
116

5

Intangible Machines

‘Software is or may be viewed as a new kind of property as, in effect, intangible
machinery’.1

Introduction

In August 1967 Morton Jacobs, who was patent counsel for the Princeton-based
software company Applied Data Research, wrote a letter to the Vice President and
General Counsel of IBM, Burke Marshall, complaining about the way IBM was dis-
tributing its computer programs. Specifically, Jacobs complained that in giving cus-
tomers who leased or bought IBM 360 computers a free copy of their Flowcharter
program (which automatically developed flowcharts that set out the logic of a com-
puter program) that IBM was destroying Applied Data Research’s market for its
Autoflow program (which also automatically developed flowcharts).2 Jacobs added
that in violation of antitrust laws and the law of unfair competition, IBM’s actions
would destroy his ‘client’s market for its Autoflow systems and destroy the property
value of his clients software system by setting a “free” price as its market value, and
make it impossible for our client to compete with IBM in the sale of such systems,
all to the great detriment and injury of our client’.3

The main concern for Applied Data Research was that IBM distributed its
Flowcharter program ‘in the same way it distributed other software’ whereby the soft-
ware was ‘given away “free” to IBM customers and “tied-in” to the sale of IBM/360

	1	 Lawrence I. Boonin, ‘Future Developments’ as cited in C. McOustra, ‘Legal Protection for Computer
Programs’ (1966) 8(4) The Computer Journal 289, 294.

	2	 Applied Data Research v. International Business Machines Corporation 69 Civ, 1682 (filed 22 April
1969). Robert W. Wild, ‘Computer Program Protection: The Need to Legislate a Solution’ (1969)
54(4) Cornell Law Review 586, 588. ADR settled its antitrust suit with IBM for $2 million. Martin A.
Goetz, ‘How ADR Got Itself into the Software Products Business and Found Itself Competing against
IBM’ (1998) Computer History Museum 2.

	3	 Letter written by Morton C. Jacobs to Mr. B. Marshall (16 August 1967), Charles Babbage Institute,
Applied Data Research, Software Products Division records, CBI 154, Box 3, Folder 6.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 Introduction	 117

computers’. Following a response from Marshall denying liability and saying that
IBM would need to wait for Applied Data Research’s patent (then pending) to issue
on Autoflow, Jacobs responded saying that there ‘can be no question that IBM’s tie-in
of its Flowcharter program to sales of the IBM 360 machines has misled potential cus-
tomers of Applied Data Research’s Autoflow into thinking that the IBM Flowcharter
program is free’. On the basis that this ‘illegal and anticompetitive practice by IBM
has seriously injured [Applied Data Research’s] sales’, Jacob warned that unless steps
were taken to correct these actions in violation of the antitrust laws Applied Data
Research would be compelled to seek appropriate legal and enforcement remedies’.4

Applied Data Research followed up on its threat in April 1969 when it brought an
antitrust action against IBM arguing that in giving its Flowcharter programs away
for free that IBM had uncompetitively impeded the independent development of
software.5 Along with similar antitrust actions by Programmatics (a subsidiary of
Applied Data Research), Control Data Corporation, and Data Processing Financial
General Corporation, the Department of Justice also filed an antitrust action against
IBM in 1969 arguing that by giving away software services for free and by bundling
software with related equipment hardware under a single pricing plan (without
detailing the price of the elements), IBM had engaged in anticompetitive practices
that restrained actual or potential competitors from entering the relevant markets.6

In June 1969, IBM announced that from January 1, 1970, it would unbundle its
software and hardware and charge separate prices for programming services and
software packages. That is, it would separately price and sell the software it had previ-
ously bundled with its computers and sold at a single price. True to its word, in 1970
IBM not only began to sell hardware and software separately, it also began to charge
a monthly fee for the use of its software or as IBM preferred, its ‘program products’.

IBM’s unbundling of hardware and software was part of a wide ranging set of
changes that occurred in the computing industry in the 1960s and 1970s.7 As the
President of Programming Sciences Corporation, Albert M. Loring, said at the
time, IBM’s announcement ‘has, in effect, given birth to the software industry as
an Industry’.8 As we will see, these changes also triggered a wide-ranging debate
about the applicability of patent protection for the products of this emerging new
industry.

	4	 Letter written by Morton C. Jacobs to Burke Marshall (4 October 1967), Charles Babbage Institute,
Applied Data Research, Software Products Division records, CBI 154, Box 3, Folder 6.

	5	 Applied Data Research v. International Business Machines Corporation 69 Civ 1682 (SDNY 1969).
	6	 United States v. IBM 69 Civ 200 (SDNY 1969). One of the complaints was that IBM had ‘committed

a fraud on the US Patent Office by applying for and obtaining patents for computer systems based on
software but disguised as hardware’. Howard R. Popper, ‘From Hardware to Software: An Adventure
Having Some Surprises’ in Software Protection by Trade Secret, Contract, Patent: Law, Practice, and
Forms (Washington: Patent Resources Group, 1969), 120.

	7	 Watts S. Humphrey, ‘Software Unbundling: A Personal Perspective’ (January–March 2002) IEEE
Annals of the History of Computing 59, 62.

	8	 Alan Drattel, ‘Unbundling: The User Will Pay for the Works’ (August 1969) Business Automation 36, 40.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

118	 Intangible Machines

At first blush, it may appear that IBM’s decision to unbundle its (intangible) soft-
ware from its (tangible) hardware represents a dematerialisation of patentable sub-
ject matter: a change from the situation where the subject matter consisted of a
tangible machine that embodied intangible software to a situation where there were
now two potential forms of subject matter – the tangible computer hardware and the
intangible instructions used to control a computer (the program). Building upon
the idea that the computer program represented a turning point in the ‘long strug-
gle for information to emancipate itself from the shackles of materiality’,9 there is a
sense in which the unbundling of hardware and software marks yet another situation
where patentable subject matter was dematerialised.

While IBM’s decision to unbundle its software set in play a process that ultimately
led to the dematerialisation of computer-related subject matter, this did not occur
until the end of the twentieth century. This is because while in the 1970s software
and hardware may have been unbundled from a commercial and marketing per-
spective, they remained technologically intertwined.10 As we will see, following the
decision to accept a technological reading of the subject matter, computer-related
inventions in patent law retained a physical form. This remained the case for the
remainder of the twentieth century.

To explore the role that materiality played in patent law’s interaction with computer-
related subject matter, how the law ultimately dealt with an unbundled demateri-
alised subject matter, and the role that computer science and the computer industry
more generally played in these processes, this and the following two chapters explore
patent law in the United States from the 1960s through to the early part of the twenty-
first century. After looking at how software was created and consumed in the 1960s and
as this changed how it gave rise to questions about the role intellectual property might
play in the emerging software industry, I look at the contrasting ways that patentable
subject matter was seen within the information technology industry more broadly.
In Chapter 6, I turn to look at the problems patent law experienced in the 1960s and
1970s in attempting to reconcile the conflicting views within the industry about what
the subject matter was and how it should be interpreted. In Chapter 7, I show how in
the 1980s patent law came to view computer-related subject matter through the lens
of ‘abstractness’ and the role that materiality played in determining the fate of that
subject matter in this context. I also look at how as a result of changes in technology,
patent law gradually shifted away from the materiality of the subject matter to look at
its ‘specificity’ and how in so doing the subject matter was dematerialised.

