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Abstract

Every designer of a new data structure wants to know how well it performs in comparison

with others. But finding, coding and testing applications as benchmarks can be tedious and

time-consuming. Besides, how a benchmark uses a data structure may considerably affect

its apparent efficiency, so the choice of applications may bias the results. We address these

problems by developing a tool for inductive benchmarking. This tool, Auburn, can generate

benchmarks across a wide distribution of uses. We precisely define ‘the use of a data structure’,

upon which we build the core algorithms of Auburn: how to generate a benchmark from a

description of use, and how to extract a description of use from an application. We then apply

inductive classification techniques to obtain decision trees for the choice between competing

data structures. We test Auburn by benchmarking several implementations of three common

data structures: queues, random-access lists and heaps. These and other results show Auburn

to be a useful and accurate tool, but they also reveal some limitations of the approach.

1 Introduction

In recent years, many papers have given details of new functional data structures

(Chuang & Goldberg, 1993; Okasaki, 1995a; Okasaki, 1995b; Okasaki, 1995c;

Brodal & Okasaki, 1996; Erwig, 1997; O’Neill & Burton, 1997). However, these

papers give only limited attention to empirical performance. Okasaki writes in an

open problems section of his thesis, ‘The theory and practice of benchmarking

[functional] data structures is still in its infancy’ (Okasaki, 1996b). This paper

develops the theory and practice of benchmarking functional data structures.

Suppose we want to measure the efficiencies of some competing data structures.

The standard approach is to find a few applications to act as benchmarks, allowing

us to measure the efficiency of each data structure when used by each benchmark.

What is wrong with this approach? First, if suitable applications are not available,

writing them is a chore. Secondly, using the results of just a few benchmarks can

be misleading; the efficiency of a data structure may vary heavily according to how

it is used, and hence the choice of benchmarks may determine which data structure

appears to be the best.
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1.1 Overview of Auburn

We address these problems by developing a tool, called Auburn, for benchmarking

functional data structures. Auburn works with the signature of an abstract datatype

(adt), such as the signature for lists in figure 1 of section 2, and with one or more

Haskell implementations of the adt.

Among other things, Auburn can automatically generate a range of pseudo-

random benchmark tests making use of a given adt. Auburn can run these tests

using each implementation, apply an inductive classification procedure to the results,

and derive a decision tree for the appropriate choice of implementation depending

on the application. By generating a fair distribution of benchmarks over a wide

variety of different uses, we not only find which data structure is best overall, but

also which data structures are best for particular uses.

To apply a decision tree one needs a profile characterising how the adt is to be

used. Auburn can also extract such a profile from any application program making

use of an adt. Even if we have a single application of an adt in mind, measuring its

performance for each possible implementation could be tedious, and would still not

give us any understanding of how the adt is being used or why performance differs

as it does between implementations. By applying a decision tree to the application’s

profile, we can predict the best choice of data structure and have a way to understand

the choice.

The key technical idea on which Auburn is based is the datatype usage graph

(dug) – a detailed representation, using a labelled directed multi-graph, of how

a program makes use of an adt. All the benchmark tests Auburn constructs are

represented as dugs, and interpreted by specially-generated evaluators for each adt.

(Interpretive overheads are determined by generating null implementations, and

subtracted appropriately from the measures of the actual implementations.) How an

application uses an adt is also recorded as a dug.

A profile of adt usage is actually a vector of attributes characterising a (large)

family of dugs. For example, attributes include the relative frequencies of different

operations. Determining the profile of a dug is easy; generating valid dugs from

profiles is much harder, and unless all the adt operations are total, the programmer

has to supply extra information with a signature and its implementations. However,

the extra information can also be used to improve decision trees.

Auburn is implemented mainly in Haskell, with a supporting library in C. The

implementation is freely available from http://www.cs.york.ac/fp/auburn/.

1.2 Overview of this paper

This paper is based on the first author’s thesis (Moss, 1999), to which readers are

referred for a more comprehensive account. For example, the thesis includes a full

review of all the data structures we have investigated, and a full description of how

Auburn is implemented. Here we are necessarily selective.

Section 2 develops the theory of datatype usage upon which Auburn is based. It
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defines a Datatype Usage Graph (dug) recording how a data structure is used by an

application, and a profile summarising the most important aspects of a dug.

Section 3 describes the core algorithms of Auburn. These involve the creation

of benchmarks from profiles through the generation and evaluation of dugs, and

the extraction of profiles from applications through the extraction and profiling of

dugs.

Section 4 explains how Auburn induces decision trees for the choice of different

implementations in different parts of dug-space.

Section 5 reports the results of applying Auburn to various implementations of

three different adts: heaps, queues and random-access sequences. We assess the

accuracy of Auburn’s results and investigate the sources of any inaccuracy.

Section 6 concludes with a summary and pointers to related and future work.

2 Datatype Usage Graphs

2.1 Abstract datatypes

An abstract datatype (adt) provides operations to create, manipulate and observe

values of some new type. The only way to interact with values of this type is

through the adt operations. This restriction allows the implementation of the adt to

be isolated from its use – we may change implementations without changing how

we use the adt.

We shall restrict ourselves to container types, i.e. adts that contain elements of

some other type. For example, a list adt allows lists of integers, lists of characters,

etc. For any such adt, we may consider the adt as defining a type constructor T .

For example, a list adt may be taken as defining a type constructor List taking a

type t to the type List t. A list of integers would then have the type List Int. We

shall restrict T to be unary. Most common adts satisfy these restrictions.

Definition 1 (adt)

For any type constructor T , and any set of functions F , the pair (T , F) is an adt if

the following conditions are satisfied:

• T is unary.

• Each function in F takes at least one argument of type T a, or returns a result

of type T a, where a is a type variable.

As a further simplification, we restrict ourselves to simple adts, according to the

following definitions. Many adts are simple: queues, deques, lists, random-access

sequences, heaps, sets, integer finite maps, etc. However, any higher-order operations,

such as map, or any operations converting from one data structure to another, such

as fromList, are excluded.

Definition 2 (Simple Type)

For any type constructor T of arity one, we say that the type t is simple (or more
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module List (List,empty,cons,isEmpty,head,tail,catenate,lookup) where
empty :: List a

cons :: a → List a → List a

isEmpty :: List a → Bool

head :: List a → a

tail :: List a → List a

catenate :: List a → List a → List a

lookup :: List a → Int → a

Fig. 1. The signature of a simple list adt AList , expressed in Haskell. The exported type

constructor is List, and the type of each operation is simple over List.

fully, simple over T ) if t can be formed as type by the grammar

type ::= argument type → type | result type

argument type ::= T a | a | Int

result type ::= T a | a | Int | Bool

where a is a type variable, and t contains at least one occurrence of T a.

Example 2

The following types are simple over the type constructors Queue, List and Set

respectively:

• Queue a → a → Queue a

• List a → Int → a

• Set a

Definition 3 (Simple adt)

We define the adt A = (T , {f1, . . . , fn}) to be simple if the type of each operation fi
is simple over T .

Example 3

The signature of a simple adt AList is given in figure 1, expressed in Haskell.

During the run of an application, many different instances of an adt will exist.

Each of these particular instances of the adt is called a version (Okasaki, 1998).

Definition 4 (Generator, Mutator, Observer, Role, Version Arity)

The role of any operation f of type t1 → t2 → · · · → tm, simple over the type

constructor T , can be classified as follows.

Generator: tm = T a and (∀j, 1 6 j < m) tj 6= T a

Mutator: tm = T a and (∃j, 1 6 j < m) tj = T a

Observer: tm 6= T a and (∃j, 1 6 j < m) tj = T a

The version arity of an operation is the number of version arguments it takes. Every

generator has version arity 0, and every mutator and observer has version arity > 1.

