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THE LATTICE OF EQUATIONAL CLASSES
OF COMMUTATIVE SEMIGROUPS

EVELYN NELSON

Introduction. There has been some interest lately in equational classes
of commutative semigroups (see, for example, [2; 4; 7; 8]). The atoms of the
lattice of equational classes of commutative semigroups have been known for
some time [5]. Perkins [6] has shown that each equational class of commutative
semigroups is finitely based. Recently, Schwabauer [7; 8] proved that the
lattice is not modular, and described a distributive sublattice of the lattice.

The present paper describes a “‘skeleton’ sublattice of the lattice, which is
isomorphic to A X N+ with a unit adjoined, where 4 is the lattice of pairs
(7, s) of non-negative integers with » £ s and s = 1, ordered component-wise,
and N7 is the natural numbers with division. Every other equational class
“hangs between’’ two members of the skeleton in a certain way; the relation-
ships between intervals of the form [®:, R:] where £, 2 are members of the
skeleton are investigated. Finally, it is shown that Schwabauer’s distributive
sublattice is actually a maximal modular sublattice.

1. BASIC CONCEPTS

1.1. Equations and completeness. A semigroup is a pair (S, f) consisting
of a set .S and a binary operation f on S satisfying f( f(a, 0), ¢) = f(a, f(, ¢))
forall a, b, ¢ € S. (S, f) is called commutative if, for all a, b € S, f(a,b) = f(b, a).
We deal exclusively with commutative semigroups and will write simply ab
for f(a, b) and S for (S, f).

The free commutative semigroup on countably many generators, F(w), is
the set of sequences (u,).ex of non-negative integers, such that %, = 0 for all
but finitely many # € N and Y u, = 1, with component-wise addition. For
convenience we write (u,) for (#,).ex and, if u, = 0 for all # > m, we some-
times write (#1, %g, . . . Uy) for (uy)pen-

A commutative semigroup equation is a pair ((u,), (v,)) of elements of
F(w). A commutative semigroup .S is said to satisfy the equation ((«,), (#,))
if, for every family (a,).cx of elements of .S,

H {aiuilui = 0} = H {aiﬂiivi =~ 0}.
A class § of commutative semigroups is said to satisfy an equation ¢ (a set T of

equations) if every semigroup in £ satisfies ¢ (satisfies every equation in ).
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For a set 2 of equations, we define a set I'Z of equations as follows: ¢ € T'S
if and only if there exists a finite sequence ey, ey, . . . €, of equations such that
en = e, and such that '

(P): for each z = m, one of the following holds.

(P1) e, € Zore; = ((ua), (u,)) for some (u,)nenw € F(w).

(P2) There exists j < ¢ such that e; = ((#,), () and e; = ((v,), (u,)).

(P3) There exists j < ¢and a permutation = of N such thate; = ((u,), (v,))
and e; = ((Urwy), (Wrew))-

(P4) There exists j < ¢ such that e; is obtained from e; by multiplication,
ie,e; = (), (w))and e, = ((u, + w,), (@, + w,)) for some (W,)nen € F(w).

(P5) There exists j < ¢ such that ¢; is obtained from e; by substitution, i.e.,
€y = ((un)r (7}")) and for some P € N and (kn)nEN € F(w)y €e; = ((un + kn”p);
(v, + k.vy)). (See note below.)

(P6) There exists j < 4 such that e; is obtained {rom e¢; by identification of
variables, i.e., ¢; = ((#,), (v,)) and there exist p, ¢ with 1 < p < ¢ such that

e = ((W1y oo ttp_1, 0, Uppy o o« Uge1, Ug + Upy Ugr1y « -+ ),
@1, e« U1, 0, Upy1y - o 2 Vg1, Vg Upy Vgity o v 2))e

(P7) There exist 7, k < 7 such that e; = ((#,), (.)), &x = ((.), (w,)) and
e; = ((un), (wa)).

Note. (P5) does not yield what intuitively is the result of substituting some
term (/,).en for the pth variable in e; to obtain
((ur + by, « - g1 + hypstty, hytty, Upi1 + hpirtiy, o . ),

(7)1 + hﬂ)p, oo Up—a + }lp_.ﬂ}p, hz,'llp, Upt+1 + hp+17}p, .. -))
from ((¢4n)nen, (Wn)new). However, these two operations are equivalent modulo
(P6). For example, to obtain the above equation from ((«,), (v,)) using (P5)
and (P6): if &, = 1 then apply (P5) with k; = h;for 2 ¢ pand k, = h, — 1.
If h, = 0 then we may assume, in view of (P3), that z, = 1 for some ¢ > p
and then apply (P5) with k; = h; for ¢ # ¢, k, = h, — 1. The result will be
(@1 =+ Batty, - .« thy—y + Bpsthy, Up, Upi1 + Ppratty, . - . Ug + hetty — Uy, . . ),

(W1 + Bavp, -« - Vp1 F Fp1Vp, Up, Vpy1 + Fpa1p, o o U T+ BT, — U, L L))
If (P6) is then applied to identify the pth variable with the gth, one obtains
the desired result.

A set 2 of equations is called closed if £ = I'S. We also write £ — ¢ for
e € T'Z and in the case = consists of exactly one equation f, we write f — e.
Then ¢ € T'Z if and only if every commutative semigroup that satisfies T
also satisfies e; this is the completeness theorem for commutative semigroups.

LEmMMA 1.1. If ¢ = ((ttn)newy, @n)new)), then for each © € N,

e—> (01, - v, Dim1, Vs F %5, Vigny 00 )y (U, - 0 V41, 204, Uigy, o2 2))e
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Proof. By (P4),

e— (U1, oo i1, 20gy Uig1y o o)y (150 v e Vi1, Uy Uiy Vig1y o o))
and by (P5),
e —> ((ul, e oo Uga, 2%1, Uig1y oo .), ('01, S /N 27)1‘, Vitly - » .)).

The result follows from (P2) and (P7).

For a class & of commutative semigroups, let §* be the set of all equations
satisfied by every member of &; then ®%* is closed. For a set T of equations,
let =* be the class of all commutative semigroups satisfying Z; then Z* is
equational. For equational classes £, &, & C & if and only if &* C &%, and
for closed sets X, 2’ of equations, T C 2’ if and only if 2'* C 3*,

Let & be the lattice of equational classes of commutative semigroups, and
¢’ the lattice of closed sets of equations; then ¢ is dually isomorphic to & by
the mapping ® ~ &*. For 1, {2 € &,

K1 Agfe = 81N K2 = (K7F Ve K25,
and

f1 Ve R = (BF Ag 8% = (RF N {*)*.

1.2. The invariants D, V, L, U. The equation ((#,), (v,)) is called non-
trivial if u, # v, for some # € N. A set of equations is called non-trivial if it
contains at least one non-trivial equation; an equational class & is called non-
trivial if &* is non-trivial.