	 9	 Jean-Francois Blanchette, Burdens of Proof: Cryptographic Culture and Evidence Law in the Age of
Electronic Documents (Cambridge, MA: MIT Press, 2012), 18.

	10	 One of the issues that patent law grappled with until the early 1980s was how to reconcile these con-
trasting ways of thinking about the subject matter: that is, how was patent law to reconcile the com-
puter program as a commercially unbundled and independent object from the computer program
which was technologically bound to the computer hardware (which mirrors the tension that arises
because a patent is both a commercial and a technical document).

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 Software in the 1960s	 119

Software in the 1960s

Today, software is typically thought of as a pre-packaged consumer product that con-
tains the instructions or code that controls computers. As software historians have
shown, this was not always the case. ‘Historically speaking … software was not some-
thing that was purchased off-the-shelf, nor was it a single application or product.
Rather it was a bundle of systems, services and support’.11 Indeed, it was not until the
late 1960s that software came to be treated as a product and ‘even then software as
code represented only a small component of a larger software system of services and
support’.12 While there were exceptions, in the 1960s there were no stand-alone com-
panies specializing in the creation and sale of software products: there was no orga-
nized and discrete software industry to speak of, or at least as we understand it today.

In this environment, users tended to obtain their software in one of four ways.
In some situations, corporate programming staff would write the software in-house.
While manufacturers provided customer support and training, users often devel-
oped their own custom written programs. Another important source of software in
the 1960s were the user groups that had been established to facilitate the sharing of
programs, algorithms, and associated information. By 1960, around 20 different user
groups exchanged programs for free.13 Interestingly, the user groups were actively
promoted and supported by the hardware manufacturers. For example, in order to
alleviate the expense of programming that occurred when IBM replaced the 701
computer with the 704 model in 1954,14 IBM formed SHARE (Society to Help Avoid
Redundant Effort) to exchange programs amongst members (over 300 programs
were shared) and to ‘serve as a conduit between users and IBM’s future development
in hardware and programming’. The success of these early user groups encouraged
the development of similar groups by IBM, other manufacturers, and industry bod-
ies such as the American Bankers Association (who set up a ‘Swap Room’ at their
annual conference to facilitate the exchange of computer programs).15

Another important source of software in the 1960s were the programming service
(or custom programming) companies who produced custom written software for
users on a fee basis. Typically, these software contractors wrote bespoke programs
for corporate and government customers.16 Often the programs were very expensive

	11	 Nathan Ensmenger, The Computer Boys Take Over: Computers, Programmers, and the Politics of
Technical Expertise (Cambridge, MA: MIT Press, 2010), 6.

	12	 Ibid., 7.
	13	 Robert F. Brothers and Alan M. Grimaldi, ‘Prater and Patent Reform Proposals’ (1969) 17 Catholic

University Law Review 389, 392.
	14	 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software

Industry (Cambridge, MA: MIT Press, 2004), 33.
	15	 Robert Head, ‘The Travails of Software Resources’ (January–March 2002) IEEE Annals of the History

of Computing 82, 84–85.
	16	 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software

Industry (Cambridge, MA: MIT Press, 2004), 3–4.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

120	 Intangible Machines

($1 million not being uncommon17) and specifically written for particular organi-
zations. As most of the sales occurred through personal contacts of staff or were in
response to requests for custom software,18 software contractors often had close work-
ing relationships with their customers.

The computer manufacturers who provided software free of charge to customers
who bought hardware from them were another important source of software in the
1960s.19 While the software packages were often costly to produce – figures spanned
from a million dollars through to the $50 to $60 million IBM reportedly invested in
its IBM/360 software – nonetheless, hardware manufacturers bundled the cost of the
software into the cost of the hardware.20 At the time, there was no thought of recov-
ering the cost of developing software by selling or leasing it separately.21 Instead, in
an environment where programs were distributed freely as an inducement to pur-
chase hardware, software development was often seen as a marketing cost. In other
situations the marketing and sale of software were presented as the selling of services
(which, it was hoped, would take any illegal tie-ins outside the scope of antitrust
laws).22 Either way, software was bundled with the hardware and given away for free
as part of the overall package that was provided to customers.

The manner in which software was created, exchanged, and consumed during
the 1960s had an impact on how software was valued.23 It also had an impact on what
was expected or demanded of the law. In relation to the software that was obtained
for free from computer manufacturers or user groups, there was no need or inter-
est in legal protection. To the extent that software was seen as a proprietary object,
there was also little call for legal protection. This was because the close personal
relationships that existed between software contractors and the companies they cre-
ated software for minimized the need for legal or extra-legal means to control the
reproduction or imitation of software. To the extent that there was a concern with

	17	 Ibid.
	18	 Ibid., 5.
	19	 This was dominated by eight large companies: IBM, Honeywell Information Services, Univac,

Burroughs Corporation, Control Data Corporation, National Cash Register Company, Digital
Equipment Corporation, and Xerox.

	20	 For example, under its single price or bundling procedures, IBM charged customers a single price
based on the hardware supplied. Morton C. Jacobs, ‘Computer Technology (Hardware and Software):
Some Legal Implications for Antitrust, Copyright and Patents’ (1970) 1 Rutgers Journal of Computers
and Law 50, 62.

	21	 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software
Industry (Cambridge, MA: MIT Press, 2004), 98.

	22	 Morton C. Jacobs, ‘Computer Technology (Hardware and Software): Some Legal Implications for
Antitrust, Copyright and Patents’ (1970) Rutgers Journal of Computers and Law 50, 62. Anon, ‘Software
Gets a Hardsell Approach’ (21 October 1967) Business Week 171.

	23	 To the extent that software was obtained for free from computer manufacturers or through user
groups, it helped to create the perception of software as ‘objects without intrinsic value, or at best
with value that there were no market mechanisms to realize’. Martin Campbell-Kelly, From Airline
Reservations to Sonic the Hedgehog: A History of the Software Industry (Cambridge, MA: MIT Press,
2004), 96.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 Software in the 1960s	 121

software and how it circulated, the focus was on the body of the programmer rather
that the product of their labour (the software). At a time when the major assets of
software service companies would ‘go down in the elevator every night’,24 the pri-
mary concern was the pirating of programmers (or ‘body snatching’25) by compet-
ing firms and customers26 rather than the copying or piracy of software. This was
reflected in the fact that a key legal concern of the information technology industry
at the time was the role that the law could play in restricting the mobility of work-
ers via employment contracts, restraint of trade, non-compete contract clauses, and
confidentiality agreements. In reflection of this, most of the legal disputes at the
time were a result of clients hiring staff from professional services companies in vio-
lation of non-hiring clauses.27

Over the course of the 1960s, a number of changes took place that gradually and
haphazardly undermined this pre-modern regime. For my purpose, one of the most
important developments was the gradual emergence of a new type of software arti-
fact: the software product. Software products were standardised off-the-shelf programs
that were sold separately, some in the hundreds, a few in the thousands, typically
for between $5,000 and $100,000.28 Software products were discrete commercial
objects that could be used without modification by a large number of contractors
with little or no customization.29 While Applied Data Research’s Autoflow (1965)
and Informatics Mark IV (1967) are often considered the earliest and most influen-
tial software products, by 1967 the number of proprietary programs on the market
had increased to over a 100, with sales of about $4 million.30 From a small number
of companies at the beginning of the 1960s, there were reported to be over 3,000
independent software and service companies by 1968.31 As a result, by the end of the
1960s the term ‘software-industry’ had taken on its present day meaning ‘signifying
commercial organizations engaged in the production of programming artefacts’.32

There were a number of factors that prompted the emergence of the software
products industry in the later part of the 1960s. One important factor was the prolif-
eration and growing capabilities of computers. The rapid increase in the number

	24	 Dave Sturtevant, ADAPSO Reunion Workshop, ‘Industry Image’, recorded 4 May 2002, CHM Ref
No. X4425.2008, Computer History Museum, 19.