Example 4

Looking at the signature of the simple adt AList in figure 1, empty is a generator;

cons, tail and catenate are mutators; isEmpty, head and lookup are observers.

Every mutator and observer has version arity 1, apart from catenate, which has

version arity 2.
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2.2 Usage graphs

To model how an adt is used by an application we use a labelled directed multi-

graph. The nodes are labelled with partial applications of the adt operations to

specific values for all the non-version arguments: for simplicity, these are restricted

to atomic values. The version arguments are recorded as arcs from other nodes that

compute them: there is an arc from u to v if the result of the operation at u is taken

as an argument by the operation at v. The nodes are also numbered according to

the order of evaluation. Such a graph is called a Datatype Usage Graph (dug).

A node of a dug is called a version node if it is labelled with an operation that

results in a version. The subgraph of a dug containing just the version nodes is

called the version graph.

We express these ideas more precisely in the following definitions.

Definition 5 (Partial Application, Pap(A))

Given a simple adt A = (T , {f1, . . . , fn}), a partial application of fi is any function

of the following form:

λx1 · λx2 · . . . · λxk · fi a1 a2 . . . am, 0 6 k 6 m

Here, m is the arity of fi, each version argument xj occurs exactly once in the

sequence [a1, . . . , am], and all the other elements of this sequence are atomic values

such as integers. To avoid duplication, we further insist that x1,. . . ,xk occur in order

in the sequence [a1, . . . , am]; that is, xi occurs before xj for i < j. The set of all partial

applications of any function of a simple adt A is denoted by Pap(A).

Example 5

For the list adt AList , whose signature is given in figure 1, the following functions

are in Pap(AList):

• λl · cons ’a’ l

• empty

• λl1 · λl2 · catenate l1 l2

We may use a partial application to assign a role to a node: For a node v labelled

with a partial application of the operation f, the role of v is defined to be the role

of f.

We are now in a position to give a definition of a dug. For nodes with more than

one incoming arc, we need to identify which arc corresponds to which argument.

We therefore label every arc with an argument position.

Definition 6 (dug)

Given a directed multi-graph G = (V,E), a simple adt A = (T , {f1, . . . , fn}), a

total mapping η : V → Pap(A), a bijection σ : V → {1..|V|} and a total mapping

τ : E → N, the 4-tuple (G, η, σ, τ) is a dug for A, if for every v ∈ V the following

properties are satisfied:

1. The arity of η(v) equals the in-degree of v.

2. The mapping τ restricted to the incoming arcs of v is a bijection with the set

{1..indegree(v)}.
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Fig. 2. A dug for the list adt AList .

3. If the incoming arcs to v, ordered by τ, have sources v1, . . . , vk , then the types of

arguments required by η(v) match the types of results supplied by η(v1), . . . , η(vk).

4. If v has successor w ∈ V, then σ(v) < σ(w).

5. The type of every argument of η(v) is T a, for some uniform instantiation of a.

Properties 1–3 ensure the dug is well-defined. Properties 4–5 impose restrictions

on dugs to make generating dugs easier: Property 4 orders the arguments of an

operation before the operation itself, forcing the graph to be acyclic – see the

problem Choosing the operation before the arguments of section 3.1.1 for justification

of this restriction; Property 5 ensures only version arguments are taken from the

results of other operations – see the problem Choosing non-version arguments of

section 3.1.1 for justification.

Example 6

Figure 2 shows an example of a dug. A table defines η. The ordering σ of the

evaluation of the nodes is given by σ(vi) = i. For nodes of in-degree > 1 the labels

assigned by τ are written beside the relevant arcs: v5 catenates v1 onto the front of

v3, and v7 catenates v1 onto the front of v6. The type variable a can be instantiated

to the type Char to obtain type consistency for every function application.

As each operation returns only a single value, we may associate each node with

the value it produces. The nodes of the version graph are associated with versions

formed by either generating a fresh version or by mutating one or more previous

versions. The arcs within the version graph represent the flow of data within the

privacy of the adt framework. The arcs going out from the version graph represent

the flow of data out of the privacy of the adt framework.
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2.3 Evaluation

We have so far presented a dug as a record of how an application uses an imple-

mentation of an adt. We can reverse this process. By creating an evaluator of dugs,

we create an artificial slice of the application that uses an adt implementation in the

same way. We can then use this slice as a benchmark with a known pattern of use.

We define dug evaluation more precisely by first defining how we may associate

each node with a function application.

Definition 7 (Interpretation of Partial Applications)

Let A be any simple adt. Let f be an operation of A. Let g ∈ Pap(A) be any

partial application of f. Let I be an implementation of A. The interpretation of g

under I, denoted by [[g]]I, is the value of g using the implementation of f in I.

Example 7

Let L be the ordinary Haskell implementation of lists, then

• [[λl · cons True l ]]L = \l → (True:l)

• [[λl · head l ]]L = \(x:xs) → x

• [[empty]]L = [ ]

Definition 8 (Interpretation of Nodes)

Let (G, η, σ, τ) be any dug for the adt A, let v be any node of G, and let I be

an implementation of A. Let the arcs incident to v, ordered by τ, be from the

nodes v1, . . . , vk respectively. The interpretation of v under I, denoted by [[v]]I, is

the following expression:

[[v]]I = [[η(v)]]I [[v1]]I . . . [[vk]]I

where the right-hand side is an application of the function [[η(v)]]I. Note that as G
is acyclic, this recursive definition is sound.

Example 8

Using the dug shown in figure 2, and the ordinary Haskell implementation L of

lists,

• [[v1]]L =(\l → (’c’:l)) [ ]

• [[v4]]L =(\(x:xs) → x) ((\l → (’h’:l)) [ ]).

2.3.1 Order of evaluation

The order of evaluating the interpretations of the dug nodes can significantly affect

efficiency. Within functional languages there are two main schemes for deciding the

order of evaluation of an expression: lazy and eager. We can accommodate either

scheme by using the node ordering σ of a dug (G, η, σ, τ) in different ways, but here

we consider only one.

Lazy Evaluation Under lazy evaluation, only the work required to form the de-

manded result is performed. We must demand a result or no work will be done.

Within the adt framework, we cannot look within an adt value, so we instead
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demand the values that are of some other type. Looking at a dug, only the values

given by the observer nodes have such a type. The order in which we demand these

values may affect efficiency, but for simplicity we assume that the order of evalua-

tion for observer nodes coincides with the order of formation for their associated

closures.

Definition 9 (Lazy Evaluation of a dug)

Given a dug (G, η, σ, τ) for an adt A, and an implementation I of A, the lazy

evaluation of the dug with respect to I is the process of performing the following

steps on each node σ(i) in order:

• Form the closure given by [[σ(i)]]I.

• If the node is an observer, demand the value of this closure.

Example 9

The lazy evaluation of the dug of figure 2 would form the closures [[vi]] for 0 6 i 6 10

in order. When the closures for the observer nodes are formed, namely [[v4]], [[v9]],

and [[v10]], their values are demanded at the same time.

2.4 Profile

We want to create a benchmark from a dug, and we want to extract a dug from

an application. However, a dug may be too large and complex to serve as an

intelligible pattern of use. So we next define the profile of a dug. The profile will

condense the most relevant characteristics of a dug into a few numbers. We can use

pseudo-random numbers to generate a family of dugs that on average have a given

profile. The initial seed given to the pseudo-random number generator determines

which one is chosen.

So what characteristics do we choose to record in a profile? A distinctive property

of purely functional data structures is that their operations are non-destructive;

but the extent to which applications depend on this property varies greatly. So one

component we choose to include in a profile is the fraction of persistent applications

of operations. An application of an operation is persistent if one of the version

arguments has already been mutated—that is, a mutator has already been applied

to this argument.