For a non-trivial equation e = ((u,), (v,)), define

D(e) = g.c.d.{|u, — v, |n € N, uy 5 v,}

V(e) = min{u,, vln € N, u, 5 v,}

L(e) = min{max{u,|n € N}, max{v,|n € N}}

min{z U, z wn} if Z Uy F Z Up

U(e) — neEN nEN neEN neEN
> u, + Vie) if Z Uy = D TUpe
neEN neN neN

Note that D(e), L(e), and U(e) = 1 and that V(e) = L(e) = Ule).

For example, ife = ((0,1), (1,0)),thenD(e) = 1, V(e) = 0,L(e) = 1 and
U(e) =1+ 0 = 1. A semigroup S satisfies ¢ if and only if S has at most one
element.

If e= ((1,0), (1,p)) then D(e) = p, V() =0, and L(e) = Ule) = 1.
A commutative semigroup S satisfies ¢ if and only if for all s, ¢ € S, s = s, i.e.,
if and only if .S is an abelian group satisfying s? = 1 for all s € .S.

For a non-trivial set = of equations, we define

D(2) = g.cd.{D(e)|e € Z, ¢ non-trivial}

V(Z) = min{V(e)|e € Z, e non-trivial}

L(Z) = min{L(e)|e € Z, e non-trivial}

U(Z) = min{U(e)|e € Z, e non-trivial}.
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For each pair (r, #) of natural numbers, define

frn:It—{0,1,...7 +n — 1}

as follows:
i k=
Fra(k) = 1+fk—r]n it k>,

where [m], is the least non-negative residue of m modulo #, and I+ is the sct
of non-negative integers.

Let Frp = {1,2,...7r +n — 1} and for 41,15 € F,, define 4175 = [, , (11 + 72).
Then F,, with this operation is a commutative semigroup satisfying
((r), (r + ).

Let F,,* be F,, with a unit adjoined, i.e., F,,* = F,, U {u} where
ux = xu = x for all x € F,,+.

LemMma 1.2. F, , satisfies a non-trivial equation e if and only if Ule) = r and

n|D (e).

Proof. Let e = ((#44) e, (¥4)ienw) be a non-trivial equation with » < Ule)
and #z|D (e).

Case 1. 2" u; # 2 v, Then 25 uy, > v, = v. If (k) en is a family in F,,
then

H {kzu'luz #= 0} = H {lkiuilui £ 0 fr n(z ko, lu = 0)

H{ v'lv #= 0} = f,, (2 {kwlv, # 0}).
But X {kFay|u; = 0} =2 X {us|u, 52 0} = u, = r; similarly
S Hkwivi 20} =7
Moreover, since #n|D (¢). it follows that #n|u; — v, for all 4; thus, Y kau; =
> kw, (modulo ). This implies that f,,(> kw.) = fr (G kw,); thus,
TT (B, = 0) =TT {k:v, = 0).
Case 2. 2 u; = 2, v, Then Ule) = X u,+ Vie) = r. Let (k;)iex be a

family in F, ,. If k; = 1forall ¢ with u; = v, then >k, = > ko Ik, > 1
for some 7 with #; # v, then, since u; ¥ v, implies that u;, v; = V (e), it follows

that S kb, = 2 ui+ Vi) zr, ko, =2 X v, + Vie) Z_r Thus we again
have f, . (X ki) = fr (2 k@) ; hence
[ {euy = 0y =TT (kelos # 0).

It follows that F, , satisfies e.

and

For the converse, assume that e = ((#;)en, (Vi) iex) is a non-trivial equation
with U(e) < 7. If 2° u; £ 3" vy, then 7 > min{Y 4, 2. 94}, (1)ien is a family
in F,, and

H {1141]%1 # O} = frn(z ui) #frn(z Uz‘) = H {lvi!vi = O}
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Thus, in this case F,, does not satisfy e. If 3_ u; = > v;, then we may assume
without loss of generality that V' (e) = u; (and then

91> u; and X wu, + uy < 7).

Thus, by Lemma 1.1, e— ((2vy,v2...), (@14 21,93 ...)). (ID)y is a
family in F, , and

H {lwi[wl = 2‘1)1, Wy = V; f01'7; g 2} = fr,n(z Vi + 7}1) #ff.n(z Uy + ul)
=[] (1%|xy = us + 01, %, = v, for ¢ = 2}.

Thus F, , does not satisfy ((2v1, v, . ..), (¥1 + u1, 92, ...)) and hence does not
satisfy e.

If Ue) = r but n 4 D(e) then we may assume without loss of generality
that #; # v;and # f |u1 — v1]. As above, e — ((201, Vs, . . .), (V1 + u1, 02, ...)).
But since > v; 4+ v1 # X v; + #1 (modulo #), it follows that F,, does not
satisfly ((2v1, 92, . ..), (v1 + #1, s, ...)) and hence does not satisfy e.

This completes the proof.

LemMA 1.3. F, .t satisfies @ non-trivial equation e if and only if V(e) = r and
n|D (e).

Proof. F,,* satisfies ((r), r +n)). ((), (r + n)) — ((r), (r + kn)) for
all e = 1. If e = ((44) iew, (¥:)iew) and if V(e) = 7 and #|D (e), then u; = v,
implies that u, v = 7 and #ulu; — vy thus, ((7), (r + %)) — ((ue), @)).
Thus ((r),  + n)) = (@) scw, (@:)iew) = e. It follows that if V' (e) = 7 and
n|D(e) then F,,*t satisfies e.

Conversely, if F,,t satisfies ¢ = ((#:)en, (¥1)ien), then since F,, is a sub-
semigroup of F,,t, it follows that F,, satisfies ¢ and thus #|D(¢). We may
assume without loss of generality that V(e) = #; (and then u; < 9;). Let
ay=1¢ F,,"and fori = 2, let a; = u € F,,+. Then (a;)ey is a family in
F, .t and

T fordu = 0} = {lra) 3 =0

u if #; =20
and

[T {amo: = 0} = f,. ().

Since F,,t satisfies e, it follows that #; = 0 and f,,(u:1) = fr,(v:1). But
Uy # v1: thus, uyg, 1 = r. This means that V' (e) = 7.

TaeorEM 1.1. If Z—e¢ and e s mon-trivial, then U(Z) £ Ule),
V(Z) £ V(e), L(Z) = L(e) and D(Z)|D(e).

Proof. Assume T — e. Since Fysy pexy satisfies Z, it also satisfies e; thus,
U(Z) £ Ule) and D(Z)|D(e). Moreover, if V(Z) > 0, then Fyz.pnt
satisfies T, and hence also ¢, and thus V(Z) £ V(e).