	25	 Gene Bylinsky, ‘Help Wanted: 50,000 Programmers’ (March 1967) Fortune 141.
	26	 Philip Stork, ‘Legal Protection for Computer Programs: A Practicing Attorney’s Approach’ (1970) 20

Copyright Law Symposium 112, 115.
	27	 ADAPSO Reunion Workshop, ‘Contract Reference Directory’, Computer History Museum (2002),

CHM Ref No. X4410.2008, 14.
	28	 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software

Industry (Cambridge, MA: MIT Press, 2004), 3–4.
	29	 Ibid.
	30	 Anon, ‘Software Gets a Hardsell Approach’ (21 October 1967) Business Week 171. Donald H. Sundeen,

‘General Purpose Software’ (January 1968) Datamation 22.
	31	 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software

Industry (Cambridge, MA: MIT Press, 2004), 50.
	32	 Ibid., 57.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

122	 Intangible Machines

of computers in the United States – estimated at 4,000 in 1960, 21,600 in 1965, and
48,500 in 197033 – created a number of software-related problems. One of which was
that the software contractors who wrote bespoke programs for corporate and govern-
ment customers were unable to keep up with the growing demand for custom-built
software: simply put, computers were growing faster than programmers. This led to a
concern about the shortage of software applications and programmers. These prob-
lems were compounded by the fact that the sharing organizations who supplied free
software were criticized for being too hardware focused and because they did not
share important and costly programs.34 There was also a concern about the quality of
the programs being created. Another problem was that many computer users lacked
the in-house expertise to develop or customise software. And for those organizations
that had the expertise to write software themselves, there were concerns about the
cost of in-house production: it was often difficult to predict in advance how long it
would take and how much it would cost to develop software. Pre-packaged software
that was sold off the shelf at a fixed price helped to satisfy many of these concerns.

Another important factor that facilitated the emergence of the software products
industry in the 1960s was the development of the common technical standards that
interoperable pre-packaged objects require. One of the factors that had prevented
the development of pre-packaged software in the early 1960s was the diversity of
different standards then in use. For example, in 1960 IBM had at least seven differ-
ent software incompatible computer architectures, each of which required unique
operating systems and utilities. The situation changed in the mid-1960s, however,
when IBM introduced the 360 family of computers. One of the features of the new
360 system, which consisted of fourteen different computers, many of which sold
in large numbers, was that all of the computers used the same architecture. In so
doing, IBM created a base-standard and a technical platform for the industry as a
whole. As one independent software producer said, the establishment of ‘a single
architectural standard’ facilitated by the 360 family of computers ‘gave us a great
customer base to sell to’.35

Yet another factor that played a role in the development of the software prod-
ucts market was the antitrust actions that were brought against IBM by the US
Department of Justice and Applied Data Research. While there may be questions
about the reasons for the unbundling, there is little doubt that it had a substantial
impact on the nascent computing industry. One of the consequences of the unbun-
dling that took place in the early 1970s was that software was marketed and sold
separately from hardware. By helping to ‘condition customers to pay for software’
and by challenging the idea that software was a free good, the decision by IBM and

	33	 Ibid., 50.
	34	 Robert F. Brothers and Alan M. Grimaldi, ‘Prater and Patent Reform Proposals’ (1969) 17 Catholic

University Law Review 389, 392; Editors Readout, (June 1966) Datamation 21.
	35	 Lee Keet, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History Museum,

CHM Ref No. X4589.2008 (Recorded 4 May 2002), 20.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 Intellectual Property for Software Products	 123

other hardware companies to stop giving software away for free helped to create ‘a
vibrant market for software products, which previously had been merely embryonic.
It was a turning point for the industry’.36 As well as benefiting existing computer
service and software firms such as Applied Data Research and Informatics, who
saw a dramatic increase in sales after IBM announced that it would market and sell
hardware and programs separately,37 the unbundling of software also acted as a cat-
alyst for new organisations to enter into the software products market. In this sense,
unbundling was a ‘crucial inflection point’ in the development of the software prod-
ucts industry.38

The emergence of the software product industry not only saw a change in the
way software was created, distributed, and used, it also changed the way people
thought about software. For my purposes, the most important consequence of the
development of the software product industry was that it changed what was expected
or demanded of the law. While there had previously been little or no need for intel-
lectual property protection, suddenly intellectual property was potentially relevant.
Indeed, one of the consequences of the growth in the software product market was
that it triggered a debate about the potential role that intellectual property might
play in relation to software-related subject matter.

Intellectual Property Protection for
the Software Products Industry

Early interest in the potential application of intellectual property to protect soft-
ware was driven by two groups. The first were the financial institutions who loaned
money to software companies. One of the concerns that banks and other financial
institutions had when loaning money to software product companies was that many
of the new start-up companies had very few assets other than the software that they
were creating. The problem here was that the banks were uncomfortable loaning
money purely on the basis of intangible assets. One of the strategies that the banks
adopted to deal with this problem was to demand that software companies take out
intellectual property protection over their software. This allowed the banks to point
to the copyright or patent registration as if it was a tangible manifestation of the
ephemeral software. The problems banks had with software’s intangibility and the
way that they dealt with this is captured in the comments of an industry represen-
tative about his experience in obtaining a loan from a bank at the time. As he said,
the bank was ‘alarmed that the principal software of the company had not been reg-
istered in the Copyright Office’. To remedy this, as a condition of the loan the bank

	36	 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software
Industry (Cambridge, MA: MIT Press, 2004), 89.