Definition 10 (Mutation, Observation)

For any node v of the version graph of a dug, a mutation of v is an arc from v to

a mutator node. Note that an n-ary mutator creates n mutations. An observation

is defined similarly. Mutations and observations inherit the ordering given to the

nodes to which they point.

Example 10

Figure 2, the arc from v7 to v8 is a mutation, and the arc from v7 to v9 is an

observation. As v9 is ordered after v8, the observation v7 → v9 is ordered after the

mutation v7 → v8.

The ordering of mutations and observations from any node v can be made total by

appealing to τ to resolve any ties between arcs to a common target.
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Definition 11 (Persistent, Original)

For any node v of the version graph of a dug with node ordering σ, a mutation or

observation of v is persistent if it is ordered by σ (and τ) after the earliest mutation

of v. A mutation or observation that is not persistent is called original.

Example 11

In figure 2, we see that the observation v7 → v9 occurs after the mutation v7 → v8. As

this mutation is the only mutation of v7, it is also the earliest. Thus the observation

occurs after the earliest mutation, and so is persistent. The mutation v1 → v7 is also

persistent. The observation v3 → v4 is original.

A more obvious characteristic of dugs is the ratio of how many times we apply one

operation relative to another.

Definition 12 (Weight)

For any dug D, the weight of a mutator f in D is the number of mutations that

apply f to nodes in D. The weight of an observer is defined similarly. The weight of

a generator f is simply the number of nodes that are generated by f.

Example 12

The weights of the operations in the dug in figure 2 are:

Operation : empty catenate cons tail head lookup isEmpty

Weight : 2 4 2 2 1 1 1

Generative power of profiles. Information such as the average number of mutations

of a node is not only useful for summarising dugs, it also provides a very convenient

way to generate a dug with a given profile.

From the fraction of mutations that are persistent, we can calculate the average

number of mutations of previously mutated nodes as follows. Let pm be the fraction

of mutations that are persistent. Take any node vi that is mutated at least once.

The first mutation of vi is original, and the remaining ni mutations are persistent.

Averaging over all j mutated nodes, we have

pm =

∑j
i=1 ni∑j

i=1(ni + 1)
, n =

∑j
i=1 ni

j
⇒ n =

pm

1− pm
If we know the fraction m of version nodes that are not mutated at all, we can

calculate the average number µ of mutations of a node:

µ = 0m+

(
1 +

pm

1− pm
)

(1− m) =
1− m
1− pm

We call pm the persistent mutation factor (pmf), and m the mortality.

If we calculate the ratio r of mutations to observations, we can also estimate

the average number of observations of a node. Under the simplifying assumption

that a node was made by a mutator, the average number of observations of a node

is 1/r. As we have excluded nodes made by generators, this number is only an

estimate. From the fraction po of observations that are persistent, we can calculate

the average number of observations made before the first mutation at (1 − po)/r,
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and the average number of observations made after the first mutation at po/r. We

call po the persistent observation factor (pof).

We separate generation weights from the weights of mutators and observers. To

allow the calculation of the ratio r of mutations to observations, we group the

mutation and observation weights together to form the mutation-observation weights.

The ratio of generations to other operations is governed by mortality and by the

persistence factors.

Definition 13 (dug Profile)

The profile of a dug D with version graph GV is given by the following:

• Generation weights: The ratio of the weights of each generator.

• Mutation-observation weights: The ratio of the weights of each mutator and

observer in GV .

• Mortality: The fraction of nodes in GV that are not mutated.

• pmf: The fraction of mutations of nodes in GV that are persistent.

• pof: The fraction of observations of nodes in GV that are persistent.

Example 13

The dug shown in figure 2 has the following profile:

• Generation weights: As there is only one generator, empty, this property is

redundant: empty = 1.

• Mutation–observation weights: We have

catenate : cons : tail : head : lookup : isEmpty = 4 : 2 : 2 : 1 : 1 : 1

Note that each application of catenate carries double the weight of an application

of one of the other operations because each application of catenate creates two

mutations.

• Mortality: Of the eight version nodes, only one (v8) is not mutated, so the

mortality is 1/8.

• pmf: There are eight mutations, one of which (v1 → v7) is persistent, so the pmf

is 1/8.

• pof: There are three observations, one of which (v7 → v9) is persistent, so the

pof is 1/3.

If the pmf and pof of a dug are both zero, then we know that there are no persistent

applications of an operation. Therefore, we make the following definition.

Definition 14 (Single-Threaded)

An application using an implementation of a simple adt A in a manner recorded

by the dug D is single-threaded (with respect toA) if the pmf and pof of D are both

zero. A single-threaded application does not require a persistent implementation of

the adt.

Example 14

The part of the dug in figure 2 restricted to nodes v0, . . . , v6 has pmf=pof=0 and is

therefore single-threaded.
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2.5 Shadow data structure

To aid the generation of dugs, and to add information to profiles, we use a shadow

data structure. A shadow data structure maintains a shadow of every version. This

shadow contains information about the version. A shadow data structure does not

depend on a specific implementation of the adt; it is applicable to any implementa-

tion of the adt. A shadow data structure is only used for the generation or analysis

of dugs, and need not be involved in applications using an adt implementation.

As a running example, for the adt AList , whose signature is given in Figure 1,

and for which each version is a list, let the shadow of a version contain the length

of the list.

Guarding against undefined applications. When generating a dug from a profile, if

we blindly choose to label a node with any operation, we may create an application

that is undefined: for example, the head of an empty list. Such applications of partial

operations need to be excluded from a dug generated at random. We need to have a

guard around the partial operation telling us which applications of the operation we

can form. We can use the shadow of a version to store enough information to allow

decisions about whether a particular operation may be applied to that version. For

example, for AList , if we maintain the length of a list in the shadow, we can restrict

the use of an operation such as taking the head of a list, applying it only to lists of

positive length.

Shadow Profiling. The shadow can also store any other useful information about

what operations were performed. This shadow profile allows information specific

to an adt to be collected. For example, by maintaining the length of a list, we

can calculate the average lengths of lists passed to each mutator or observer. This

extra source of profiling information is important. Without it, for example, ‘N

insertions followed by N deletions’ and ‘N insertions each followed by a deletion’

have indistinguishable profiles. If N is large, the ideal implementation is unlikely to

be the same in each case.

To simplify the definitions that follow, we shall assume that each occurrence of

the type variable a in the type of an ADT operation is instantiated to Int. This

assumption also simplifies both dug generation and dug extraction,

Definition 15 (Shadow Operation)

For any simple adt (T , F), and for any generator or mutator f ∈ F , let t be the

type of f with type variable a instantiated to Int. For any type s, the function g

is an s-shadow of f if g has the type shadow s(t), derived from t by replacing all

occurrences of T Int by s. The shadows maintained by this shadow operation have

type s. There are no shadows of observers as they do not return versions.

Example 15

For any type s, an s-shadow of the update operation of AList (see figure 1) has the

following type:

shadow s(List Int → Int → Int → List Int) = s→ Int → Int → s
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Definition 16 (Shadowing)

Let A = (T , {f1, . . . , fn}) be any simple adt. Without loss of generality, let

{f1, . . . , fm} be the generators and mutators of A. For any set F ′ = {f′1, . . . , f′m}
of operations, and any type s, the pair (s, F ′) is a shadowing of A if the following

hold for all i ∈ {1, . . . , m}:
• The operation f′i is an s-shadow of fi.

• There exists a homomorphism φ :: T Int→ s; that is, for all x1, . . . , xk , where k

is the arity of fi, if fi x1 . . . xk is well-defined, then

φ (fi x1 . . . xk) = f′i (φ′ x1) . . . (φ′ xk)

where for all x,

φ′ x =

{
φ x, if x has type T Int

x, otherwise

Example 16

In one possible shadowing SList of AList the type s shadowing List Int is of type

Int, and the homomorphism φ :: List Int → Int is the function that returns the

length of a list.