To show that L(Z) < L(e) itis enough to show thatif ey, . . . e, is a sequence
of equationssatisfying (P) and L(e;) = L(Z) forall ¢ < m, then L(e,) = L(Z).
Let ¢; = (a;, B;) where a;, 8; € F(w). Then L(e;) = L(Z) means that there
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exists an entry =L(Z) in each of a; and 8;. But if this holds for all 7 < m,
then it is clear that whichever of (P1) to (P7) e, satisfies, there will be an
entry =L (Z) in each of o, and B,, i.e., L(e,) = L(Z).

COROLLARY 1. If 2 —3' then U(Z) = U(Z"), V() = V(Z'),L(Z) £ L(Z)
and D(Z)|D(Z).

CoROLLARY 2. D, V, L, U as operators on sets of equations are invariant under
T, i.e., for any non-trivial set T of equations, D(Z) = D(T'Z), V(Z) = V(I'Z),
L(Z) = L(I'Z)and U(Z) = U(TZ).

For a non-trivial equational class &, define D () = D(®*), V(R) = V(]*),
L(®) = L({&*) and U(R) = U(R*). Since for two equational classes
K1, K, 81 € K, if and only if £,* — K*, it follows that if §; & K, then
UR1) = UR2), V(&) = V(R2), L(R1) = L(K2) and D(R1)|D(R2).

2. THE SKELETON SUBLATTICE CONSISTING OF THE CLASSES
Qr,s,n'

2.1. Definition of the skeleton. For non-negative integers 7, s, n with
r=<s and =1, let Q,,, = {(@ys), +n5s)), ((s), s+ n))}* Then
U<Qr,s,n) =35 = L(Qr,s,n)v V(Qr,s,n) = r and D(Qr.s,n) = n.

Note that since ((0,s), (r,s)) — ((s), s+ n)) by (P6), Qosn=
{0, s), (n,s))}*. Since ((r), (r +n)) = ((r,7), (r +n,7)) by (P4),
Qrrm = {((7’), (1’ + ’I’L))}*

Q0,1 is the class of all commutative groups G satisfying x? = 1 for all
x € G. Q11 =1{00,1), (1,1))}* and since ((0, 1), (1,1)) — ((0, 1), (1, 0))
it follows that Q1,1 is the zero of the lattice L.

Clearly, in view of (P4),if7 = tand s = u then Q, ;, © Q,,,,. If in addition
n|m, then a simple induction argument yields @, ;, C @, , . On the other
hand, by the remark at the end of Chapter 1, if Q,;, € Q,,.,, then r = ¢,
s = u and #n|m. Thus @, 3, S Q,unif and only if » £ ¢, s £ % and n|m.

2.2. The set Q. ,* of equations holding in Q, ;.

THEOREM 2.1. For a non-trivial equation e, e € Q. ;,* if and only if r = V(e),
s £ L(e) and n|D (e).

Proof. The “only if”’ part is a direct consequence of the results of the last
section of Chapter 1.

For the converse, let ¢ = ((#:)cn, (¥i)iey)) and assume that r < V(e),
s £ L(e) and #|D(e). It follows directly from the definition of V, D, and L
that there exist j, & with #; v, = s and that if #; ¢ v,, then #|u; — v; and

u;, v; = r. We may assume without loss of generality that #; = s. But then

((r,s), r + n,s)) = ((uy, us...), (21, vs, 03 ...)).

If v; = s then

((S)y (5 + n)) e ((ul)r ('U])) - ((ul: Vg - . ')y (7}1, Ugy . © -))
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If v; < s then v; = s for some j = 2 and then

((7’, S)y (1’ + n, S)) - ((ulr ‘U]')v (vly 7}1)) — ((ulr Voy .« ')’ (7)1, Voy o« ))'

Thus Q, ;.* — e, ie, e € Q, ;%

COROLLARY 1. For an equational class &, Qr,sn C K if and only if r < V(R),
s £ L(R) and n|D(R).

COROLLARY 2. @, 5, V Q,um = Qywo Where v = max{r, t}, w = max{s, u},
p = L.e.m.{n, m}.

Proof. Since Q; 5, © Qyyp and Qyum S Qy0p, it follows that

Qr,s,n \/ Qt,u,m g Qv,w,p-
Thus it is enough to show that @, ,, € @, s V Qs .m, i.€., that
Qr,s,n* m Qt,u,m* g Qv.w,z)*~

But e non-trivialand e € @, ;,* N Q,, ., imply by the theorem that V' (e) = 7,
L(e) = s,n|D(e)and V(e) = ¢, L(e) = u and m|D (e¢); thus, V(e) Z v, L(e) = w
and p|D (e). It follows from the theorem that ¢ € Q,, ,* and this completes the
proof.

Since every non-trivial equational class is contained in some €,  ,, it follows
from Corollary 2 that the class of all commutative semigroups is not the join
of two smaller classes. This was also proved in [2].

THEOREM 2.2. Q50 A Qum = Qow,a, Where v = min{r, ¢}, w = min{s, u}
and d = g.c.d.{n, m}.

Proof. Since ;54 2 Qyw.a, and Qyym = Qy.a, it follows that

Qrsn A Qium = L4
To show the reverse inclusion, it is enough to show that
{(w), @+ d,w)), (W), @+ )} S Qron A Qum)* = Q0™ V Qum®

Assume that s = u. Then there exist natural numbers p, g such that
pn = gm + d and pn = u. By Theorem 2.1,

((s), s+ 2pm)) = ((s), (s + pn + gm + d)) € Q5"
(s+pn+gm+d), s+ pn+d) € Qun*
(s+pn+d,s+4d)) € Q. ."

Thus ((s), (s + @) € Q.s.* V Q,un™. The case u < s follows by symmetry;

thus, ((w), (@ + d)) € Q¥ V Qrum™.

Now assume that » < £. Then v = 7. There exist natural numbers %, k& such
thatw + kd = s, + hn = w. Then:

((r,w), (r,w + kd)) € Q1 5* V Qpun®
((r,w + kd), (r + hn, w + kd)) € Q, .*
(r +hn,w+kd), (v +hn+d, w4 kd)) € Q. 0*V Qun®
(r+tn+d,w+ kd), r +d,w+ kd)) € Q, ;*
(r+d,w+kd), r +d,w)) € U e0a* V Qun®
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ThUS, ((7), 'ZU), ('U + d; ‘ZJZ))) E (Qr,s,n* \% Qt,u,m*) \Y Qt,u,m* = Qr.s,n* \Y Ql,u,m*~
The case ¢ < r follows by symmetry. This completes the proof.

Let 4 be the lattice of pairs (7, s) of non-negative integers such thatr <
and s = 1, ordered component-wise, i.e., (r,s) = (¢, #) if and only if r =
and s = u. Let NVt be the lattice of natural numbers ordered by division.
Then, by the above theorems, the map given by (7, s, n) ~ Q, ;. is a lattice
isomorphism of 4 X N7t onto a sublattice of &.

s
i

2.3. Equations implying Q. ,,*.

THEOREM 2.3. For a non-trivial equation e, e — Q,  ,* if and only if V(e) < r,
Ule) = s and D (e)|n.