	37	 Ibid., 115.
	38	 J. Yates, ‘Application Software for Insurance in the 1960s and Early 1970s’ (1995) 24(1) Business and

Economic History 123.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

124	 Intangible Machines

insisted that the ‘company file all of those pieces of software in the Copyright Office
so that they would have a lien on a registered copyright’.39

The second group agitating for protection were lawyers. For some lawyers, ensur-
ing that software products were protected was an integral part of what it meant to be
a lawyer. As Irving Kayton said when opening a software law conference at George
Washington University in 1968: ‘lawyers must protect their client’s property rights
or they will not have clients or, indeed, practice law’.40 For other lawyers, legal pro-
tection was an integral part of what it meant for something to be a product. As one
legal commentator noted, the ‘one essential ingredient of the package concept [or
software product] is a means of protecting the program: for without such protec-
tion, it ceases to be a commodity’.41 For most lawyers, however, the primary reason
why legal protection was needed was to prevent software from being pirated. Here,
lawyers either worked on first principals – arguing that no one would invest in soft-
ware unless it was protected42 – or cited other lawyers about the manifest need for
protection. Whatever the justification, the message was clear: without protection,
software was vulnerable; ‘the degree of competition and inevitably the quality of the
end product, will be diminished’.43

One of the things that underpinned the various pleas for legal protection for
software was a belief that software piracy was a problem that needed to be solved.
In a sense it was presumed that the development of software products as discrete
commercial objects necessarily created a need for intellectual property protection.
While the separation of intellectual outputs from the people who generate them
often creates a need for intellectual property protection, this is not necessarily the
case (as lawyers at the time seemed to presume). Ultimately, the question of whether
intellectual property protection is needed in a given situation depends on a range
of factors from how easy it is to reproduce or copy the creative output in question
and whether copying is seen as a problem, to whether other means are available

	39	 Oscar H. Schachter, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History
Museum, CHM Ref No. X4589.2008 (Recorded 4 May 2002), 13.

	40	 Irving Kayton, ‘Foreword’ in Software Protection by Trade Secret, Contract, Patent: Law, Practice, and
Forms (Washington: Patent Resources Group, 1969), 8.

	41	 David Bender, ‘Trade Secret Protection of Software’ in Software Protection by Trade Secret, Contract,
Patent: Law, Practice, and Forms (Washington: Patent Resources Group, 1969), 3. One question that
needs consideration is the role lawyers played in creating an expectation that software needed to be
protected. Martin Goetz attended a session chaired by Mort Jacobs at a 1964 Spring Joint Computer
Conference in Washington on ‘Patents and other legal problems relating to Electronic Computers’.
Martin Goetz, ‘Memoirs of a Software Pioneer’ (January–March 2002) IEEE Annals of the History of
Computing 43, 50.

	42	 As Whitlow Computer Systems, a company engaged exclusively in the development, production and
sale of computer programs said, many potential investors had refused to invest in Whitlow ‘simply
because it could not give assurance that its computer programs will be held to be patentable subject
matter. Brief Amicus Curiae for Whitlow Computer Systems, Gottschalk v. Benson, Supreme Court
of the US, No. 71–485 (Oct. Term, 1971), 2 n 2.

	43	 David Bender, ‘Trade Secret Protection of Software’ in Software Protection by Trade Secret, Contract,
Patent: Law, Practice, and Forms (Washington: Patent Resources Group, 1969), 6.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 Intellectual Property for Software Products	 125

to prevent unwanted copying or imitation. It was the later point that is relevant
here. This is because while the emergence of software products did shift the focus
of attention away from programmers towards the products of their labour, it did
not (immediately) affect the relationships that existed between creators/producers
and users/consumers of software. As had been the case with software contractors
who had built strong relationships with their customers, software product firms also
managed to establish close relationships with the users of their software. These rela-
tionships were reinforced by the pre-and after-sale support (including product cus-
tomization, user training, and regular updates) that software products firms regularly
provided to customers.44 This was particularly the case with application software
companies, who were more service companies than packaged goods companies and
therefore worked closely with customers.45 One of the consequences of this was that
the use/misuse of software was largely controlled through personal ties and business-
to-business relationships. As a software industry representative explained, the data
processing managers who the software companies dealt with were ‘not going to
cheat because he could end up losing his job. So there was very little thievery’.46

The upshot of this is that despite the suggestions by lawyers at the time, there was
little need for legal protection (at least to prevent piracy). Indeed, one of the things
that software industry representatives looking back on the 1960s have stressed is that,
in spite of what the lawyers may have suggested, piracy or as it was known at the
time, thievery was not a problem. These sentiments were captured in the comment
by the former president of the software products group at Dun & Bradstreet, Leo
Keet, when he said:

It was just a bizzarre time. The word I would use is paranoia. We, as an industry …
were paranoid about things that didn’t happen. We thought that there was going
to be a lot of thievery. We wanted to anticipate it because we put so much of our
money and intellectual energy and effort into building these things, and we didn’t
want them stolen.

It wasn’t until the PC industry came along [in the 1980s] that it actually turned
into a huge problem. I can’t emphasise that enough. I don’t think you’ll find any-
body from the era of the 1960s and 1970s that will tell you that they had a big prob-
lem with thievery.47

	44	 Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software
Industry (Cambridge, MA: MIT Press, 2004), 6.

	45	 Lee Keet, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History Museum,
CHM Ref No. X4589.2008 (Recorded 4 May 2002), 14.

	46	 Martin Goetz, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History
Museum, CHM Ref No. X4589.2008 (Recorded 4 May 2002), 16.

	47	 Lee Keet, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History Museum,
CHM Ref No. X4589.2008 (Recorded 4 May 2002), 14. ‘The big concern we initially had was … unau-
thorised copying of software. But for us, it turned out, that rarely proved to be a problem … Piracy was
not an issue for us. Remember this was not PC software where theft is a significant issue. This was all
mainframe and mid-range stuff’. Dick Thatcher, ADAPSO Reunion Workshop, ‘Contract Reference
Directory’ (2002) Computer History Museum CHM Ref No. X4410.2008, 14

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

126	 Intangible Machines

While there may have been very little unauthorized use of programs by corporations48
and even less by consumers,49 this does not mean that intellectual property protec-
tion was not needed. One of the areas where this was the case was to protect software
product firms from the predatory behaviour of the large hardware firms, particularly
IBM. Rather than needing to prevent end-user piracy of software, software product
firms needed legal protection to enable them to compete against hardware manu-
facturers and thus to get a share of the rapidly expanding market. The concern here
was that without protection, software product firms were ‘unable to compete with
machine manufacturers who would be able to copy the programs with impunity and
distribute them “free” with their machines’.50

One of the most vocal proponents of intellectual property protection for software
was Martin Goetz, president and founder of Applied Data Research.51 As we saw
earlier, one of the earliest and most successful software products was Applied Data
Research’s Autoflow software program, which was designed to produce program
flowcharts automatically. Applied Data Research, who had invested over US$4 mil-
lion in software systems,52 believed that one of the reasons for the low sales of its
Autoflow software was because IBM had begun to offer for free a program called
Flowcharter that also generated flowcharts automatically. As Goetz complained, the
‘IBM Flowcharter became the major reason for a delayed or lost Autoflow sale. Our
prospects went to IBM and asked for improvements to free IBM programs and it was
widely believed IBM would develop a similar type of program and provide it to their
customers for free’.53 In response Goetz not only brought an antitrust action against
IBM, he also joined with many others to argue that the only way that smaller software
firms could protect themselves against the predatory behaviour of large hardware
manufacturers was to ensure that software was given some type of legal protection.

Irrespective of whatever doubts there might be about whether legal protection
was needed at the time, there is no doubt that there was a growing interest across the

	48	 Martin Goetz, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History
Museum, CHM Ref No. X4589.2008 (Recorded 4 May 2002), 12. ‘ADR was never aware of any com-
pany that was using [their] software without being authorized to use it’. Ibid., 16.

