈ PAP0(X, ρ).
This will be done in the following two steps.

Step 1. We prove that f (·, h(·))− f (·, hap(·)) ∈ PAP0(X, ρ).
Let K ⊂ Y be bounded such that h(R), hap(R)⊂ K . Then, by assumption (H2),

there exists S > 0 such that

‖ f (t, h(t))− f (t, hap(t))‖ ≤ S for all t ∈ R. (3.1)

Meanwhile, by condition (H1), given ε > 0, there exists δ > 0, such that for x, y ∈ K
with ‖x − y‖< δ,

‖ f (t, x)− f (t, y)‖<
ε

2
for all t ∈ R. (3.2)

It follows from Lemma 3.1 that

lim
T→∞

1
µ(T, ρ)

∫
M(T,δ,he)

ρ(t) dt = 0,

where M(T, δ, he)= {t ∈ [−T, T ] : ‖he(t)‖ ≥ δ}. Thus, there exists T0 > 0 such that

1
µ(T, ρ)

∫
M(T,δ,he)

ρ(t) dt <
ε

2S
for all T > T0. (3.3)

Noticing that

‖h(t)− hap(t)‖ = ‖he(t)‖< δ, for all t ∈ [−T, T ] \ M(T, δ, he),

by (3.1)–(3.3) we have, for T > T0,

1
µ(T, ρ)

∫ T

−T
‖ f (t, h(t))− f (t, hap(t))‖ρ(t) dt

=
1

µ(T, ρ)

∫
M(T,δ,he)

‖ f (t, h(t))− f (t, hap(t))‖ρ(t) dt

+
1

µ(T, ρ)

∫
[−T,T ]\M(T,δ,he)

‖ f (t, h(t))− f (t, hap(t))‖ρ(t) dt

≤
S

µ(T, ρ)

∫
M(T,δ,he)

ρ(t) dt +
ε

2µ(T, ρ)

∫
[−T,T ]\M(T,δ,he)

ρ(t) dt

< S
ε

2S
+
ε

2
= ε.

This implies the conclusion.
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Step 2. We prove that fe(·, hap(·)) ∈ PAP0(X, ρ).

Since hap ∈ AP(Y) and fap ∈ AP(Y, X), hap(R) is compact and fap is uniformly
continuous in R× hap(R). Then it follows from condition (H1) that fe(t, x)=
f (t, x)− fap(t, x) is uniformly continuous in x ∈ hap(R) uniformly in t . That is,
given ε > 0, there exists δ > 0 such that, for x, y ∈ hap(R) with ‖x − y‖< δ,

‖ fe(t, x)− fe(t, y)‖<
ε

2
for all t ∈ R. (3.4)

Meanwhile, one can find in hap(R) a finite δ-net of hap(R). Namely, there exist a
finite number of points x1, x2, . . . , xm ∈ hap(R) such that, for any y ∈ hap(R), we
have ‖y − xk‖< δ for some 1≤ k ≤ m. Let

Ok = {t ∈ R : ‖hap(t)− xk‖< δ}, k = 1, 2, . . . , m.

Then R=
⋃m

k=1 Ok . Let

B1 =O1, Bk =Ok\

( k−1⋃
i=1

Oi

)
, k = 2, 3, . . . , m.

Then

R=
m⋃

k=1

Bk and B j ∩ Bk = ∅, j 6= k. (3.5)

Moreover, by (3.4)

‖ fe(t, hap(t))− fe(t, xk)‖<
ε

2
for all t ∈ Bk, 1≤ k ≤ m. (3.6)

Since fe ∈ PAP0(Y, X, ρ), there exists T0 > 0 such that

1
µ(T, ρ)

∫ T

−T
‖ fe(t, xk)‖ρ(t) dt <

ε

2m
for T > T0, 1≤ k ≤ m. (3.7)

Now by (3.5)–(3.7), for T > T0,

1
µ(T, ρ)

∫ T

−T
‖ fe(t, hap(t))‖ρ(t) dt

≤
1

µ(T, ρ)

m∑
k=1

∫
Bk
⋂
[−T,T ]