Proof. 1t follows from the results in the last section of Chapter 1 that if
3_)Qr,s,n* then Vi) =r = V(@ sm), Ule) s = U(Qr,s,n) and D(e)ln =
D(Qr.s.n)-

For the converse, let ¢ = ((4;)ien, (¥:)iex) and assume that Vie) < 7,
U(e) £ s and D(e)|n. For each ¢« € N, by Lemma 1.1,

e— ((v1, .. Vim1, Ui+ %4y Vin1y o o a), U1y 00 o 0i1, 204, Uigy, .0 0)).

Let w; = > jen v; + minf{u,, v} and let d; = |u; — v,|. Then for each 7 € N,
e— ((wy), (w; 4+ d;)). Thus for each ¢ € N with u; # v4, €* C Qu; 0;.0:- By
Theorem 2.2, ¢* C Q, , 4 where w = min{w,|u,; # v,}, and

d = g.c.d.{dd; # 0} = D(e).

I Yiewtti =2 ienvv: then U(e) = w; for some j€ N and thus
e* g QU(e),U(e).D(e)- If Z Uy = Z Vi then

e— (v ), (Xienv:)) — ((Ule)), (Ule) + h))
where h = |2 u; — X v,| is divisible by D(e). But then ¢* C Qu(s.u0.000-
Now assume without loss of generality that V(e) = u;. Then
€— ((%1,2122 ), (711,2122 v;))
— ((u1, Ule) + 2 iz 1), (@1, Ule) + D imav4)).
Since D ()| iz2t: — 229 and since e — ((Ule)), (Ule) + D(e))), it
follows that e — ((u1, U(e)), (v1, U(e))). Thus &* C Qv where

h = v1 — wuy is divisible by D (e). This, together with ¢* C Qus .u(e .0 vields

e C Qo v .o Since Vie) =r, U(e) =s and D(e)|n, it follows that
et CQ

T,8,m*

COROLLARY. For an equational class &, & S Q5. if and only if V({) = r,
UR) £ s and D(R)|n.

Proof. The “only if”’ part follows from the remark at the end of Chapter 1;
the converse follows from the fact that if & is a non-trivial equational class,
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then there exist equations ey, s, e3 € £* such that V(er) = V(R), Ule,) =
U(R) and D(e;) = D(R).

LemMA 2.1. For a non-trivial equation e, if L(e) = t then there exists B € N
such that

e— (¢t t,...t), ¢+ D(e),tt ...1)).
| —— | —
k E—1
Proof. Let e be a non-trivial equation with L(e) < tand D(e) = d. We may
assume without loss of generality that e = ((uy,...u%,), (v1,...9,)) where

u; = tforalls < n. If u; < v, for some j < # then

e— (Lt o t), (wr+ ¢t —uy,...0 ¢t — u,))
where v; + ¢ — u; > ¢ If u; = v, for all ¢ £ #n, then

e— (1 +t—o,...uy+t—w,), ... 08)

where, since e is non-trivial, #; + ¢t — v; > ¢ for some 7 < #. Thus, in either

case, there exist w,, . .. w, and s = 1 such that
e— ((t,...t), ¢4 s, ws, ... w)).
~——
n

Choose % so that ¢t 4+ ks = U(e) and let k = h(m — 1) 4+ 1. For each m with
0=<m=h,let

ap = (b4 ms, Wy .o . Wy o oo Way oo o Wyy by oo ).
~ H_——/
mn—1) k—mm—1) —1
By (P4),
e— (t+ms, t,...8), ¢+ ms+s,wy...w,))
H__/
n—1

for each m = 0. Thus, again by (P4), ¢ — (am, any1) for each m with
0 < m < h. By (P7), it follows that

e— (ag, ) = ((¢, ... 8), ¢+ ks, way ... Wy, .. W)
H__/

k k

and thus by (P4),
e—> t+dty...t), (+hs+d way.o.WyyeooioWsy.o.W)).
k k
Butt + ks = Ul(e); thus e = (¢ + hs), (¢ + hs + d)). It follows that
e— (Sl-,..ﬂ, (t\i—d,t,...t)).

v B

k k
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CoroLLARY. For mnon-trivial equational classes 81, 82, L(f1 V R2) =
max{L (1), L(K2)}.

Proof. Assume without loss of generality that L(®,) = ¢ = L(®:). Then
there exist ¢; € R;* for 7 = 1, 2 such that L(e;) < ¢t. By the lemma there
exists £ € N such that

ei— (b, ... t), ¢+ d, L ... 1)
\_ﬂ___/ H/_/
k E—1
for « = 1, 2 where d is the least common multiple of D(f;) and D (). Thus
(... 0, G+d,t...0)) € (81V R)-
~———r ——
k E—1
It follows that L(®: V R:) = £ On the other hand L(§; V &) = L(§:) = ¢;
thus L(R1 V K2) = max{L(R1), L(R2)]}.

Summarizing the results of this section and the preceding one, we have that
for a non-trivial equational class &, Qv .ze.00 S & C Qvw),v®.o@-
Morecover, these choices of the @’s are the best possible in the following sense:
if Q5. C R then Q; ., © Qpy, 2 py and if 8 C Q, ;, then

QV(.Q),U(.Q),D(@) g Qr,s,n-
Thusif & € [Qr 50, Qs in), then V(®) =7, L(R) = 5, UR) < tand D(R) = =.

TurorREM 2.4. D is a lattice homomorphism from & — {E} to N* and V, L and
U are lattice homomorphisms from & — {E} lo the non-negative integers with
thetr usual order, where E is the class of all commutative semigroups.

Proof. For non-trivial equational classes 1, 2,
U1 A R:) = UR*U K*) = min{U(R1), U(R:)}.

The rest of the proof follows from the above remarks, and the corollary to
the last lemma.

3. HANGING THE MEAT ON THE BONES

3.1. The intervals [Q, ., Q,..n]. Since for each equational class & there
exist 7,s,5,w € N with Q,,, € 8 € Q,,,., it follows that the interval
(2 5.2y @7 s.0n) 18 @ jump for p prime and that [, s, @ri1,5.] is @ jump for all
r 2 0. Thus [Q, 5.1, @ s.n] consists of exactly the classes Q, ;, where n|m and
[Q0,5.n, Ls.5.n] consists of exactly the classes Q. ., where » = s. Moreover, if
K C Q0 then either R € Q. y,, or & & Q, ., for some m < n. Thus
Q1,1.1, the class of all semilattices, is an atom in € and for p prime, Q,1,, the
class of all abelian groups G satisfying «? = 1 for all ¥ € G, is an atom in £.
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{((1,1,0), (0,0, 2))}*, the class of all semigroups with constant multiplica-
tion, is also an atom in L. Moreover, it is an easy consequence of the above
remarks that this exhausts the set of atoms in &, a result proved in [5].