	49	 ‘I never had a customer steal from me’. Leo Keet, ADAPSO Reunion Workshop, ‘Intellectual
Property’ (2002) Computer History Museum, CHM Ref No. X4589.2008 (Recorded 4 May 2002), 11.

	50	 Morton C. Jacobs, ‘Commissions Report (re: Computer Programs)’ (1967) Journal of the Patent Office
Society 372, 376.

	51	 As Goetz said, ‘I got indoctrinated very early by Mort Jacobs, my patent attorney, who had previously
worked at the Patent Office and then worked at RCA and then he was in private practice’. Martin
Goetz, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History Museum,
CHM Ref No. X4589.2008 (Recorded 4 May 2002), 10.

	52	 Martin A. Goetz, ‘Protecting Computer Program Concepts and Copies’ (1970) 14 Idea 7.
	53	 Martin A. Goetz, ‘How ADR Got Itself into the Software Products Business and Found Itself

Competing against IBM’, Computer History Museum (1998), 2. See also Martin Goetz, ‘Memoirs
of a Software Pioneer’, (January–March 2002) IEEE Annals of the History of Computing 43, 50–53.
Potential customers ‘questioned why they should pay for an outside product when they could acquire
software for “free” through IBM or an industry trade group’. Robert Head, ‘The Travails of Software
Resources’ (January–March 2002) 82 IEEE Annals of the History of Computing 84.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 Intellectual Property for Software Products	 127

1960s in the potential role that intellectual property might play in protecting soft-
ware, an interest that was heightened by changes in labour law that made it increas-
ingly difficult to control the movement of employees.54 While the first copyright
registration for software was granted in 1964,55 there was little industry interest in
using copyright to protect software-related innovations.56 (There was even less inter-
est in trade secret protection, which was thought to provide ineffective protection).57
While the hardware manufacturer’s interest in using copyright increased over time,
independent software companies consistently showed little interest in using copy-
right to protect software. There were a number of reasons for this, including uncer-
tainty about whether the registration of software would be upheld by the courts, the
limited protection that was available if software was in fact protectable (given that
it only protected the expression of programs), and uncertainty about how software
should be represented for the purposes of registration. These problems were com-
pounded by the fact that the Copyright Office (initially) did not accept object code
for the purposes of registration. Instead, applicants had to submit source code and
provide the full scope of the program (this was later changed so that applicants were
only required to file ‘pieces of the program’58).

Unsatisfied with the protection offered by copyright and trade secrecy, it was
believed that patents offered the only viable mode of protection for software. In
arguing for patent protection, a number of familiar arguments were rehearsed. In
particular, it was argued that patent protection would stimulate investment in inno-
vation, promote the continued creation and circulation of software, overcome the
growing shortage of programmers, and help to counter the culture of secrecy that
the business environment encouraged. In response to the argument that protection

	54	 Employee’s ‘non-compete agreements were gradually being obviated by the courts, especially on
the West Coast. California eventually made them useless.’ Lee Keet, ADAPSO Reunion Workshop,
‘Intellectual Property’ (2002) Computer History Museum, CHM Ref No. X4589.2008 (Recorded 4
May 2002), 16.

	55	 The first copyright registration, was granted to John Banzhaff III under the ‘rule of doubt’ that favoured
protection in 1964. John F. Banzhaf III ‘Copyright Protection for Computer Programs’ (1964) 14
Copyright Law Symposium 118; ‘Copyright Registration for Computer Programs’ (1963) 11 Bulletin of
the Copyright Society of the USA 361. The Register of Copyrights accepted computer programs for
registration provided that they contained sufficient original authorship, they had been published, and
that the copies submitted for registration were in machine readable form.

	56	 IBM was slow to support copyright because ‘they were originally calling all their programs a ser-
vice that they were giving away and putting in the public domain’. Leo Keet, ADAPSO Reunion
Workshop, ‘Intellectual Property’ (2002) Computer History Museum, CHM Ref No. X4589.2008
(Recorded 4 May 2002), 12. However IBM eventually embraced copyright. From 1964 to January 1977,
IBM and Burroughs were said to account for 971 of the 1,205 programs registered. Final Report of the
National Commission on New Technological Uses of Copyrighted Works: July 31, 1978 (Washington:
Library of Congress, 1979), 34.

	57	 See, e.g., David Bender, ‘Trade Secret Protection of Software’ (1969–70) 38(5) George Washington
Law Review 909.

	58	 Oscar H. Schachter, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History
Museum, CHM Ref No. X4589.2008 (Recorded 4 May 2002), 10.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

128	 Intangible Machines

was not needed and that software should continue to be given away for free, the
proponents of patent protection cast doubts over the quality of the software that was
shared at no cost. They also suggested that the free exchange programs only pro-
vided access to less important programs and that they did not include the valuable
programs that might help competitors (such as multi-million-dollar airline reserva-
tion programs).59

Interestingly, the push for patent protection was also closely tied up with a desire
to change how people thought about software which, in turn, was tied up with the
professionalisation of the emerging industry. One of the problems at the time was
that software was looked down on as a ‘second-class citizen’; something that was
attributed to the fact that software ‘started out being a free service in the public
domain’. Here, patenting was seen as a means ‘for elevating the view of what software
was. It shouldn’t be free, it should be patentable’.60 As Goetz explained, ‘really …
what we were trying to do’ in seeking to patent software ‘was to get stature’ …. ‘Every
other industry seemed to have patent protection but here was an industry where you
couldn’t get patent protection.’61 Patenting was also seen as a means of enhancing
the reputation of the firms that produced software. It was suggested, for example,
that Bell Laboratories’ support for software patent protection was motivated by a
desire for more public recognition in the programming area. The rational here was
that if Bell’s ‘patents appears on programs that find wide use, [Bell] would become
known as a source of programming excellence’.62

The push for patent protection for software was met with a hostile response from
a range of parties. Somewhat surprisingly this included the Patent Office (who we
would now expect to champion patent protection) and IBM (who for many years
were reported to have ‘the most patents of any company in the US, or in the world’,
but were against the patenting of software63). A number of arguments were made
against patent protection for software. These ranged from general complaints that
patent protection would stifle innovation and be counterproductive to the industry’s
growth and development to more specific concerns about the ability of the Patent
Office to cope administratively with software patenting. In reflection of the close
connection that existed between software and hardware, it was also suggested that

	59	 Morton C. Jacobs, ‘Commissions Report (re: Computer Programs)’ (1967) Journal of the Patent Office
Society 372, 376.

	60	 ADAPSO History Program: Interview with Martin Goetz (3 May 2002) (interviewed by Jeffery R.
Yost), 8.

	61	 Martin Goetz, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History
Museum, CHM Ref No. X4589.2008 (Recorded 4 May 2002), 7. Patents were said to have a ‘sta-
tus’ that copyright lacked. Calvin N. Mooers, ‘Computer Software and Copyright’ (March 1975)
7(1) Computing Surveys 45, 64. Martin Goetz, ‘Memoirs of a Software Pioneer: Part 2’ (October–
December 2002) 14 IEEE Annals of the History of Computing 22.