Definition 17 (Shadow Evaluation)

Let D be any dug for adt A, and S = (s, F) be any shadowing of A. The shadow

evaluation of D is a mapping ζ that takes a version node v to the result of evaluating

[[v]]S, where an operation is interpreted by its shadow.

Example 17

Taking the dug of Figure 2 with a shadowing SList tracking list length, the shadow

evaluation ζ of the dug is:

vi : v0 v1 v2 v3 v5 v6 v7 v8

ζ(vi) : 0 1 0 1 2 1 2 1

2.5.1 Guarding

For each operation f we need to define a guard that indicates which applications

of f are allowed. We could make a guard take the same arguments as f, but with

shadows for versions, and return true or false, according to whether the application

is allowed or not. However, this approach has the disadvantage of forcing a choice of

all arguments before applying the guard. For an operation such as indexed lookup,

we have to guess which indices are appropriate before testing the validity of the

application – hardly efficient.

The definition of a dug already restricts arguments supplied by the result of

another operation to just version arguments. So non-version arguments can be

chosen independently of the results of other operations. We pass the guard only the

shadow version arguments of an operation, and the guard’s result specifies the valid

domains for the remaining arguments. For example, the guard for lookup could

return a range of indices up to the length of the list. As we assume that every
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non-version argument is of type Int, each domain of legitimate values for such an

argument is a subset of the integers, for which the following definitions assume a

suitable representation type IntSubset.

Definition 18 (Guard Type)

Let T be any type constructor of arity one. Let t be any simple type over T with

type variable a instantiated to Int. Let n be the number of arguments of an operation

of type t, v of which are version arguments. For any type s, the type guard s(t) is

given by

guard s(t) =

v times︷ ︸︸ ︷
s→ · · · → s→

{
[IntSubset]n−v if v < n

Bool if v = n

where [a]m is the type of lists of m elements of type a, and where s represents the type

of shadows. Every version argument is replaced by a shadow, and every non-version

argument moves over to the result type. There are n − v non-version arguments; if

n− v = 0, then the result type is Bool, otherwise it is a list of n− v elements each of

type IntSubset.

Example 18

Consider the adt AList , whose signature is in figure 1. For any type s, a guard of

the operation head using shadows of type s must be of type

guard s(List Int → Int) = s→ Bool

If we add the operation update of type

update :: List a→ Int → a→ List a

to AList , then any guard of update must be of type

guard s(List Int → Int → Int → List Int) = s→ [IntSubset]2

Definition 19 (Guard)

Let S = (s, F ′) be a shadowing of the adt A = (T , F) defining a homomorphism

φ :: T Int → s. For any operation f ∈ F of type t, the function g is an S-guard of

f if the following hold:

• The type of g is guard s(t).

• For all x1, . . . , xn, where xi1 , . . . , xik are each of type T Int and

xj1 , . . . , xjl are the rest, we have:

— If l = 0, f x1 . . . xn is well-defined if

g (φ xi1 ) . . . (φ xik ) = True

— If l > 1, f x1 . . . xn is well-defined if

g (φ xi1 ) . . . (φ xik ) = [xs1, . . . , xs l]

and for all 1 6 t 6 l,

member xjt xs t = True
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To generate a dug:

while the dug is too small do
choose an operation

choose version arguments for the operation

choose non-version arguments for the operation

add a node to the dug

add arcs from the nodes used as arguments to the new node

label the node with the operation and the remaining arguments

Fig. 3. Initial outline of a simple dug generation algorithm.

Example 19

The guards for head and tail applied to shadow-length s return s 6= 0. The guard

for lookup returns [{1 . . . s}].

3 Implementing DUGs

3.1 From profile to benchmark

We derive a benchmark from a profile in two stages:

(1) A dug generator uses pseudo-random numbers to create a dug that proba-

bilistically has the given profile, i.e. the expected profile is the one given.

(2) A dug evaluator executes this dug using a given implementation of the adt.

3.1.1 dug Generation

How shall we build a dug? Figure 3 gives a reasonable starting point for an

algorithm, but proceeding along these lines one encounters various problems.

• Creating undefined applications. Some applications of operations may not be

well defined. For example, the application head empty is usually not defined.

We avoid these applications by maintaining extra information – a shadow –

about each possible argument of an application. A guard protects us from

creating an undefined application, by using the shadow of every argument.

• Allowing undefined arguments. Lazy evaluation evaluates the operation, not

the arguments. Therefore, adding a node with (as yet) undefined arguments

seems reasonable. However, without knowing the arguments, we cannot avoid

undefined applications using a shadow data structure. So we never add a node

without knowing all the arguments.

• Choosing the version arguments. We could pick the arguments from any part of

the dug already formed. But as we must maintain a shadow of every possible

argument, this unrestricted choice may cost too much. Therefore we restrict

choice of arguments to a subgraph, the frontier, and maintain shadows only

for nodes in the frontier. If the frontier becomes too large, we remove a node

(though it stays in the dug).
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• Choosing non-version arguments. How can we generate an argument of type a?

As no profile properties depend on non-version arguments, we restrict them

to integers—that is, we instantiate the type variable a to Int. We then choose

all non-version arguments independently of the graph.

• Choosing the operation before the arguments. If each operation is chosen before

any arguments are selected, it is hard to make a generated dug conform to

some of the profile properties. It is easier if for each new node we plan a

sequence of operations it should be involved in as an argument, and for each

operation maintain a version-argument buffer of the appropriate arity. We

place nodes in the buffer for their next planned operation. When a buffer is

full, we create a new node accordingly, emptying the buffer.

• Diverging. If we allow the same operation and arguments to be chosen re-

peatedly, and if this application is rejected by the guard, we could diverge.

Therefore, once a guard rejects an application, we revise the plans for argument

nodes, skipping this operation.

A refined outline of the dug generation algorithm is given in figures 4 and 5. We

build a dug one node at a time. Each node has a future and a past. The future

records which operations we have planned to apply to the node, in order. The past

records which operations we have already applied to the node. The nodes with a

non-empty future together make up the frontier. The first operation in a future is

called the head operation.

As we add a node to the dug, we take arguments from the frontier. We bound

the size of the frontier above and below:

• Bounding above prevents the frontier from getting too large. If the pmf is

non-zero, we shall need to mutate nodes more than once, leading to continual

growth of the frontier. So we cap the frontier size to prevent running out of

memory. When the frontier exceeds a given limit, we remove an arbitrary node

from the frontier.

• Bounding below ensures there is at least one node to build on, and encourages

diversity, especially in the presence of operations with large version arities.

When a new node is created, we record this event as a birth. A list of births, in

order, describes a dug completely. When a node no longer has a future, we record

its past as a death. A list of deaths also describes a dug completely. A list of births

is more convenient for evaluating a dug, whereas a list of deaths is more convenient

for profiling a dug. So we produce both.

3.1.2 dug Evaluation

The process of dug evaluation is comparatively straightforward. Unlike dug gener-

ation, we encounter no theoretical problems, only the practical one of efficiency. Our

first dug evaluator required more time for input-output and maintaining a lookup

table than for adt operations, preventing us from accurately measuring their relative

efficiencies. We solve this problem by writing a driving program for the evaluator

in C, with C routines to perform the input-output and handle the lookup table. We
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To generate a dug:

while the dug is too small do
if the frontier is too small then

try to make a new node using a generator (*)

else-if the frontier is too large then
remove a node from the frontier

record the death of this node

else
remove a node from the frontier to act as a version argument

place the node in the buffer corresponding to the node’s head operation

if this buffer is full then
try to make a new node with the buffer’s contents acting as the version

arguments for their common head operation (*)

fi
fi

od
record the death of every node in the frontier and buffers

Fig. 4. Overview of the dug generation algorithm (Part I). Further details of steps marked

(*) are given in the next figure.

use an extension to the Green Card package to support calls from C to Haskell

(Peyton Jones et al., 1997).