It remains only to investigate intervals of the form [Q, ;,, @, :,] where
s < t. It is easy to see that every such interval is infinite: for each p = ¢, let
8 = Qo V {e,p}* where

e, = ((1,1,...1,0), (0,...0,¢)).
~— N~ —
P 2
Then & € [Q 50, r.10] and if p = ¢, then &, T &,. Moreover, if p > r + s,
then
fo=((r,s,1,1,...1),r +mn,s,1,1,...1)) € &*
—_—— | S ——
p—r—s p—r—3s

but f, ¢ £,41* since ¢,, > f,. Thus {&,|p = ¢, p > r + s} is an infinite chain
in [QT,S,WJ QT,l,ﬂ]'
The following lemma will be useful in the rest of this chapter.

LEMMA 3.1. If Q, ,., © & for sometthen e € (R A @ o0)* if and only if there
630’i5t T1y T2y T3y T4 E F(w) suck that e = (Tl, T4) and (1'1, 7'2), (73, 7'4) E @*,
(Tz, 7'3) € Qr.s.n*-

Proof. The “if’’ part is trivial. On the other hand, if e € (R A @, 5.)* =
f* Vv Q,,.,% then, since for arbitrary congruence relations 6, 65,

01\/02= U{91002001....01[’ﬂ§ l,nodd}

v

n

and since &* and @, ;,* are congruence relations on F(w), it follows that there
exists a finite sequence 71, 79, . .. T2y € F(w) such that ¢ = (71, 79,) and

( ) € fF for 7odd
T4 Tidl Q,.a* for 7even.

We may assume without loss of generality that (74, 7:41) is non-trivial for all
1 % lor2p — 1and that p = 2. But then, by Theorem 2.1, L((r;, 7:41)) Zis
for even,i.e., forallzwith2 =7 = 2p — 1, 7; has an entry =s. But then for
all odd 7z with 3 =27=22p—3, V((rs,7ep1)) 27, L((r4,7:21)) = s and
n|D((11, Ti31)); thus, (14 741) € @, 5" It follows that (79, T95-1) € Q.7
Thus we may take 71, 72, 795—1, T2p for the four elements of F(w) in the theorem
statement.

TueoreM 3.1. If & € [Q o @r,e0] and if u < v and m|n, then
=8O AQim) V Qs
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Proof. Since & A Q,;n © & and @, ;, C R it follows that
(‘@ AN Qu,t,m) V Qr,s,n - .

Thus it is enough to show that if e € (R A Qu,1m) V @ 5.,)% then e € {*,

Assume that ¢ € (R A Qim) V @ s)* = (8 A Quim)* N Q0% Then
by Lemma 3.1, there exist 71, 72, 73, 74 € F(w) such that (71, 72), (73, 74) € K%,
(2, 73) € Q,1m® and e = (11, 74) € Q, % But &* C Q, ,,*; thus,

{(Tlr 7'4), (le 7'2), (T3y 7'4)} g Qr,s,n*-

Since {(le 7-4)y (7'1’ 7'2), (7'3y 7'4)} - (7'2, 7'3), lt fOHOWS that (Tg, T3) 6 Qr'gyn*-
Since (7'2, 7'3) € Qu,t,m*y we have that (727 7'3) S Qr,s,n* M Qu,l,m* = Qr,t,n*' But
Q, .5 C {%*; thus, it follows that ¢ € &*.

CoRrOLLARY. If ® € [Q;50, D, 10] and mln, then & = (8 N Qrim) V Qo1

Proof. By the theorem, & = (8 A Qi) V Qg But Q50 TR A Q im
and Q, s V Q1n = Q0 this vields the desired result.

LEmma 3.2. If

V(R1) £ V(R2),q = V(R1), P = V(R2), ¢ = p, max{p, V(R1)] = V(R:)
and if nlm = D(81) = D(R:), then

(i@l /\ Qq,u,n) \/ ('@2 /\ Qp,u,n) = ('Ql V «@2) /\ Qp,u,ny
where u = U(Ry), U(R2).

Proof. Clearly (1 V £2) A Qun =2 (R0 A Qun) V (82 A Qun). On the
other hand, il ¢ € (R V Qu.") M (&7* V Q,,,%), then, by Lemma 3.1,
there exist 7, € F(w) for 1 £ 7 £ 6 suck that e = (r1,76) and (ry, 72),
(rs, 76) € %, (71, 74), (75, 76) € R9*, (72, 73) € Qo™ and (74, 75) € Q4%

Let » = V(R1). If both (79, 73) and (74, 75) are non-trivial then s, 73, 74 and
75 all contain an entry Zu. But (r1, 72) € £:* C Q,,, % and

(7’1, 7'4) € @2* g Qr,r,m* implles that (TQ, T4) E Q,—,,,m*.

It follows that (74, 74) € Q0% € R:*. Thus (11, 74) € £:*. Similarly,
(15, 76) € 1% Thus ¢ € (R* N K*) V Q¥ If (7o, 73) is trivial, then
e = (r,75) € &% Thus (r1,74), (s5,76) and (71, 76) € Q, ., % Since
{(r1, 74), (75, 76), (71, 76)} — (74, 75), we have (14 75) € Q. rmt.  Thus
(14, 75) € Qrp™ N Q™ & Ro*. It follows that e € £ M K.*. Similarly,
if (4, 75) is trivial then ¢ € £, M K.*. Thus in any case,

e 6 (@1* m @2*) \/ Qp:u,n*-

This completes the proof.

3.2. The sublattice ¢, with constant D. For # € N, let
L={R e YD) = un}
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and for each non-negative integer k, let &, , = {& € &,|V(®) = k}. Then the
L..1's are pairwise disjoint, and &, = Uiz0 Lz

For p £ ¢, define a mapping &, ;. : €..0 — L., as follows: for § € ¢, , with
UR) =u, 6y 02 (8) = & AN Qun If u =5, then, since & C Q4

KA Qp,s,n =8 A Qqz.u,n A Qp,s,n =R A Qz).u.n = ap,q,n(ﬁ)'

Thus 8, 4. is a meet homomorphism. It follows from Lemma 3.2 that §, ,, is a
join homomorphism. By Theorem 3.1, if & € €,, and p < ¢ then

511,(1.71(@) V Qg0 = !;

thus, 6,4, 1S one-to-one.
Thus, for p < ¢, 6,4, is a lattice monomorphism of &, , into &,, with the
property that 8, ;,(8) V Q4. = &. Clearly, if p < ¢ < r then

p.q.n o 59,7%'

THEOREM 3.2. The mapping & ~» (8o,vy »(R), V(R)) is an embedding of &,
as a meet subsemilattice into ¥,,0 X It, where It s the lattice of non-negative
integers with their usual order.