	62	 James P. Titus, ‘Pros and Cons of Patenting Computer Programs’ (February 1967) 10(2)
Communications of the ACM 126.

	63	 Martin Goetz, ADAPSO Reunion Workshop, ‘Intellectual Property’ (2002) Computer History
Museum, CHM Ref No. X4589.2008 (Recorded 4 May 2002), 5.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 The ‘Contested Ontologies of Software’	 129

if patents were granted over software, it would create problems for computer users
who, given the intangible nature of software, would not know whether they were
infringing someone else’s patent.64 In this sense, it was argued that patent protection
on programs would restrict the ability of someone purchasing a computer from using
the instructions built into it.65 It was also argued, somewhat ironically, that patent
protection was leading to more restrictive information handling practices by users
and software companies. In particular, it was said that ‘certain professional journals
have now taken the position that they will no longer publish allegedly novel algo-
rithms if the person who claims them claims patent protection’.66 The opponents of
patent protection also cautioned against changing something that they believed was
already working well, indeed so well that it was ‘difficult to conceive how the field
could grow faster’.67 Specifically it was said that as the rapid growth and innovation
in software development that had taken place across the 1960s had occurred in an
‘atmosphere of free and open exchange of computer program ideas’ that protection
was simply not needed.68 In light of this it was suggested that the best strategy was to
continue to give software away for free.69

For the most part, the arguments for and against the patenting of software in the
1960s and 1970s are familiar; they have been repeated in one form or another for
a range of different types of subject matter over time. The situation is less familiar,
however, when we shift to look at the contrasting ways software was perceived within
the information technology industry and what this meant for the law.

The ‘Contested Ontologies of Software’

While some of the older classes of patentable subject matter such as kaleidoscopes,
steam engines, or dyes may now seem odd or quaint, it is relatively easy to compile
a list of the different types of subject matter that have been presented to the law for
evaluation over the years: recent examples include synthetic biology, AI-generated

	64	 It was argued that if patents were patentable, each user of a computer would have to ‘proceed at peril’
in using a computer, since they never be able to know whether the algorithm used in the program was
covered by an existing patent … leading to nuisance infringement actions. Brief Amicus Curiae on
behalf of the Business Equipment Manufacturers Association, Gottschalk v. Benson, Supreme Court
of the US, No. 71–485 (Oct. Term, 1971), 14.

	65	 Memorandum of IBM before the Patent Office on the Guidelines, 15; cited in Morton C. Jacobs,
‘Commissions Report (re: Computer Programs)’ (1967) Journal of the Patent Office Society 372, 378.

	66	 Brief Amicus Curiae on behalf of the Business Equipment Manufacturers Association, Gottschalk v.
Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 12.

	67	 Letter from Donald Turner (Ass. Attorney General, Antitrust Division), to Edward J. Brenner
(Commissioner of Patents) (21 October 1966) (cautioning against patent protection), as cited in
Brief Amicus Curiae on behalf of the Business Equipment Manufacturers Association, Gottschalk v.
Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 11.

	68	 For discussion see Brief Amicus Curiae for the American Patent Law Association, Gottschalk v.
Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 20.

	69	 Brief Amicus Curiae on behalf of the Business Equipment Manufacturers Association, Gottschalk v.
Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 10–11.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

130	 Intangible Machines

inventions, nanotechnology, and genes. Although with hindsight it may be rela-
tively easy to identify the subject matter that was under consideration at a particular
point of time, when new forms of subject matter are first presented to the law for
scrutiny, there is often confusion about what the subject matter should be called,
what its defining features are, and how it compares to other types of subject mat-
ter. Given that would-be classes of potential subject matter are almost by definition
novel, this is not surprising. What is more surprising, however, is that in some situa-
tions the law has found it difficult to determine what the subject matter in question
is. This was and remains the case with software-related inventions.

One of the reasons why there were so many problems associated with the patent-
ing of software is because as Nathan Ensmenger said, software is quintessentially a
heterogeneous technology: meaning that software is ‘inextricably linked to a larger
social-technical system that includes machines (computers and their associated
peripherals), people (users, designers and developers), and processes (the corporate
payroll system, for example)’.70 As would-be subject matter, software’s heterogene-
ity presented problems for the law. The reason for this is that when determining
the standing of a class of potential subject matter, patent law cannot and does not
embrace an open-ended view of techno-scientific objects. Instead, when determin-
ing the standing of a class of subject matter, patent law needs to reduce the open-
ended, fluid, and heterogeneous technology into something that is both closed,
demarcated, and predictable and, at the same time, flexible enough to accommo-
date variations across the class of subject matter as well as changes that occur in the
subject matter over time.

There were a number of reasons why patent law found software-related subject
matter problematic. One reason for this was that software was defined negatively as
those computer-related things that were not hardware. Indeed, in the 1959 article
where the term was first used, John Turkey referred to software as those elements of
a typical computer installation that were not ‘tubes, transistors, wires, tapes and the
like’.71 The difficulty of defining something that was already defined in opposition
to what it was not helped to contribute to software’s ‘widespread, ill-defined use’.72
The difficulties that arose in ascertaining the contours of the subject matter were
compounded by software’s intangibility or immateriality73 which meant, amongst
other things, that there were no obvious traces or markers that could be relied upon
to demarcate the boundaries of the subject matter.

While these factors were important, but often not in the way that we might
first think, perhaps the most important reason why the law experienced so many

	70	 Nathan Ensmenger, ‘Software as History Embodied’ (January–March 2009) 31(1) IEE Annals of the
History of Computing 88.

	71	 John Turkey, ‘The Teaching of Concrete Mathematics’ (1958) 65(1) American Mathematical Monthly 1, 9.
	72	 Thomas Haigh, ‘Software in the 1960s as Concept, Service, and Product’ (January–March 2002) 24(1)

IEEE Annals of the History of Computing 5.
	73	 Unlike hardware which has visible boundaries to demarcate and define it.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 The ‘Contested Ontologies of Software’	 131

problems in determining the ambit of software-related subject matter was because
there was a fundamental disagreement within the nascent information technology
industry about the way that the subject matter should be approached. This is impor-
tant because as the history of patent law shows techno-scientific communities have
not only consistently provided the law with potential new candidates for protection,
they have also provided the means to allow the law to describe, demarcate, and
identify that new subject matter. The presentation of new types of subject matter for
legal scrutiny, whether organic chemicals, new plants, or mechanical innovations,
has typically been accompanied by a shared understanding of what the subject mat-
ter is amongst the scientific and technical communities that generated it. What is
so interesting about patent law’s engagement with software-related subject matter is
that this was not the case.

While there was an expectation (or hope) that the information technology com-
munity would help the law in dealing with the nascent subject matter, this did not
occur. In part, this was because there were two contrasting ways of thinking about
software-related subject matter that coexisted at the time: what Gerardo Con Diaz
called the ‘contested ontologies of software’.74 While there was agreement that the
fate of software turned on ‘technological facts’,75 the parties were largely talking at
cross purposes. This is because hardware manufacturers and software product com-
panies did not agree on what the subject matter should be, let alone how it should
be construed: they had very different understandings both about what the subject
matter was and also about how it was to be interpreted. In particular, while hard-
ware manufactures and their supporters argued that the debate should be about the
patenting of computer programs, software companies argued that the debate should
be about the patenting of programmed or special purpose computers as machines.