(‖ fe(t, hap(t))− fe(t, xk)‖ + ‖ fe(t, xk)‖)ρ(t) dt

≤
1

µ(T, ρ)

m∑
k=1

∫
Bk
⋂
[−T,T ]

ερ(t)

2
dt

+
1

µ(T, ρ)

m∑
k=1

∫
Bk
⋂
[−T,T ]

‖ fe(t, xk)‖ρ(t) dt
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=
ε

2µ(T, ρ)

∫ T

−T
ρ(t) dt +

1
µ(T, ρ)

m∑
k=1

∫
Bk
⋂
[−T,T ]

‖ fe(t, xk)‖ρ(t) dt

<
ε

2
+ m

ε

2m
= ε,

which yields that fe(·, hap(·)) ∈ PAP0(X, ρ). The proof is complete. 2

REMARK 3.3.

(i) Theorem 3.2 improves the composition theorem given in [10]. In fact, the
following Lipschitz condition for f ∈ PAP(Y, X, ρ), ρ ∈U∞, is necessary for
the composition theorem in [10]:

‖ f (t, u)− f (t, v)‖ ≤ L‖u − v‖ for all u, v ∈ Y, t ∈ R. (3.8)

It is easy to verify that (3.8) implies the uniform continuity condition (H1) and
(H2). On the other hand, Example 4.4 at the end of this paper shows that there
are functions satisfying (H1) and (H2) but not satisfying (3.8).

(ii) In particular, if ρ = 1—that is, if the classical pseudo-almost periodic periodic
functions are considered—Theorem 3.2 is the same as [12, Theorem 2.1].

4. Semilinear abstract differential equations

Consider the semilinear differential equations

u′(t)= Au(t)+ f (t, u(t)), t ∈ R, (4.1)

where f ∈ PAP(X, X, ρ) with ρ ∈UT and A is the infinitesimal generator of an
exponentially stable compact C0-semigroup {T (t)}t≥0 in X, such that ‖T (t)‖ ≤
Me−ωt for all t ≥ 0 and some M > 0, ω > 0.

The following lemma will be used in the proof of our main result in this section.

LEMMA 4.1. PAP0(X, ρ) with ρ ∈UT is translation invariant, that is, φ ∈

PAP0(X, ρ) and s ∈ R imply that φ(· − s) ∈ PAP0(X, ρ).

PROOF. Let φ ∈ PAP0(X, ρ) and s ∈ R. By [10, Theorem 3.3], φ ∈ PAP0(X, ρ)=
PAP0(X, ρs) since ρ ∈UT . Without loss of generality, we may assume that s > 0.
Meanwhile, ρ ∈UT implies that ρ ≺ ρ2s , that is, there exists M > 0 such that
ρ2s(t)/ρ(t)≤ M for t ∈ R. Then, for T > s,∫ T+s

−T−s
ρs(t) dt =

∫ T+2s

−T
ρ(t) dt = µ(T, ρ)+

∫ T+2s

T
ρ(t) dt

= µ(T, ρ)+
∫ T

T−2s
ρ2s(t) dt ≤ µ(T, ρ)+

∫ T

−T
Mρ(t) dt

= (M + 1)µ(T, ρ).
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Therefore,

1
µ(T, ρ)

∫ T

−T
‖φ(t − s)‖ρ(t) dt =

1
µ(T, ρ)

∫ T−s

−T−s
‖φ(t)‖ρs(t) dt

≤
1

µ(T, ρ)

∫ T+s

−T−s
‖φ(t)‖ρs(t) dt

=

∫ T+s
−T−s ρs(t) dt

µ(T, ρ)
∫ T+s
−T−s ρs(t) dt

·

∫ T+s

−T−s
‖φ(t)‖ρs(t) dt

≤
M + 1∫ T+s

−T−s ρs(t) dt

∫ T+s

−T−s
‖φ(t)‖ρs(t) dt

→ 0, as T →∞,

which implies that φ(· − s) ∈ PAP0(X, ρ). The proof is complete. 2

We recall that u is said to be a mild weighted pseudo-almost periodic solution
of (4.1) if u ∈ PAP(X, ρ), and

u(t)=
∫ t

−∞

T (t − s) f (s, u(s)) ds.