Proof. Since V(1 A &:) = min{V(f:1), V(R2)} and since the §,,'s are
one-to-one, it is enough to show that if &, € &, then
80, 7@ (R1) A 80, 7@ .2 (R2) = S0, v@iA%n)n(R1 A R2).
Assume that 8, 2 € &, and let # = max{U(R1), U(R:)}. Then
So,v@n.n(R1) A o,v@na(R2) = (1 A Qo) A (R2 A Qo)
(@1 /\ Qo,u,n) /\ (QZ /\ QO,u,n)
(@1 /\ ‘QZ) /\ QO,u,n
60,1’(91/\5@2) n('ﬁl A @2)

611,7,"

and this completes the proof.

It will be shown in Section 4 that this embedding is not a lattice embedding,
i.e., that it does not preserve joins.

3.3. A mapping between intervals of the lattice. If 7, s, ¢, #, # are non-
negative integers such that» < s = ¢ < » and » = 1, then, since

Qs,t.n AN Qr,u,n = Qr,z,n and Qs,u,n AN Qr,u,n = Qr,u,m

it follows that the restriction of 6, s, t0 [Qs, 1.0, Q5.4 4] is a lattice monomorphism
mapping into [Q;, 0, Qrunl. Let érs,sum t [Ds, 000 Lsum] = [Qr, 200 Lrun] be the
restriction of 6, ;,. We will investigate which of the ¢, ;. ,..'s are actually
isomorphisms, i.e., for which values of 7, s, ¢, u, n the image of ¢, ;.. is the
whole interval [Q; ; ., @ unl.

LEMMA 3.3. ¢o,1,1.un Mmaps onto [Qo,emy Qo.un) for all t,u,n = 1.
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Proof. Let & € [Qo, 11, Qou.n)- It is enough to show that for each non-trivial
e € ®*, there exists =, C Q;,,,* such that {e} U Qy,,* < =, \U Q4% for
then § = ¢’0,1,t,u,n((Ue€R*2e)* A Qun).

Let ¢ € ®* be non-trivial. Then L(e) = ¢t and #n[D(e). If V(e) = 1, then
we can take X, = {e}. If V(e) = 0, then we may assume without loss of
generality that e = ((#:)ien, (¥:)iex) where u; = 0,91 > 0 (and then #n|v;)
and %, > 0. Then let

T = {((0e)iew, Qu1, 09, ...)), ((u2, 13, ...), (s + v1, s, ...))}.

Clearly, 2, € Q;,,,*and ¢ — Z.. [tremainsonly toshow that Z, U Q¢,,,* — e.
But
((y) ien, (uv1, v9,23,...)) € TZ,
((uvy, va, v3, . . .), (0, 1y + uvy, us, . ..)) € Qoo *
(0, uy + uvy, us, .. .), 0, us, us,...)) € T'Z,.

Thus, 2, \U Qo.,,* — e. This completes the proof.

COROLLARY. 80,1, ¢S an isomorphism of L, 1 onto &, o for each n € N.

Lemma 34. If r >0 and r +n < u then ¢, 10 does not map onto
[Qr,t.m Qr.u,n]'

Proof. Let e = ((r,r + n,t), r +n,7,t)) and let = e* A Q.. Then
K €[ Qo Lrum) I & = @1 5,000 (R) for some & € [Q, 10, Qs unl, then by
Theorem 3.1, 8 V Q.10 = (& A @un) V Q1o = & and this implies that
R =0r5.00n®V L i0) = (® V Q.in) A Qoyn Thus to prove the lemma,
it is enough to show that & # (8 V ...) A Qe

Since ¢ € {*, it is enough to show that ¢ & ((R V Q;.00) A Qrun)* =
&* N Q.12*) V Qs Suppose that e € (R* N Q. ..*) V Qu.*. Then
there exist 71, 72 € F(w) such that

((ryr +n,t),71), (r2, (r + 1,7, 8)) € K¥N Q.. *

and (TI, 72) € Qr,u,n*o

Now ((r,7 + n,t),71) € &* = Te V Q,,,* implies that there exist
73, 74 € F(w) such that ((r,r 4+ n,t),73) € Te, (r3,74) € Q0" and
(14, 71) € Te. But ((r,7 + n,t), ;) € Te implies that 73 = (»,7 + n,1) or
(r + n, r,t) in the case r + n = ¢ and that

3= (r,r+nr+n),r+nr+nr) or r+unrr+mn)

in the case r + n = t. In any case, since r + # < u and (73, 74) € Q,...%, it
follows that 73 = 74. Thus ((r,7 + #,t), 71) € Te. A repetition of this argu-
ment yields 71 = 7o. Thus ((r, 7 + #n,t), (r + n, 7, t)) € Q; ,,*. But this is a
contradiction, since » < s. This completes the proof.

3.4. Restriction of the mapping to Schwabauer classes. An equational
class is called a Schwabauer class, or S-class, if it can be defined by equations
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of the form ((#:)ien, (¥s)iex) Where u; < v; for all 7 € N. Clearly, all the
Q, s.'s are S-classes. The set of all S-classes forms a distributive sublattice y
of the lattice of equational classes of commutative semigroups (see [8]); this

will be proved in Section 7.
LeMMA 3.5. If r +n = ¢, then [Q; 5.y Q7. 10] C 7.
Proof. Let & € (@ 50, @r,1.] Where 7 +n = ¢. To prove that f is an

S-class, it is enough to prove that every e € {* with e ¢ Q, ,,* is equivalent to
an equation of the form ((%;)icn, (v:)icn), where u; < v, for all 7 € N.

Assume that ¢ € &* and that e ¢ Q,,,*. Since &* C Q, %,

e = ((u:)ien, (©4)ien)

where u; 5% v; implies that #;, v; = » and n|(u; — v;). Since ¢ ¢ Q, ,,* we may
assume without loss of generality that u; < ¢ for all 2 € N. But then, if
u; > v, for some 7, it follows that u; = v; + kn where £ = 1 and v; = r. But

then u; = v, + 7% = 7 + »n = ¢t and this is a contradiction. Thus %,; < v; for
all7 € N.

Fort < wu,let T,y = {(:)iew € F(w)|lu; < uforalli,u; = ¢}. For T C T,
and 7 = 1, let T(n) = {((4:)ien, W1+ n, %2, us, .. .))|(:)iew € T}. Then
T(n) C Q;,.n% since if (u;)ien € 714, then uy = ¢; thus,

(@), ¢+ n)) = (), (wr+n)) = (@) iew, (w1 + 1, us, us, .. .)).

LEMMA 3.6. & € [Q; 5.0, 7, ¢.0) 25 an S-class if and only if there exists T C T,
such that & = T (n)* A @, (a

Proof. Clearly if & = I"(n)* A Q,,,, for some T C T, then { is an
S-class.