For hardware manufacturers, who were largely happy with the legal status quo,
software-related subject matter was presented in such a way that it would not be
patentable.76 This was done by arguing that discussions about patentable subject
matter should be limited to discussions about whether computer programs were pat-
ent eligible. In this context, programs were presented as ‘nothing more than a set of
instructions to a computer as to how it should manipulate information and data’.77
Specifically, programs were presented as flat, inert, two dimensional descriptions of
a process that ‘specifies, in greater or lesser detail, the manner in which something

	74	 Gerardo Con Diaz, ‘Contested Ontologies of Software’ (2016) 38(1) IEEE Annals of the History of
Computing 23.

	75	 Morton C. Jacobs, ‘Patents for Software Inventions: The Supreme Court’s Decision’ (January 1973) 55
Journal of the Patent Office Society 59.

	76	 Steven W. Usselman, ‘Unbundling IBM: Antitrust and the Incentives to Innovation in American
Computing’ in (ed) Sally H. Clarke, Naomi R. Lamoreaux, and Steven W. Usselman, The Challenge
of Remaining Innovative: Insights from Twentieth-Century American Business (Stanford, CA: Stanford
University Press, 2009), 261.

	77	 Brief Amicus Curiae on behalf of the Business Equipment Manufacturers Association, Gottschalk v.
Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 6.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

132	 Intangible Machines

may be implemented.78 In this sense, it was argued that computer programs were
essentially immaterial creations that had a ‘certain ephemeral … non-physical or
non-machine character’.79 Importantly, the descriptive character of computer pro-
grams remained ‘the same whether the language used is binary, mnemonic assem-
bly language or even higher level languages. It also remains the same regardless of
the recording media, whether it be paper, punched cards, magnetic tape or even the
internal magnetic cores of a computer memory. In all of these cases, the program
continues to be explicative, that is, descriptive’.80

By limiting the subject matter to computer programs and by presenting com-
puter programs as inert two-dimensional descriptions of processes, hardware manu-
facturers were able to argue that computer programs were non-patentable mental
processes. Specifically, it allowed them to suggest that a program, like a punched
paper piano roll, was ‘nothing more than a set of instructions for the machine (i.e.,
computer or piano) automatically to implement the mental processes or steps con-
tained in the algorithm or musical composition. Such creativity as exists lies solely
in the development of the algorithm or musical composition and any patent issuing
thereon would necessarily be grounded on the ideas or mental steps involved’.81 By
limiting the subject matter to static two-dimensional programs that merely specified
the manner in which something could be implemented, hardware manufacturers
were able to argue that a program was ‘no more the subject matter of patent appli-
cation than is the schematic diagram of an electrical circuit’.82 While the subject
matter here had a technical dimension, it primarily reflected the idea of the pro-
gram as a commercial commodity. It was also an object protected by copyright but
not by patents.83

While hardware companies argued that the question to be asked was whether
computer programs were patentable subject matter, software companies such as
Applied Data Research argued that discussions about patentable subject matter
should focus on computer-related subject matter as machines. As Morton Jacob

	78	 ‘A Case History: Benson and Talbot: Appellant’s Position: Computer Programs in General’, Appendix
C, appended to Robert O. Nimtz, ‘Computer Application and Claim Drafting under Current Law’ in
Software Protection by Trade Secret, Contract, Patent: Law, Practice, and Forms (Washington: Patent
Resources Group, 1969), 261. IBM argued that a ‘computer program is simply a mode of expressing
ideas’. Brief for Amicus Curiae International Business Machines, Gottschalk v. Benson, Supreme
Court of the US, No. 71–485 (Oct. Term, 1971), 3.

	79	 Morton C. Jacobs, ‘Patentable Machines: Systems Embodiable in Hardware or Software (The Myth
of the Non-Machine)’ in (ed) Irving Kayton, The Law of Software (George Washington University,
1968) B-77, B-85, 1.

	80	 Robert O. Nimtz, ‘The Data Processing Revolution’ in Software Protection by Trade Secret, Contract,
Patent: Law, Practice, and Forms (Washington: Patent Resources Group, 1969), 128.

	81	 Brief Amicus Curiae on behalf of the Business Equipment Manufacturers Association, Gottschalk v.
Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 8.

	82	 Ibid.
	83	 United States v. IBM 69 Civ. 200 (SDNY 1969); Applied Data Research v. International Business

Machines Corporation 69 Civ. 1682, (filed 22 April 1969).

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 The ‘Contested Ontologies of Software’	 133

said, a ‘computing machine is clearly a “machine” within the statutory classes of 35
USC 101’.84 ‘Computer programs are parts of such machines, in fact, they are con-
trol mechanisms for the computer: as such, they are “machine” devices or an article
of manufacture within the terms of 35 USC 101.’ On this basis Jacob said: ‘Once we
recognize that the subject matter of these computer-program inventions is that of
machines, we appreciate that the classical principles apply, and the issue of patent-
able subject matter under the Constitution or under the patent statutes is not really
involved at all.’85

Unlike hardware companies who presented intangible computer programs and
tangible hardware as discrete and separate objects, software producers argued that
the subject matter only made sense when the program and the machine were com-
bined.86 While a programmable machine such as a general-purpose computer had
potential, on their own these protean machines were ‘merely a “warehouse” of unre-
lated parts’.87 It was only when the program and hardware were combined to form
a special purpose machine that the potential was able to be fulfilled.88 That is, it
was only when the computer was combined with the program that these ‘moronic
machines’ were ‘capable of accomplishing such varied jobs as corporate payrolls and
Apollo moon shots.’89 When loaded with a specific program that ‘transfers the latent
power of the theoretically general-purpose machine into a specific tool for solving
real-world problems’,90 a computer becomes a special purpose machine; for exam-
ple, ‘an inventory control machine, a tax-return machine, a machine for automati-
cally controlling a factory such as an oil refinery, a medical diagnosis machine, an
engineering design machine for performing various calculations and for designing
other machines etc etc’.91

	84	 Morton C. Jacobs, ‘Patentable Machines: Systems Embodiable in Hardware or Software (The Myth
of the Non-Machine)’ in Irving Kayton (ed), The Law of Software (George Washington University,
1968) B-77, B-85. 1.

	85	 Ibid.
	86	 Ibid. Morton C. Jacobs, ‘Computer Technology (Hardware and Software): Some Legal Implications for

Antitrust, Copyright and Patents’ (1970) Rutgers Journal of Computers and Law 50, 52. While these argu-
ments drew upon patent law’s longstanding recognition of the patentability of combination claims to claim
the combination which the union of the program and the computer creates, there was very little reference
to this jurisprudence. One notable exception is Max W. J. Graham Jr, ‘Process Patents for Computer
Programs’ (1968) California Law Review 466, 472–480 (arguing that the protection was ineffective).

	87	 Edward J. Brenner, ‘Guidelines to Examination of Programs’ (9 August 1966) 829(2) Official Gazette
of the United States Patent Office 442.

	88	 General purpose computers ‘can do anything for which we can provide suitable instruction … that is
the source of its power’. However, ‘precisely because it can do anything, it can do nothing in and of
itself. It does things only when we provide the programs that cause the universal machine to emulate
particular machines of our design’. Michael S. Mahoney, ‘What Makes the History of Software Hard’
(July–September 2008) IEEE Annals of the History of Computing 8, 10.