Furthermore, u is called a weighted pseudo-almost periodic solution of (4.1) if
u(t) ∈ D(A), for t ∈ R, and is continuously differentiable in t ∈ R and satisfies (4.1).

To deal with the existence of mild weighted pseudo-almost periodic solutions
of (4.1), we introduce the following assumptions on f :
(H3) There exists L > 0 such that supt∈R,‖u‖≤L ‖ f (t, u)‖ ≤ ωL/M .
(H4) Let {un} ⊂ PAP(X, ρ) be uniformly bounded in R and uniformly convergent in

each compact subset of R. Then { f (·, un(·))} is relatively compact in BC(R, X).
We are now in a position to give the main result in this section.

THEOREM 4.2. Suppose that f ∈ PAP(X, X, ρ) with ρ ∈UT and (H1)–(H4) are
satisfied. Then (4.1) has a mild ρ-pseudo-almost periodic solution u(t) such that
‖u‖ = supt∈R ‖u(t)‖ ≤ L.

PROOF. Let
B = {u ∈ PAP(X, ρ) : ‖u‖ ≤ L}.

Clearly, B is closed convex. Define V : BC(R, X)→ BC(R, X) by

(V u)(t)=
∫ t

−∞

T (t − s) f (s, u(s)) ds, t ∈ R.

We only need to prove the existence of fixed points of V in B, and this can be
approached by Schauder’s fixed point theorem.
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By assumption (H1), it is easy to verify that V is continuous. If we have

V (B)⊂ B, (4.2)

then by (H4) and an argument similar to that in [12, Proof of Theorem 3.1], we can
prove that V has a fixed point in coV B (here we omit the details). So it is sufficient to
prove (4.2).

For u ∈ B and t ∈ R, by (H3),

‖(V u)(t)‖ =

∥∥∥∥∫ t

−∞

T (t − s) f (s, u(s)) ds

∥∥∥∥
≤

∫ t

−∞

Me−ω(t−s) ω

M
L ds = L ,

which shows that
‖V u‖ ≤ L for u ∈ B. (4.3)

Let
f = fap + fe, u = uap + ue ∈ B,

where fap ∈ AP(X, X), fe ∈ PAP0(X, X, ρ), uap ∈ AP(X) and ue ∈ PAP0(X, ρ). It
follows from Theorem 3.2 that f (·, u(·)) ∈ PAP(X, X, ρ) with almost periodic
component fap(·, uap(·)). Then, for ε > 0, there exists `(ε) > 0 such that each interval
of length `(ε) > 0 contains a τ with the property that

‖ fap(t + τ, uap(t + τ))− fap(t, uap(t))‖<
ωε

M
for t ∈ R. (4.4)

Decompose V u as V u = V1u + V2u, where

(V1u)(t)=
∫ t

−∞

T (t − s) fap(s, uap(s)) ds,

(V2u)(t)=
∫ t

−∞

T (t − s)( f (s, u(s))− fap(s, uap(s))) ds,

for t ∈ R. Noticing that ‖T (t)‖ ≤ Me−ωt , by (4.4),

‖(V1u)(t + τ)− (V1u)(t)‖

=

∥∥∥∥∫ t

−∞

T (t − s) fap(s + τ, uap(s + τ)) ds

−

∫ t

−∞

T (t − s) fap(s, uap(s)) ds

∥∥∥∥
≤

∫ t

−∞

‖T (t − s)‖ · ‖ fap(s + τ, uap(s + τ))− fap(s, uap(s))‖ ds

≤

∫ t

−∞

Me−ω(t−s)ωε

M
ds

= ε
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for all t ∈ R. This implies that

V1u ∈ AP(X) for u ∈ B. (4.5)

On the other hand, it is clear that f (·, u(·))− fap(·, uap(·)) ∈ BC(R, X). Then

1
µ(T, ρ)

∫ T

−T
‖(V2u)(t)‖ρ(t) dt

≤
1

µ(T, ρ)

∫ T

−T

∫ t

−∞

‖T (t − s)‖ · ‖ f (s, u(s))− fap(s, uap(s))‖ dsρ(t) dt

≤
M

µ(T, ρ)

∫ T

−T

∫ t

−∞

e−ω(t−s)
‖ f (s, u(s))− fap(s, uap(s))‖ dsρ(t) dt

=
M

µ(T, ρ)