An overview of the evaluation algorithm is given in figure 6. When a non-version

node is born, its result must be demanded immediately. As the result of an observer is

either of type Int or of type Bool, we demand this value by converting it to an integer,

and adding it to the checksum. This checksum is the result of the dug evaluation.

Different implementations of the same observationally-equivalent adt evaluating the

same dug should return the same checksum; so by comparing checksums we can

check the results of one implementation against those of another.

3.2 From application to profile

3.2.1 dug Extraction

The task of extracting a dug from the run of an application is quite tricky in a lazy

language like Haskell. One approach is to modify the compiler. However, as this

solution depends on the details of a specific compiler, it would not be portable. An

alternative approach is to transform the original program into one that gives the

same result, but also produces a dug. We adopt this method.

Problems of dug Extraction. Here are two key goals we must achieve by transform-

ing the original program:

• Lazy Evaluation. When we record the operations applied, we must be careful

not to evaluate anything that was not evaluated by the original program, and

to evaluate everything in the same order as the original program. Otherwise

we may get a different dug, or the resulting program may fail to terminate.
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To try to make a new node from an operation and some version arguments:

apply the guard of the operation to the shadow of every version argument

if the guard succeeds then
choose some non-version arguments from the result of the guard

make a new node by applying the operation to the arguments

record the birth of this node

add the new node to the dug

if the operation is not an observer then
plan the future of the new node

else
leave the future of the new node empty

fi
if the new node has a non-empty future then

add the new node to the frontier

else
record the death of this node

fi
fi
remove the head operation of each version argument

record the death of every version argument with an empty future

add remaining version arguments to the frontier

Fig. 5. Overview of the dug generation algorithm (Part II).

while not at the end of the dug file do
read the next birth or death

if it is a birth then
apply an operation to integers and nodes in the frontier, as given by the birth

if the operation is an observer then
convert the result to an integer and add it to the checksum

else
add the resulting node to the frontier

fi
else

remove the dead node from the frontier

fi
od
report the checksum

Fig. 6. Overview of the dug evaluation algorithm.

Some arguments may not be evaluated at all; after the program has finished,

we record any such unevaluated arguments explicitly in the dug.

• Recording the dug. We must record the dug as output, but do not wish to

transform every function to work within the IO monad. Neither do we wish

to accumulate information about the dug by extending the result from every

function that calls an adt operation. We avoid this problem by cheating. We

interface to a side-effecting C function that records the dug in a file.
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data Tw a = Node Int (T a)

fw
i :: wT (ti,1)→ · · · → wT (ti,ni

)

fw
i a1 . . . ani−1 =

let nodeId = new node wN (fi)

in seq nodeId wR(fi wA(a1) . . . wA(ani−1))

where

wT (t) =

{
Tw a, if t = T a

t, otherwise

wN(fi) gives the data constructor that names fi

wR(e) =

{
Node nodeId e, if e has type T a

e, otherwise

wA(aj) =


arc aj nodeId j, if aj has type Tw a

intArg aj nodeId j, if aj has type Int

aj, otherwise

Fig. 7. Definition of a wrapped adt. For an adt exporting type constructor T and operations

fi :: ti,1 → · · · → ti,ni
, the wrapped adt exports type constructor Tw and operations fw

i .

We cannot, however, record arguments of type a, as we do not know in

general how to store these. The user could supply a function to convert any

value of type a to, say, an integer. However, extracting this value could evaluate

the argument more than previously. Therefore we do not record values of such

arguments.

How dug Extraction is Done. We modify the application and adt implementation

to perform the same task, but produce a dug as a side-effect. The modification

involves wrapping the main function and every adt operation. The wrapped main

function performs some initialization, calls the old main function, and then tidies up

the results. Each wrapped adt operation works with wrapped versions. A version

is wrapped with an identity tag. A wrapped operation uses the identity tags to

record, each time it is called, which nodes supply its version arguments. A wrapped

operation also calls the old operation, and wraps the result into a node with a new

identity tag.

The rules for deriving a wrapped adt are given in figure 7. For example, the

wrapped version of a List datatype is

data WrappedList a = Node Int (List a)

and the wrapped implementation of cons is

wrappedCons :: a → WrappedList a → WrappedList a

wrappedCons i v = let nodeId = new node Cons

in seq nodeId (Node nodeId (cons i (arc v nodeId 1)))
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The function arc unwraps and returns the version argument, after recording the arc

from this version node to the newly created node.

arc :: WrappedList a → NodeId → Int → List a

arc (Node from v) to position = seq from (seq (new arc from to position) v)

The functions new node and new arc are implemented in C; new node returns a

new identity tag for a node, after recording which operation labels this new node,

whereas new arc returns only unit, after recording the arc, including the argument

node identity, the result node identity, and the position of the argument node.

Evaluation of wrappedCons occurs only when cons would have been evaluated

in the original program. It forces the evaluation of the identity of the new node, and

then returns the wrapped result. However, we do not record any of the arguments

yet, as we do not know that they will be evaluated. We wrap the version argument

with a call to arc. When the version argument would have been evaluated by the

original program, we can examine the identity of the argument.

3.2.2 dug profiling

As with dug evaluation, we read one birth or death at a time. The algorithm is

quite straightforward. The type of a profile is

data Profile = Profile {generationWeights :: [(Operation,Weight)],

mutationObservationWeights :: [(Operation,Weight)],

mortality :: Double, pmf :: Double, pof :: Double}
To calculate the generation weights and the mutation-observation weights, we keep a

note of the number of nodes made by each operation. To calculate the mortality, we

accumulate both the number of nodes not mutated, and the total number of nodes.

From this information we can calculate the proportion of nodes not mutated: that

is, the mortality. Similarly, we accumulate integer numerators and denominators to

calculate the pmf and the pof.

4 Inductive classification of benchmarks

Our goal is a tool that gives benchmarking results qualified by the pattern of datatype

usage. Naively we might hope to create a benchmark with every possible pattern

of use – using some discrete scale for profile values – and provide a lookup table

of times of each implementation running each benchmark. The user simply obtains

the pattern of use of their application, and looks up the quickest implementation

in the appropriate row of the table. Unfortunately, this approach is not practical.

Such a table would cover a huge number of points, and the total time to collect the

results for each point would be far too large, because the number of patterns of use

is exponential in the number of usage attributes.

One way to reduce the number of attributes is to ignore the least significant

attributes – those that have little or no effect on the relative performance – and

concentrate on those that most influence the appropriate choice of implementation.
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4.1 Decision trees

Of the many possible approaches to the problem of characterising the key attributes,

our chosen method is to induce a decision tree (Quinlan, 1986). For our purposes, a

decision tree is a binary tree with the following properties:

• Each branch node is labelled with a test of the form A 6 v, where A is a

datatype usage attribute, and v is some constant.

• Each leaf node is labelled with the name of an adt implementation.

Decision trees can be used to choose an implementation given knowledge of datatype

usage: start at the root and follow the appropriate branches till you reach a leaf.

A decision tree is induced from a training set of the data it is to characterise.

In our case, this training set is a sample of benchmarks. The sample is generated

from a random selection of attribute values, but it is the attributes of the resulting

benchmarks that are used, thereby including the attributes both of the profile and of

the shadow profile – an important source of extra information. Each benchmark in

the sample is run, and the performance of each implementation is recorded. From

these results, we induce a decision tree T . Given any benchmark B from the sample,

using only the attributes of B, T will decide upon the winning implementation.