On the other hand, if & is an S-class there exists a set = of equations of the
form ((#4)scw, (¥i)iex) wWhere u; < v; for all 2 € N such that & = =*. It is
enough to show that for each ¢ € 2 with e ¢ Q, ,,* there exists ¢ € T ,(n)
such that {e} \U Q. ,,* < {&} U Q,,,,*,; for then

/= {é}e € 22— Qr.t.n*}* A Q10

Let e = ((ui)geN, (v’t)1EN) E z — Qr,t,n*- Since = g @* _C_ QT,S,n*! there
exists j € N withu; = sand if u; < v, then n|u; — v, Sincee ¢ Q, ,,* u; < ¢
for all ¢ € N. Thus e = ((%)ien, (s + km)icy), where we may assume
without loss of generality that u; = s. Lete = ((#:)ien, (41 + 5, 2, us, .. .)).
Then & € T,,,(n). Now k; = 1 for some j € N. Choose ¥ € N so that
s+ kk; = t. Then

() ieawy, (i + kkin)ien) € Te
((u; + kkn)ien, (wr+ n + kb, us + kkon, us + kksn, ...)) € Q10"
((uy + n + kkn, us + kkon, us + kkan, . ..), (w1 + n, us, us,...)) € Te.

Thus {e} U Q,,;.* —é.
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On the other hand, if » € N is chosen so that u: + Az = f, then

(1) ten, (U1 + b, wg, us, . ..)) € Te
((uy + hm, ws, s,y .. .), (uy 4 hn + kony us + kon, us + kan, .. )) € @ 00*
((uy + hn + kan, ue + kon, uy + kam, .. .), (u; + kin)ieny) € Te.

Thus {e} U Q, ,,* — e. This completes the proof.

COROLLARY 1. ¢, 5, 1um restricted to [Qg ;ny Qsun) (N v 1S an isomorphism of
[Qs,z,ny Qs,u,n] M v onto l’_Qr,t,nr Qr,u,n] M .

Proof. 1t is an immediate consequence of the definition of ¢, ; ;.. that it
maps S-classes to S-classes. We already know that ¢, ;... is a lattice mono-
morphism; thus, it is enough to show that for every S-class in [Q; /., Q4.0
there is an S-class in [Q;,;.,, Qs ..] that maps onto it under ¢,,s. ¢y .-

Let & € (2,00 Qrun] M v. By the lemma, there exists 7" C 1°,, such that
K=Tm*A Quu But then T(®m)* A Qun € [Qs,im Qsun (Vv  and
Srostan(Tm)* AN Qsun) = T0)* A Qo A Qoun = & This completes the
proof.

In view of Lemmas 3.4, 3.5, and the last corollary, ¢, 4, maps onto
[Q iy Q] for » > 0 if and only if r +%n = . For 1 < s = ¢ < u, since
bo.stum = D01, tun O 1,5, 0un and since ¢o1,,u, 1s an isomorphism by
Lemma 3.3, it follows that ¢, 4, maps onto [Qo,;z, Qourl if and only if
n+ 1= u.

Thus ¢, .14, maps onto [, ;,, @run) if and only if r =0 and s = 1, or
r=0andn+1=wu,orr>0andr + n = u.

From this we see that the embedding of &, into £,,0 X I* in Section 2 does
not preserve joins. Let # = 1 and let p > n; then ¢op 5 pr1,, does not map
onto [Qo . Lop+1,n). Let & € [Qo .0, Qopr1.] such that & is not in the image
of ¢oppprin Let & = Q,,,. If the above-mentioned embedding preserved
joins, then we would have

80,72 (R) V 80,v2).2(]) = 0, v@yen 2 (WV &).

But 50,1’(3?),71('@) = 60,0,7:('@) = g‘cy BO,V(S?'),"(!@/) = Qp,p,n A Qo.p,n = Qo,p,n and
Qopn V & = & Thus we would have & = (® V &) A Qp41,, and this would
imply that & is in the image of ¢o,ppr1... Thus the embedding does not
preserve joins.

LEMMA 3.7. For alln = 1, both [Qg.1.n, Qo.2.0] and [Q1 1,0, Q1 ,2..] are isomorphic
to w41, t.e., to a countable ascending chain with unit adjoined.

Proof. The proof follows immediately from Lemmas 3.3, 3.5 and 3.6, and
the fact that
Ti,=1{(1,1,...1,0,0,...)|m = 1}.
\____.v_..

—

m
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3.5. The relationship between ¢, and &,. For # % m, &, and &, are
disjoint. € = U,en®, Y {E}. If n|m, we define a mapping Bum: & — & as
follows: for & € &, with V(®) =7 and UR) = 5, Bum(®) = & A Qs 0.
Then for any ¢, # with & € Q,, ., we have that

A Qz,u,n = (‘@ A Qr,s,m) A Qt,u,n =R A Qr,s,n = Bnm(\@)

It follows from this that 8,, is a meet-homomorphism. Moreover, by the
corollary to Theorem 3.1, if & € &, then & = 8,,(8) V Qo,1,m; thus, Bum
is one-to-one. Thus, to show that 8, , is a lattice monomorphism of £, into
L, it suffices to show that it preserves joins.

Let 1, 8 € &,. We may assume without loss of generality that
r= V() = V(R:) =s. Let u = max{U(R1), U(R:)}. Then

ﬁn,m(ﬁl vV @2) = (@1 \Y% @2) A 9:r,u.n

and

Bn,m(ﬁl) \/ :Bn,m(tQQ) = (’Ql /\ Qrun) \/ (&@2 /\ Qs,u,n)'

It follows from Lemma 3.2 that 8, »(R1) V Bum(82) = Bum(R1 V R2).

Thus B,.n is a lattice monomorphism of &, into £, with the property that
for each & € L, B (R) V Qo.1.m = K. Moreover, B,., retains the skeleton;
B @r s.m) = Qs Clearly, if nlm and m|p then B, = Bum © Bup-

TueoreM 3.3. The mapping R ~» B1,pwy(®), D(R)) is an embedding of
L — {E} as a meet subsemilattice into X1 X N*t.

Proof. Since B1,, is one-to-one for each # € N, the mapping in question is
one-to-one. Since for non-trivial equational classes 81, R, D(®1 A &2) is the
greatest common divisor of D(f;) and D (8;), it is enough to show that

B1r.o@inty (R1 A 8) = B1.p@n (R1) A Brp@y (R2).

If »,u € N are chosen such that

t@l g Qr,u.D(Q])y @2 g Qr,u.D(@z)v
then
Bio@inty(R1 A R2) = 1A K A Qi
= (ﬁl AN Qr,u,l) A\ ('@2 A Qr.u,l)
= B1,p@) (1) A B1,p@s (R2).
This completes the proof.

It will be seen in the next section that this embedding does not preserve
joins.

Combining the results of this section with those of Section 2, we see that ¢
is isomorphic to a meet subsemilattice of &y o X [T X N* with a unit adjoined.