∫ T

−T

∫
∞

0
e−ωs
‖ f (t − s, u(t − s))

− fap(t − s, uap(t − s))‖ dsρ(t) dt

= M
∫
∞

0
e−ωs 1

µ(T, ρ)

∫ T

−T
‖ f (t − s, u(t − s))

− fap(t − s, uap(t − s))‖ρ(t) dt ds

= M
∫
∞

0
e−ωs8T (s) ds,

where

8T (s)=
1

µ(T, ρ)

∫ T

−T
‖ f (t − s, u(t − s))− fap(t − s, uap(t − s))‖ρ(t) dt.

Noticing that f (·, u(·))− fap(·, uap(·)) ∈ PAP0(X, ρ), then by Lemma 4.1, for each
s ∈ R, it is easy to get that

lim
T→∞

8T (s)→ 0

and
‖8T (s)‖ ≤ ‖ f (·, u(·))− fap(·, uap(·))‖.

Now, by the Lebesgue dominated convergence theorem,

lim
T→∞

1
µ(T, ρ)

∫ T

−T
‖(V2u)(t)‖ρ(t) dt ≤ lim

T→∞
M
∫
∞

0
e−ωs8T (s) ds = 0,

which implies that V2u ∈ PAP0(X, ρ), and then by (4.5) we have V u ∈ PAP(X, ρ).
This together with (4.3) leads to (4.2). The proof is complete. 2

For the ρ-pseudo-almost periodic solution of (4.1), we have the following result.
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THEOREM 4.3. Let u(t) be a mild ρ-pseudo-almost periodic solution of (4.1), and
suppose that

f (t, u(t)) ∈ D(A) for t ∈ R, A f (·, u(·)) ∈ L1(R, X). (4.6)

Then u(t) is a ρ-pseudo-almost periodic solution of (4.1).

PROOF. Since u(t) is a mild ρ-pseudo-almost periodic solution of (4.1),

u(t)=
∫ t

−∞

T (t − s) f (s, u(s)) ds.

By (4.6),

d+u(t)

dt
= lim

h→0+

1
h
(u(t + h)− u(t))

= lim
h→0+

[∫ t

−∞

1
h
(T (t + h − s)− T (t − s)) f (s, u(s)) ds

+
1
h

∫ t+h

t
T (t + h − s) f (s, u(s)) ds

]
=

∫ t

−∞

T (t − s)A f (s, u(s)) ds + f (t, u(t)).

This shows that d+u(t)/dt is continuous, and then u(t) is continuously differentiable
in t ∈ R. Noticing that A is closed,

u′(t)= Au(t)+ f (t, u(t)).

That is, u(t) is a ρ-pseudo-almost periodic solution. The proof is complete. 2

To conclude this paper, we give an example involving the heat equation.

EXAMPLE 4.4. Consider the heat equation given by the system
∂v(t, x)

∂t
=
∂2v(t, x)

∂x2 + sin t + sin(π t)+ a(t)g(t, v(t, x)) for t ∈ R, x ∈ [0, 1],

v(t, 0)= v(t, 1)= 0 for t ∈ R,
(4.7)

where a(t)=min{1, e−t
} and

g(t, v(t, x))=

sin
v(t, x)

1+ t2 sin
1

v(t, x)
for v(t, x) 6= 0,

0 for v(t, x)= 0.

Let X= L2
[0, 1], and define A : X→ X by Au(·)= u′′(·) with domain

D(A)= {u(·) ∈ X : u′′(·) ∈ X, u(0)= u(1)= 0}.
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It is well known that A is the infinitesimal generator of a compact C0-semigroup
{T (t)}t≥0 satisfying

‖T (t)‖ ≤ e−t for t ≥ 0.

Then Equation (4.7) can be formulated by the following abstract equation:

u′(t)= Au(t)+ f (t, u(t)), t ∈ R, (4.8)

where u(t)= v(t, ·) and f : R× X→ X with

f (t, u(t))= sin t + sin(π t)+ a(t)g(t, u(t))

for all (t, u(t)) ∈ R× X.
It is not hard to verify that et

∈UT , f ∈ PAP(X, X, et ) and f satisfies (H1)–(H4)
with L = 3. Then by Theorem 4.2, (4.8) has a mild weighted pseudo-almost periodic
solution u ∈ PAP(X, et ) such that

‖u‖ = sup
t∈R
‖u(t)‖L2[0,1] ≤ 3.