	89	 William D. Smith, ‘Fighter for Computer-Program Patents’ (29 December 1968) The New York Times 19.
	90	 Nathan Ensmenger, The Computer Boys Take Over: Computers: Programmers, and the Politics of

Technical Expertise (Cambridge, MA: MIT Press, 2010), 5.
	91	 Morton C. Jacobs, ‘Computer Technology (Hardware and Software): Some Legal Implications for

Antitrust, Copyright and Patents’ (1970) Rutgers Journal of Computers and Law 50, 51.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

134	 Intangible Machines

For software producers, what made the modern electronic digital computers
unique and the reason why they differed from piano players and jacquard looms
was their ‘ability to be reconfigured via software into a seemingly infinite number
of devices … it is the ability to be programmed via software that … encapsulates the
essence of modern computing’.92 While a piano roll would never change a player
piano into anything but what it is, computers were universal machines that could
‘be programmed to perform an almost infinite range of operations from a musical
synthesizer and a payroll system through to an airline reservation system, as a classi-
cally designed machine’.93

When viewed functionally, the addition of a software program to control a
general-purpose computer was said to ‘be just as much a machine addition to it as
the additional hardware programming’. In both cases, the addition of programming
results in a machine that is different from the original. One reason for this was that a
programmed computer was said to be ‘structurally different from the same machine
without the program since its memory elements are differently arranged’.94 In this
sense, software producers argued that by ‘programming a computer, the user cre-
ates a new machine’.95 As Robert Nimtz explained, ‘[d]uring the actual execution
of a program, a logical process is taking place or a new logical machine is taking
form … During such execution, a new logical machine is formed and new logical
processes are carried out on that new machine. Generally speaking, it is these new
extant machines and extant processes that are the subject matter of patent claims’.96
This way of viewing the subject matter enabled software producers to argue that
the programmed computer acquired a new function recognizable by patent law.
Importantly, this meant that the subject matter was potentially patentable.

While software companies argued that placing a different program into a com-
puter fundamentally changed the nature of that computer, hardware companies
consistently argued that a computer remained the same machine irrespective of
the program that was used to operate it. As IBM said, the programming of a com-
puter ‘does not vary the actual nature of the computer so as to constitute a patent-
able invention’.97 The idea that a computer remained the same whether or not it

	92	 Nathan Ensmenger, The Computer Boys Take Over: Computers: Programmers, and the Politics of
Technical Expertise (Cambridge, MA: MIT Press, 2010), 5.

	93	 Paul E. Ceruzzi, Computing: A Concise History (Cambridge, MA: MIT Press, 2012), 56.
	94	 George A. Heitczman, ‘Computer Programs Are patentable’ (1970) 113(1) Seton Hall Law Review 113, 127.
	95	 Brief for Amicus Curiae Institutional Networks Corporation, Gottschalk v. Benson, Supreme Court of

the US, No. 71–485 (Oct Term, 1971), 4. The programmed computer was ‘structurally different from
the same machine without the program since its memory elements are differently arranged’. George
A. Heitczman, ‘Computer Programs Are Patentable’ (1970) 113(1) Seton Hall Law Review 113, 127. See
George V. Elgroth, ‘Software and Patent Law’ (1966) Patent Law Annual 1.

	96	 Robert O. Nimtz, ‘The Data Processing Revolution’ in Software Protection by Trade Secret, Contract,
Patent: Law, Practice, and Forms (Washington: Patent Resources Group, 1969), 129.

	97	 Brief Amicus Curiae on behalf of the Business Equipment Manufacturers Association, Gottschalk v.
Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 3.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

	 The ‘Contested Ontologies of Software’	 135

was programmed was highlighted in the oral argument before the Supreme Court
in Gottschalk v. Benson where in response to Justice White’s question ‘When the
computer is programmed … it is not the same machine as it is when it isn’t pro-
grammed?’, the Government Attorney replied: ‘It is precisely the same machine,
Mr Justice White. It is precisely the same machine’.98 As the Government Attorney
noted, ‘That is precisely the heart of our case’. The digital computer is ‘really no
more than an extension of an adding machine or calculator’. He added:

Well, Mr Justice White, the analogy which we use in our brief – and I think that
this is the appropriate analogy – is an old piano player which carries out – which
plays songs when piano rolls are inserted into it. We do not believe that the com-
puter acquires a new function every time it carries out new calculations that it is
inherently built to perform, any more than a player piano carries out a new use
every time a new piano roll is inserted into it.99

By arguing that a computer was the same machine irrespective of whether it con-
tained a new and different program, hardware manufacturers were able to argue
that the ‘computer does not acquire a new function, in any sense recognizable by
the patent law, every time it is programmed to perform a different set of arithmeti-
cal calculations, any more than a piano played acquires a new function each time
it plays a new song’.100 In this sense hardware manufacturers were able to argue that
the programming of a computer was no more than a conventional and unpatent-
able use of a known machine, similar to placing a new piano roll in a player piano.
In both cases, the end result was patent ineligible. As IBM said, the programming
of a computer ‘does not vary the actual nature of the computer so as to constitute a
patentable invention’.101 This, in turn, allowed the hardware manufacturers to assert
that ‘computer-program inventions relate to things other than machines and there-
fore are non-patentable’.102

Over the course of the 1960s and 1970s, hardware and software companies repeated
their strategic and self-serving arguments about the nature of software-related sub-
ject matter in a range of venues including conferences, academic journals, trade
magazine, policy reviews, newspapers, and amicus curia briefs (to both the Court

	98	 Cited in Morton C. Jacobs, ‘Patents for Software Inventions: The Supreme Court’s Decision’ (January
1973) 55 Journal of the Patent Office Society 59, 60 (transcript of oral arguments, 19).

	99	 Ibid.
	100	 Reply Brief for the Petitioners, Gottschalk v. Benson, Supreme Court of the US, No. 71–485 (Oct.

Term, 1971), 5. As the Petitioners in Gottschalk v. Benson argued (including the US Solicitor General
and the USPTO), a program in a computer was no different to a conventional use of a known
machine, ‘comparable to the insertion of a new piano roll in an old piano player’. Brief for Petitioners,
Gottschalk v. Benson, Supreme Court of the US, No. 71–485 (Oct. Term, 1971), 17.

	101	 Brief for Amicus Curiae International Business Machines, Gottschalk v. Benson, Supreme Court of
the US, No. 71–485 (Oct. Term, 1971), 3.

	102	 Morton C. Jacobs, ‘Patentable Machines: Systems Embodiable in Hardware or Software (The Myth
of the Non-Machine)’ in (ed) Irving Kayton, The Law of Software (George Washington University,
1968) B-77, B-85, 1.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

136	 Intangible Machines

of Customs and Patent Appeals and the Supreme Court). In so doing they not only
highlighted how important the task of deciding what the subject matter was, they
also highlighted how entrenched and divided the industry’s response was to this
question. In a sense, the issue that underpinned these debates was whether or not
the subject matter had been dematerialised. As we will see in Chapter 6, this had
important ramifications for the way that patent law interacted with computer-related
subject matter.

https://doi.org/10.1017/9781009479639.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009479639.005