More generally, given a sufficiently large and varied sample, the decision tree

induced should be able to predict the winning implementation of any benchmark

with good accuracy.

4.2 Induction algorithms

We take an existing algorithm from the literature for inducing a decision tree from

a sample. We use the algorithm c4.5 (Quinlan, 1993), which is a descendant of id3

(Quinlan, 1986). Both algorithms are widely known and respected in the machine

learning community.

The basic idea underlying c4.5 is a simple divide and conquer algorithm due to

Hunt et al. (1966). Let S be the results of running a sample of benchmarks. Let

I1, . . . , Ik be the competing adt implementations. There are two cases to consider:

• S contains only results reporting a single implementation Ij as the winner. The

decision tree for S is a single leaf labelled with Ij .

• S contains results reporting a mixture of winners. By dividing S into S1 and

S2 according to some test, we can recursively construct trees T1 and T2 from

S1 and S2 respectively.

The key to a good implementation of Hunt’s algorithm is the choice of test with

which to split S . The set of possible tests is limited by the range of attribute values

for benchmarks in S . Let [v1, . . . , vn] be the distinct values, in order, of an attribute

A for benchmarks in S . Consider two consecutive values, vi and vi+1. For any v

satisfying vi 6 v < vi+1, splitting S with the test A 6 v results in the same split.

Therefore, there are at most n− 1 distinct ways of splitting S using A. We consider

only the tests A 6 (vi + vi+1)/2.
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But how do we choose which test to use at each stage? id3 uses the gain criterion

to measure the quality of a test, whereas c4.5 uses the gain ratio criterion (Quinlan,

1993). We have tried both, but the results reported in section 5 are for the gain ratio

criterion, as it proved more successful.

4.3 Simplifying decision trees

The decision tree induced by this method classifies the results of the given sample

perfectly. Unfortunately, this tree is not an ideal basis for choosing an implementation

for two reasons: (1) the tree may be very large and complex; (2) the tree is based on

the chosen sample and may be over-specific. Therefore we prune the induced tree:

wherever replacing a subtree with either one of its children or with a single leaf does

not increase the predicted error of the subtree, it is pruned to this smaller tree.

There is a choice of methods for error prediction (Quinlan, 1987; Quinlan, 1993).

Some are based on further test samples: for example, if in addition to recording

the winning implementation for the test we also record the ratio of the time of

every implementation to the time of the winning implementation, one definition of

the predicted error of a subtree is the average ratio of the implementation given

by the subtree as the winner. However, we found that a statistical pruning method

described by Quinlan as ‘far more pessimistic’ (Quinlan, 1993) works just as well

without requiring further tests.

5 Results

In this section we present some results from the use of Auburn1 to evaluate over

twenty different data structures implementing queues, random-access sequences and

heaps.

Queues Among the simplest of adts, queues have the following signature.

empty :: Queue a

snoc :: Queue a → a → Queue a

head :: Queue a → a

tail :: Queue a → Queue a

In addition to a naive implementation of queues as lists, we take the batched and

multihead variants of a list-pair (Hood & Melville, 1981), two refinements of list-

pairs justified by the banker’s model (Okasaki, 1996c) and the physicist’s model

(Okasaki, 1998) of amortized complexity, a real-time variant of banker’s queues

(Okasaki, 1995c), and Okasaki’s bootstrapped and implicit queues (Okasaki, 1998).

1 All the benchmark tests reported here were compiled using the York nhc13 byte-code Haskell compiler,
and run in a heap of 80Mb, on an SGI Indy under IRIX 5.3.
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Random-access sequences We use the term random-access sequence to describe a list

adt that also supports indexed lookup and update, with the following signature.

empty :: RASeq a

cons :: a → RASeq a → RASeq a

head :: RASeq a → a

tail :: RASeq a → RASeq a

lookup :: RASeq a → Int → a

update :: RASeq a → Int → a → RASeq a

Besides a naive list implementation, we take threaded skew binary lists (Myers, 1983),

Adams’ balanced trees (Adams, 1993), Braun trees (Hoogerwoord, 1992), slowdown

deques (Kaplan & Tarjan, 1995) restricted to the relevant operations, skew binary

lists (Okasaki, 1995b) and elevator lists (Moss, 1999).

Heaps A heap is an ordered collection of elements, with the following signature.

empty :: Ord a ⇒ Heap a

insert :: Ord a ⇒ a → Heap a → Heap a

merge :: Ord a ⇒ Heap a → Heap a → Heap a

findMin :: Ord a ⇒ Heap a → a

deleteMin:: Ord a ⇒ Heap a → Heap a

Once again we include a naive implementation using (ordered) lists. The other

implementations are binomial heaps (Okasaki, 1998), skew binomial and bootstrapped

skew binomial heaps (Brodal & Okasaki, 1996), pairing heaps (Okasaki, 1996a), leftist

heaps (Núñez et al., 1995) and splay heaps (Okasaki, 1998).

5.1 Performance measures

We apply the terms score and cost to implementations or decision trees with the

following meanings.

Definition 20 (score,cost)

Given a set of implementations for an adt A and a set of benchmark tests using

A, we define the score obtained by each implementation I to be the percentage of

tests for which I is fastest, and the (normalised) cost of I to be the average across

all tests of the ratios between the execution time for I and the execution time of

the fastest implementation for each test.

If usage attributes are known for each test, a score and a cost can also be assigned

to a decision tree, based on the percentage of tests for which the implementation

selected by the tree is the fastest, and on the ratios between the execution times for

the implementation selected by the tree and the fastest implementation for each test.

Example 20

If a single implementation is fastest for all tests, then it has a score of 100% and a

cost of 1.0. If the implementation selected by a decision tree is never the fastest, but

on average takes twice the time of the quickest implementation, then the decision

tree has a score of 0% and a cost of 2.0.
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5.2 Correctness checks and fine-tuning

Tracing Bugs. Before we benchmark the implementations, we ensure that we have

coded them correctly. Although type checking catches most accidental errors, some

may remain. It is also possible that an implementation presented in the literature

contains a mistake. We can use Auburn to check that implementations of the

same adt produce the same results. Auburn can generate a series of pseudo-

random dugs, searching for the smallest dug that causes an error: that is, either an

implementation fails to evaluate the dug – for example, because of a run-time error

– or two implementations return different checksums. The benchmarker outputs any

anomalous dug as a Haskell program. In the 23 initial implementations, we detected

4 faults this way. The smaller the dug, the easier it is to find the bug. So in each

case we let the benchmarker run for a long time, trying to find the smallest failing

dug. For example, the queue benchmarker found a subtle bug in our bootstrapped

queue implementation. The smallest failing dug – discovered after a run of several

hours – has 22 nodes.

Fine-Tuning. Coding an implementation involves many low-level design decisions,

some of which can make a significant difference to performance. Auburn helps us to

make such design decisions because it can compare the overall performance of an

implementation with and without a minor modification. We use the benchmarker

of each adt to time each implementation and its variants over a sample of 100

benchmarks. For each variant I the benchmarker reports the score and cost of the

‘decision tree’ made from a single leaf I – the tree that always chooses I. Guided

by comparisons of these scores and costs, we made nine improvements to our initial

implementations, each gaining between 4% and 63% in performance.

5.3 Decision trees and their performance

For each adt, after fine-tuning the implementations, we apply the inductive bench-

marker to a training sample of 200 pseudo-random dugs.

5.3.1 Analysis of the random-access sequence decision tree

The most accurate decision trees are too large to show and discuss here, but figure 8

shows a simplified tree for random-access sequences. Each leaf is annotated with

(N/E), where N is the number of benchmarks in the test sample covered by this

leaf, and E is the number of misclassifications by this leaf. The significance of a

leaf can be estimated from the number and proportion of winning implementations

that it classifies correctly. Almost all of the leaves have a low proportion of errors.

