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Abstract

In this note we first prove that, for a positive integer n > 1 with n # p or p> where p is a prime, there
exists a transitive group of degree n without regular subgroups. Then we look at 2-closed transitive groups
without regular subgroups, and pose two questions and a problem for further study.
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We first define four subsets of positive integers:

NR = {n € N| there is a transitive group of degree n without a regular subgroup},
MNoR = {n € N | there is a 2-closed transitive group of degree n without a
regular subgroup},
ND = {n € N | there is a vertex-transitive digraph of order n that is non-Cayley},
NC = {n € N | there is a vertex-transitive graph of order n that is non-Cayley}.

In the literature there has been much work studying the set A'C; see [5-9] for example.

Obviously, NR 2 NoR 2 N'D 2 NC. It is known that N'R 2 N'C. For example,
12 ¢ NC by [7, Theorem 3], but 12 € N'R, since M;j, acting on 12 points, has
no regular subgroup by [3]. Also it is easy to see that 6 is the smallest number in
NR\ NC since Ag has no regular subgroups. In the first part of this note, we shall
determine the set N'R.

It is well known that any prime number p does not belong to any one of the four
sets above. Moreover, Marusi¢ [5] proved that p> ¢ N'C. In fact, we have p> ¢ N'R.

PROPOSITION 1. Any transitive group G of degree p* on Q has a regular subgroup.
Hence p*> ¢ NR.
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PROOF. Take a minimal transitive subgroup P of G. Then P is a p-group and every
maximal subgroup M of P is intransitive. For any o € 2, we have |Py| =|P|/ p?
and |[My| > |M|/p2, so M, = P,. It follows that P, < M and hence P, < ®(P). If
|P:®(P)| = p,then P is cyclic and is regular. If |P : ®(P)| = pz, then P, = ®(P).
Since ®(P) is normal in P and P, is core-free, we have P, = 1 and hence P = Zf,
is regular. O

The following example shows that p3 € NR. However, it has been proved that
p> ¢ NC; see [3, 6]. Therefore p> € N'R \ NC.

ExXAMPLE 2. (1) Let p be an odd prime and let G be the group of order p* presented
by
G=(a.bla" =b"=c"=1,la.bl=c [c.al=a’, [c, b] = 1).

Let H = (c). Consider the transitive permutation representation ¢ of G acting on the
coset space [G : H]. Then ¢(G) is a transitive group of degree p>, and ¢(G) has no
regular subgroups.

(2) Let

G=\(a,b,c,d|a’>=b>=c*=d*=1,[a,bl=[b,cl=]c,al =1,
a = ab, b = be, = c).
Then G = Z% X Z4 has order 2°. Let H = (b, d*) and ¢ be the transitive permutation

representation of G acting on the coset space [G : H]. Then ¢(G) is a transitive group
of degree 2% and has no regular subgroup.

PROOF. (1) Since [c, a] = a?, (c) ﬂ G. Since Ker ¢ = coreg(H) = 1, the action is
faithful. So, ¢(G) = G. Suppose that ¢(G) has a regular subgroup, say ¢(R). Then R
is maximal in G, and RH = G by the Frattini argument. But, H < G’ < ®(G) <R, a

contradiction.
(2) Similar to (1), we can prove that H is core-free and contained in ®(G). The
details are omitted. O

Now we are ready to determine the set N’R. We first need the following
proposition.

PROPOSITION 3. Let p < q be two primes. Then pqg € N'R.

PROOF. Let W =7, Zy = (a) ¢ (b), viewed as an imprimitive group of degree pq.
Since the action of b on the base group Z?, is nontrivial, we may take a (b)-invariant
subgroup H of the base group such that the action of » on H is also nontrivial and H
is smallest subject to this property. Then b is irreducible on H. Let G = H X (b).
Since p <gq, |H|=p*>p. Take M < H. Consider the transitive permutation
representation ¢ of G acting on the coset space [G : M]. Since H is a minimal normal
subgroup of G, coreg(M) =1 and g is faithful. Since () is a Sylow g-subgroup and
maximal in G by the irreducibility of b on H, G has no subgroup of order pg. Hence
©(G) has no regular subgroups. It follows that pg € N'R. O
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THEOREM 4. Let n be a positive integer greater than 1. Then n € N'R unless n = p
or p? for a prime p.

PROOF. This theorem follows from Proposition 1, Example 2, Proposition 3 and the
fact that, if m € N'R, then km € N'R for any positive integer k. O

In the second part of this note we look at the set N3 R. The next proposition shows
that p> ¢ N>R, while Marusic [5] proved that p* ¢ NC.

PROPOSITION 5. Any 2-closed transitive group G of degree p> on Q has a regular
subgroup.

To prove the above proposition, we need the concept of 2-closures of permutation
groups introduced by Wielandt [10].

Let G be a permutation group acting on 2. Suppose that Ag, Ay, ..., A,_1 are
orbits of G acting on © x . The 2-closure G of G is defined by

GP ={xeSym(Q) | AT =A;,i=0,1,...,r —1}.