That is, system (4.7) has a mild weighted pseudo-almost periodic solution v(t, x) such
that u(t)= v(t, ·), t ∈ R, u ∈ PAP(X, et ) and

‖u‖ = sup
t∈R
‖v(t, ·)‖L2[0,1] = sup

t∈R

(∫ 1

0
|v(t, x)|2 dx

)1/2

≤ 3.

However, it is obvious that f is not Lipschitz continuous. As a result, [10,
Theorem 4.2] is not applicable.

Acknowledgement

The authors are grateful to the referee for valuable comments and corrections.

References

[1] E. Ait Dads and O. Arino, ‘Exponential dichotomy and existence of pseudo almost-periodic
solutions for some differential equations’, Nonlinear Anal. 27 (1996), 369–386.

[2] E. Ait Dads, P. Cieutat and K. Ezzinbi, ‘The existence of pseudo almost-periodic solutions for
some nonlinear differential equations in Banach spaces’, Nonlinear Anal. 69 (2008), 1325–1342.

[3] E. Ait Dads, K. Ezzinbi and O. Arino, ‘Pseudo almost-periodic solutions for some differential
equations’, Nonlinear Anal. 28 (1997), 1141–1155.

[4] B. Amir and L. Maniar, ‘Composition of pseudo almost-periodic functions and Cauchy problems
with operator of nondense domain’, Ann. Math. Blaise Pascal 6 (1999), 1–11.

[5] C. Corduneanu, Almost Periodic Functions, 2nd edn (Chelsea, New York, 1989).
[6] C. Cuevas and C. Lizama, ‘Almost automorphic solutions to a class of semilinear fractional

differential equations’, Appl. Math. Lett. 21 (2008), 1315–1319.
[7] C. Cuevas and M. Pinto, ‘Existence and uniqueness of pseudo-almost periodic solutions of

semilinear Cauchy problem with non dense domain’, Nonlinear Anal. 45 (2001), 73–83.
[8] T. Diagana, ‘Weighted pseudo almost periodic functions and applications’, C. R. Acad. Sci. Paris,

Ser. I 343 (2006), 643–646.

https://doi.org/10.1017/S0004972710001772 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001772


436 L.-L. Zhang and H.-X. Li [13]

[9] T. Diagana, ‘Existence and uniqueness of pseudo almost periodic solutions to some classes of
partial evolution equations’, Nonlinear Anal. 66 (2007), 384–395.

[10] T. Diagana, ‘Weighted pseudo-almost periodic solutions to some differential equations’, Nonlinear
Anal. 68 (2008), 2250–2260.

[11] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, 377 (Springer,
New York, 1974).

[12] H. X. Li, F. L. Huang and J. Y. Li, ‘Composition of pseudo almost-periodic functions and
semilinear differential equations’, J. Math. Anal. Appl. 255 (2001), 436–446.

[13] G. M. N’Guérékata, Almost Automorphic Functions and Almost Periodic Functions in Abstract
Spaces (Kluwer Academic/Plenum Publishers, New York, London, Moscow, 2001).

[14] C. Y. Zhang, ‘Pseudo almost periodic solutions of some differential equations’, J. Math. Anal.
Appl. 181 (1994), 62–76.

[15] C. Y. Zhang, ‘Integration of vector-valued pseudo almost periodic functions’, Proc. Amer. Math.
Soc. 121 (1994), 167–174.

[16] C. Y. Zhang, ‘Pseudo almost periodic solutions of some differential equations, II’, J. Math. Anal.
Appl. 192 (1995), 543–561.

LI-LI ZHANG, Department of Mathematics, Sichuan University, Chengdu,
Sichuan 610064, PR China
e-mail: zllyou@126.com

HONG-XU LI, Department of Mathematics, Sichuan University, Chengdu,
Sichuan 610064, PR China
e-mail: hoxuli@sohu.com

https://doi.org/10.1017/S0004972710001772 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001772