The Elevator leaf has a high proportion of errors, and the remaining leaves on the

subtree from the test tail 6 0.071 show AVL to win over half of the cases (36 out

of 66). We consider the other leaves in turn.

• Large size (AVL). The AVL and Adams implementations are the most tree-like

implementations, which gain strength as the size increases, because of their
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size <= 97.728

lookup <= 0.079

Yes

AVL (139/32)

No

Naive (87/46)

Yes

update <= 0.08

No

ThreadSkewBin (65/1)

Yes

size <= 28.014

No

ThreadSkewBin (143/21)

Yes

tail <= 0.071

No

AVL (27/7)

Yes

cons <= 0.202

No

AVL (18/2)

Yes

Elevator (21/16)

No

Fig. 8. A decision tree induced using the gain criterion on a training sample for the

random-access sequence adt, pruned using a reduced error method.

logarithmic complexity. The AVL implementation benefits from balancing

specialised to adding or removing an element at the left, i.e. from cons or tail.

It is not clear if the Adams implementation could use a similar improvement.

• Fair size, small lookup weight (Naive). This decision is a little surprising. If few

update operations are done, then we would expect the Naive implementation

to win. But what if there are quite a lot of update operations? We might expect

the Naive implementation to lose. The leaf’s annotation does show quite a

few errors, but there is another reason: An update will be fully evaluated only

if it is forced. The only observations in the absence of lookup are head and

isEmpty, and because the Naive implementation is so lazy, these observers will

force updates only on the first element. The other implementations are not as

lazy, and so do not benefit as much.

• Fair size, fair lookup weight, small update weight (ThreadSkewBin). The anno-

tation shows this leaf is very reliable, with 64 out of the 65 cases correct. The
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Table 1. The performance of decision trees induced by Auburn from a sample of 200

dugs and applied to a distinct test sample of 500 dugs. The size of a tree is the

number of branch nodes

adt Tree Size Score (% wins) Normalised cost

Queue 17 84 1.015

RASeq 22 78 1.093

Heap 17 85 1.045

ThreadSkewBin implementation deliberately implements an efficient lookup

operation, at the expense of an inefficient update operation.

• Small size, fair lookup weight, fair update weight (ThreadSkewBin). Although

ThreadSkewBin implements update to take O(i) time, where i is the index of

the element updated, for small lists, it competes well with the log-time AVL

implementation. The simplicity of the ThreadSkewBin implementation makes

it win on small lists, even with many update applications.

• Fair size, fair lookup weight, fair update weight (AVL). With enough update

operations, and a reasonably sized sequence, the AVL implementation beats

the ThreadSkewBin implementation.

For a similar analysis of decision trees for Queues and Heaps see Moss (1999).

5.3.2 Usage-based decision vs. single implementation

One way to assess the quality of the decision trees induced by Auburn is to collect

a further, larger sample of benchmarks for each adt, and to examine the accuracy

of the decision trees by applying them to these unseen test cases. For each of the

three adts, Table 1 shows the scores and costs of the induced decision tree applied

to a test sample of 500 dugs.

Do we gain anything by choosing an implementation according to the datatype

usage? How do the implementations chosen by a usage-based decision tree compare

with the single implementation chosen simply because it has performed best overall

in previous tests?

For queues, the Batched implementation wins for 72% of the tests and has a

normalised cost of just 1.02. So it seems that for these implementations of this adt

there is little to gain by choosing the implementation according to datatype usage –

one could just choose the Batched implementation regardless. However, with a score

of 84% and a cost of 1.015, the decision tree does manage to improve on the fixed

choice of a Batched implementation.

Similarly for heaps, the Pairing implementation wins for 80% of tests with a

normalised cost of 1.08 and would make a good fixed choice. Still, the decision tree

increases the score to 85%, and reduces the cost to 1.045.

For random-access sequences, decision trees succeed more convincingly. The high-

est scoring single implementations are AVL (36%) and ThreadSkewBin (46%), yet
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the Elevator implementation has the lowest overall cost (2.12). By selecting imple-

mentations to match usage, the decision tree scores 78% and reduces the cost to

1.093 – far better than any uniform choice of a single implementation.

5.3.3 Real applications

So we can use Auburn to produce advice about the choice of implementation for at

least three adts. But how good is this advice in practice? To answer this question,

we construct several real benchmarks – real in that they produce useful results. We

time each benchmark with each implementation and compare the results against

Auburn’s prediction, based on an extracted profile of the benchmark. We take four

benchmarks for each adt, and four data sets for each benchmark.

Random-Access Sequence Benchmarks. Again we give details only for random-access

sequences. An array is one of the most commonly used data structures, even in

functional programs, so benchmarks are not hard to find. However, we also wish to

include algorithms that use the sequences as lists, as in Okasaki (1995b).

• Bucketsort. This sort uses random-access operations heavily, see Cormen et

al. (1990, p. 180).

• Quicksort. This functional implementation of Quicksort (Hoare, 1962) does

not use any random-access operations.

• Depth-First Search (DFS). Implementing a graph as a random-access list of

adjacent vertices (Cormen et al., 1990, p. 465) allows any graph algorithm

to use random-access lists. We choose one of the simplest graph algorithms,

depth-first search (Cormen et al., 1990, p. 477).

• Kruskal’s Minimum-Cost Spanning Tree (KMCST). Kruskal implements a min-

imum cost spanning tree algorithm (Cormen et al., 1990, p. 504) using a

disjoint-set data structure (Cormen et al., 1990, p. 440), which we implement

using a random-access list.

Table 2 gives the results. The costs of the implementations predicted by Auburn’s

decision trees are given alongside costs for the single implementation with the best

overall performance (the least cost of any fixed choice of implementation regardless

of datatype usage), and the average cost across all implementations (the expected

cost of a randomly selected implementation).

Even the best uniform choice (of AVL trees) has a normalised cost of 1.837,

indicating that the performance of implementations varies significantly across the

benchmarks. Auburn’s predictions perform significantly better on average than this

uniform choice, and far better than a random choice.

Across all three adts, we found that Auburn gave good advice for all the real

benchmarks we tested: performance of its selected implementation was within 10%

of the best for queues and heaps, and within 30% of the best for random-access

sequences.
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Table 2. Results from real applications of random-access sequences

Benchmark Data Winning Auburn AVL Average

algorithm set implementation cost cost cost

Bucketsort 1 AVL 1.000 1.000 2.018

Bucketsort 2 AVL 1.000 1.000 2.405

Bucketsort 3 AVL 1.000 1.000 6.139

Bucketsort 4 AVL 1.000 1.000 3.186

DFS 1 AVL 1.000 1.000 1.748

DFS 2 Adams 1.002 1.002 2.316

DFS 3 AVL 1.000 1.000 3.075

DFS 4 AVL 1.000 1.000 5.992

KMC 1 ThreadSkewBin 1.000 1.181 1.404

KMC 2 ThreadSkewBin 1.000 2.063 1.932

KMC 3 ThreadSkewBin 1.000 1.699 1.672

KMC 4 ThreadSkewBin 1.557 1.954 1.599

Quicksort 1 Naive 1.000 4.856 3.193

Quicksort 2 Naive 1.000 3.069 2.310

Quicksort 3 Braun 1.889 1.826 1.828

Quicksort 4 Naive 1.000 4.740 3.088

Column averages: 1.091 1.837 2.744

5.4 Locating inaccuracy in Auburn

So Auburn’s advice is good, but not perfect. What can go wrong? We briefly examine

the main sources of possible inaccuracy.