Obviously, G? > G if GP =G, we say that G is 2-closed. The following lemma is
quoted from [10, Exercise 5.28].

LEMMA A. Suppose that G is a 2-closed group and p a prime. Then the Sylow
p-subgroup P of G is also 2-closed.

THEOREM B (Wielandt’s dissection theorem). Let G be a permutation group acting
on Q, and H a subgroup of G. Suppose that Q= AUT, ANT =0, A£G, T #0
and A = A TH =T. If, for any 6 € A, H and Hgs have the same orbits on T, then
HA x H' <G®.

This theorem follows from [10, Theorem 6.5] and the following obvious fact: if
H <G, then H? < G®.

PROOF OF PROPOSITION 5. Let P € Syl(G). Then P is also transitive on 2. Take
an element z € Z(P) with o(z) = p. Let B={By, ..., sz} be the set of orbits of
(z). Then B is a complete block system of P. Assume that K = Pg is the kernel of P
acting on B. Since K% = Z,, K is elementary abelian. Set P=P/K. Then P is a
transitive group on B.

Take 1 # x € K such that the support supp(x) of x has the minimum size. We claim
that supp(x) is a block of P. Since K is elementary abelian, x is of order p. If supp(x)
were not a block of P, then we could find an & € P such that supp(x)” # supp(x)
and D = supp(x) N supp(x)” # @. Since every B; is a block of size p and p a prime,
supp(x), supp(x)" = supp(x") and D are unions of several entire blocks of P in B.
Set J = (x, x*). Then the nontrivial orbits of J are precisely the blocks contained
in supp(x) U supp(x™). It is not difficult to check that, for any g € @ — D, J and Jg
have the same orbits in D. So, by Theorem B, J Dy 18-D < P® In what follows,
for brevity, we use J D to denote JP x 197D Since P is 2-closed, P = P@®. Then
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Jp < P and hence Jp < K. Thus there exists an element y € Jp < K of order p such
that [supp(y)| < |supp(x)|, which contradicts the choice of x.

Now we distinguish three cases, namely: (1) [supp(x)| = p; (2) [supp(x)| = p2 and
(3) Isupp(x)| = p*. B B

If [supp(x)| = p, then supp(x) = B; for some i. Hence P =7, P. Since P is a
transitive group of degree p?, it has a regular subgroup H isomorphic to Zf, or Z P2
Thus P has a subgroup isomorphic to Z, : H, which has an abelian regular subgroup.

If |supp(x)| = p>, then K = (z) is semiregular. Assume that H/K is a regular
subgroup of P = P/K. Then H is a regular subgroup of P.

Finally we assume that [supp(x)| = p2. Then supp(x) is a block of P of length p>
which is a union of p B;s. Assume that C = {C}, ..., C,} is a block system of P with
supp(x) = Cy. Then K = K1 x - .- x KS» =71,

If P = P/K has an element aK of order p?, then (a, z) is a regular subgroup of P.
So we may assume that expP = p. Take a regular subgroup H/K = (uK, vK) of
P such that v e P — K. (Since P has index p in P, this is possible.) We have
He = (v, K) and u ¢ He. Without loss of generality we assume that C}' = C; 1, for
all i (mod p). Define a permutation w of 2 by

2 -1
w = vcl (vu)CZ(vu )C3 L (vur' )C,,'

Since [v, u] =k € K, v* = vk. So
w = vC (W) 2 (kK™Y - - - (ukk" - - - k" YC
= WOl ACTKC2 (k™) C3 - (k™ - - - k") Cr)
= vk,
where k = 1€1kC2 (kk")C3 - - - (kk" - - -k”pfz)cl’ eK,as K=K x-..x K. So
w € He. Since u? € K, v" = v. So u centralizes w, and then R = (u, w) is abelian

and RK /K is transitive on B. If |[R| > p?, then R is regular; if |R| = p?, then R x (z)
is regular. This completes the proof of this proposition. O

It is known that not all 2-closed transitive groups are the full automorphism groups
of a (di)graph. For example, the regular representation of a finite group that has no
graphical regular representation (GRR) or digraphical regular representation (DRR) is
such an example since regular groups are obviously 2-closed. (For GRRs and DRRs
of finite groups, see [1, 2, 4].) Now we would like to pose the following questions.

QUESTION 1. Determine N>R \ NC.
QUESTION 2. IsN'D =NC?

To study Question 1, we should first find nonregular 2-closed groups that are not
the full automorphism groups of (di)graphs. We do not know such examples.

To end this note, we propose a problem. We first define one more subset of positive
integers:

PNR = {n € N| there is a primitive group of degree n without a regular subgroup}.
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PROBLEM 3. Determine the set PANR.

Different from the set N'R, we know that p" ¢ PN'R for any prime p and any
positive integer n; see [11, Theorem]. Hence, determining the set PNR should be
much harder than N'R..
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