5.4.1 Insufficient dug

Does the dug model capture datatype usage sufficiently? To answer this question,

we apply the following test. Take all the real application benchmarks, and run each

using each adt implementation, measuring the efficiency. Extract the dug from each

run. Evaluate each dug using the corresponding adt implementation. Compare the

efficiencies of the implementations when used by the application with the efficiencies

of the implementations when used by the dug evaluators.

If the dug captures all of the relevant information for influencing the efficiency of

an adt implementation, we would expect the relative efficiencies of the implementa-

tions to be the same. For example, the order of the implementations, most efficient

first, should be the same for the application as for the dug evaluator. Further, the

efficiencies should correlate linearly.

For each comparison of relative efficiencies of implementations, we calculate the

correlation coefficient. The mean correlations are 0.924 for queues, 0.780 for heaps

and 0.998 for random-access lists. The main reason why the correlation is poorest for

heaps is that dug extraction avoids problems involving polymorphism and strictness
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Table 3. Mean correlation coefficients when comparing real benchmarks with

evaluation of dugs generated from the benchmark profile

adt dug & Benchmark dug & dug

Queue 0.859 0.923

RASeq 0.704 0.969

Heap 0.694 0.999

by not recording actual element values. Instead element values are generated pseudo-

randomly, and the only constraint that can be specified is the range from which they

are drawn. The impact is minor for adts whose operations do not depend heavily

on comparisons of elements, but more marked for something like a heap in which

order is of intrinsic importance.

5.4.2 Insufficient profile

Just as we design the dug to capture datatype usage, we design the profile of a

dug to capture those aspects of datatype usage that most affect implementation

efficiency. We base the whole of Auburn on this premise. We test its validity by

generating several dugs from the same profile and comparing the performance of

implementations evaluating the different dugs. If the profile of a dug does capture

datatype usage sufficiently, then the results should be similar. To avoid limiting

the test to pseudo-random dugs generated using Auburn, we extract the original

profiles from real benchmarks. Table 3 shows the results. The correlation between

dugs generated from the same profile is very high for each adt. However, the

correlation between the benchmark and the generated dugs is significantly lower

– though still quite high. This difference indicates that some important aspects

of datatype usage in a benchmark are not being carried through a profile into a

generated dug. One important factor is the lack of size information: although size

is captured in the profiling information, and figures prominently in decision trees, it

does not influence dug generation.

5.4.3 Strictness Issues

When an implementation evaluates a dug, only the observations are demanded. As

a result, some of the generations and mutations may not be forced, depending on

the strictness of the adt implementation evaluating the dug.

To estimate the average proportion of a dug not evaluated, we evaluate sample

dugs for each of the three adts, queue, random-access sequence, and heap, and

all of their implementations. For each dug D0, we extract the dug D1 actually

evaluated – by transforming a dug evaluator for dug extraction, as described in

section 3.2.1. We then repeat this process, obtaining D2, D3, etc. till we obtain a

fixed point, i.e. till Di = Di+1. In every case, we reach a fixed point on the second
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iteration: D1 = D2. Comparing the profile of D0 with the profile of D1, averaging

across all of the dugs of the three adts, each of the weights differ by less than

0.01, the mortality differs by about 0.05, the pmf differs by about 0.01, and the pof

differs by about 0.35. So only the pof differs greatly. It differs because neither dug

evaluation nor dug extraction preserve the order of evaluation of mutations, only

the order of evaluation of observations.

5.4.4 Inaccurate or over-specific trees

Some of Auburn’s predictions of the best implementations for the real benchmarks

are quite inaccurate. One reason for these inaccuracies is a constraint on induced

decision trees. More accurate trees of similar size might employ tests on arithmetic

combinations of attributes. However, as Quinlan (1993, Sect. 10.2) points out, intro-

ducing the possibility of such tests can slow down the process of induction by an

order of magnitude.

Conversely, the very exactness of some binary decisions can be unhelpful if the

expected range of values for some attribute of an application crosses a critical

threshold. Recording normalised costs as well as simple scores is a help – both for

programmers consulting a decision tree directly, and for pruning methods used to

eliminate over-specific tests.

6 Conclusions, related and future work

Summary of contribution Previous approaches to benchmarking functional data

structures have relied on hand-picked benchmarks, giving results biased towards

an unknown datatype usage. This paper has described a way to automate the pro-

duction of results qualified by a description of datatype usage, as implemented in

the Auburn toolkit. The main contributions are

• A formally defined model, a dug, of how an application uses an adt.

• A method for extracting a dug as a slice of an application.

• The definition of dug profiles, summarising the most importance aspects of

dugs in vectors of numeric attributes.

• A method for creating a dug, and hence an artificial benchmark application,

from a profile of intended usage.

• The application of inductive classification to performance data for a pseudo-

random sample of dugs, deriving decision trees for the choice of data struc-

tures.

• Results of applying Auburn to over twenty data structures, implementing three

different adts.

Despite various limitations in the way dugs and their profiles are defined and

implemented, decision trees induced by Auburn accurately predict the results of

manual benchmarking using sample application programs. Auburn also has other

uses. For example, it can be used to search for failing cases when testing the

coding of implementations, or to asses the effect on performance of changes to the

implementation of a specific data structure.
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Related and future work Earlier versions of the dug model and Auburn were more

briefly reported in Moss & Runciman (1997; 1999). The fullest account of this work

is in the first author’s DPhil thesis (Moss, 1999).

We are not aware of any previous literature on how to benchmark functional data

structures in a structured manner. Neither are we aware of any previous attempt to

define a model for the pattern of use of an adt in a lazy functional language. Some

compilers do support profiling that includes counts of how often each function is

called, but these counts ignore other aspects of datatype usage.

A dug is closely related to both an execution trace (Okasaki, 1998) and a version

graph (Driscoll et al., 1989). An execution trace without cycles and with every

operation returning a single result is a dug. A dug with every operation returning

an adt value is a version graph. Execution traces have been used as a model on

which to explain persistent amortized complexity via lazy evaluation (Okasaki, 1998).

Version graphs have been used to explain the design of persistent data structures

(Dietz, 1989; Driscoll et al., 1989; O’Neill & Burton, 1997).

Some published studies of imperative data structures have given detailed com-

parisons of performance for alternative implementations of an adt (Arnow &

Tanenbaum, 1984; Jones, 1986). However, we are not aware of any dug-like frame-

work that has been systematically applied in connection with such empirical studies,

nor do we know of any tools like Auburn for imperative languages. It is impor-

tant for us that the dug model can handle laziness, sharing and persistence in a

purely functional world, but we see no reason why a similar model should not be

applicable in an imperative setting. In a call-by-value language, extraction would be

more straightforward. Of course the adt discipline must be strictly adhered to, and

side-effects must be curtailed to avoid any breakdown in the correspondence with

shadow computations.

Of many possible lines of further work, here are some of the main ones:

• Relax the restriction to simple adts as defined in section 2. In particular,

include higher-order operations and operations over more than one type. For

example, Auburn cannot currently benchmark the following operations:

fold :: (a → b → b) → b → RASeq a → b

fromList :: [a] → RASeq a

One problem is the need to record structures and functions without com-

promising laziness; it might be possible to adapt techniques used by Gill for

observing such values (Gill, 2000).

• Incorporate space information into Auburn’s benchmarking procedures. Cur-

rently the only measure of performance is time.

• Improve the precision of the dug model and its implementation – for example,

an improved model of evaluation order for observations, better use of shadow

information in dug generation, and more complete information about non-

version arguments in extracted dugs.

• Allow tests on combinations of attributes in decision trees. This generalisation

should increase the accuracy of the decision trees, but may slow down the

induction process considerably.
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One day we hope there will be a library of implementations of data structures,

each recommended according to datatype usage. The work reported here is a first

step in that direction.
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