TueoreM 3.4. For equational classes K1, 82, K1 S K2 of and only if
D(R)|D(R2), V(R1) £ V(Re) and

B1.p@1) (B0, v@n .o (81)) S B1.o@s) (B0, 7@, psn (f2)).
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Proof. If §1 C R, then D(R)|D(R2), V(R1) £ V(R:) and U(R:) £ U(R);
thus,
B1,o@n Bo,v@n.p@n (81)) = & A Qo,v@n 1
= 1 A Qo,u@n,1 S K2 A Qo,u@sy 1
= B1,0®9) (80, 7@ p(22) (V2))-
Conversely, if D(®1)|D(82), V(1) = V(R:) and

B1.o@n Bo,v@n .o (81)) S B1,p@s o, vy, s (K2))
then

K1 = B1,p@n Go,v@n, 0@ (R1)) V Ly@y,v@n. @
C B1.p@n B0, v@n,p@n) (R1)) V Ly, 7@, 08
C B1.o@s) Bo.v@n 0@ (R2)) V vy, vy, pk)
= @2.

This completes the proof.

3.6. Another mapping between intervals of the lattice. For» < s < ¢
and n|m, n # m, let a, 5, ».n be the restriction of B, to [Q; s.m, @7, 1m]. Then
Qrs.1mm 18 a lattice monomorphism of [Q, s m, @ sm] INt0 (27 50y L7 rn]. We
will investigate for which values of 7, s, ¢, n, m, a5, ;.n.m actually maps onto
the whole interval [Q, s, Q7 ;4]

Lemma 3.8, If » >0 and r+n < t, then a,5,1am does not map onto
[QT,S,"/Y Qr,l,n]'

Proof. Let e = ((r,7 + n,s), (r + n,7,s)) and let & = e* A Q,,,,. Then
€ [Q 5 Q. inl. If R is in the image of a;,s, 1nm, then § = ;5 10 () for
some & € [Q sm @ 1m) and then by Theorem 3.1, & V Q, s, = &; thus,
R=ars.inm®V Qsm) = &V Q.smn) A Q. 1. Thus it is enough to show
that & # (8 V @ sm) A Q0 Clearly e € 8*. We will show that
(4 @ ((ﬁ V Qr.s,m) /\ Qr,t,‘n)*'

Assume thate € (8 V Qrsm) A Q) = (¥ N Q™) V Q,,.* Then
there exist 71, 72 € F(w) such that

((7’, 4 + n, S), Tl), (Tg, (7’ + n,r, S)) € ﬁ* N Qr,s,m* and (Tl, T2) € Qr,t,n*>
But ((r,r + n,s), 71) € & implies that there exists 73, 74 € F(w) such that
((ry7 + n,s),73), (11, 74) € Te, (13, 74) € Q,,,,,*. Since ((r,7 + n,s), 73) € Te,
it follows that, if r + # 5% sand r # s then 73 = (r,7 + n,s) or (r + n, 7, s),
ifr =sthenry = (r,7 +mn,7), v +n,r,7)or (r,7,r +n)andifr +n = s
then 73 = (r,7 +n,vr +un), * +n,v,v+n) or (r +n,7r+ =n,r). In any
case, since r + n < tand s < tand (73, 74) € Q,,,.%, it follows that (73, 74) is
trivial. Thus ((r,7 4+ #,s), 71) € Te. But then the same argument yields
71 = 72. But this implies that

((7‘, r + n, 3)7 (7’ + n,r, S)) E ﬁ* M Qr,s,m* g Qr,s,m*

and this is a contradiction. This completes the proof.
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LEMMA 3.9. a; 5, 10.m restricted to {Qr smy Qr,em] (M vy 1S an isomorphism of
[Qr,s,my Qr,t,m] m Y onto [Qr,s,m Qr,t.n] m Y.

Proof. 1t is clear from the definition of @, s, ;nm that it maps S-classes to
S-classes. Thus it is enough to show that for every & € [Q; s, @7,10] M v there
exists 8 € [Qr.sm L, im] M v such that & = a, ¢, 10m(R).

Let & € (.50 L, 0n] M v. By Lemma 3.6 there exists 7" C 7', such that
R=Tm)*AQ, n Since unlm Tm)* AQ n=Tmn)*A Q. 1, Thus
R=Tm*NQ.imALn=0crsinn(T@m*NQ ) and this completes
the proof.

COROLLARY. If v 4+ n = ¢ then a; s 1nm maps onto [Q; s n, Lr.ial-
Proof. The proof follows from the lemma, and Lemma 3.5.

Since 0,5, ,m,m O D0,1,5,0m = D0,1,5,00 O Q1,5 2,m and since ¢0,1,s,t,n and
¢0.1,5,:,m are isomorphisms, it follows that ag s, ;,m» maps onto [Qo s, Lo, 1.4] if
and only if a1,5,1.n.m maps onto [Q1 s.,, Q1 ,..].- From the above results we have
that &, s, 1.0.m maps onto [Q; s, Qr ;0] for r > 0if and only if r + # = ¢£. Thus
Q5. 1m.m Maps onto [Q, ¢4, L, .0 ifand only if r =0andz+12torr >0
and 7 + un = &.

It follows from this that the embedding of & — {E£} into &; X N* described
in the last section does not preserve joins: let £; € & such that ; ¢ image of
B1. and let 8 = Q¢,1,. Then

Br,1(R1) V B1a(82) = &1V (Qoyin A Qo,1,1) = 81V Q01,1 = K1,
but 81 # B1,(81 V K2) since & ¢ image of By 4.

3.7. The sublattice of Schwabauer classes. It hasalready been mentioned
that v, the set of all S-classes, forms a distributive sublattice of £. In this
section, this and the fact that v is a maximal modular sublattice will be proved.
We first give the following characterization of S-classes:

LeEMMA 3.10. & € [Q; 5.0, Qr,1.0]) 15 an S-class if and only if it satisfies: (1) for
all w with r < u < s, § is i the image of ¢r,5,1u. and (2) for all m > n with
nlm, & is in the image of ar s, in.m-

Proof. If & € [R50, 2, e0] M v then (1) and (2) follow from Lemma 3.6,
Corollary 1 and Lemma 3.9, respectively.

On the other hand, if { satisfies (1) and (2), then choose m > % such that
r +m = tand n|m. Thenby (2), & = & A Q,,,.forsome & € [Q; s.m, Ur.sm].
By Lemma 3.5, & is an S-class. Thus & is an S-class and this completes the
proof.

Let v, = {® € v|D(®) = n} = ¥ M v. Then the v, are pairwise disjoint
and v = Uyrey v2 Y {E}. Moreover, from Lemma 3.9, 8, ,, restricted to v, is
an isomorphism of v, onto v,. This implies that the mapping

& = (B1,0 (R), D(R))
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is a meet- monomorphism of v — {E} onto v; X N*. But a mapping from one
lattice to another that is one-to-one, onto, and meet preserving is also join
preserving, i.e., it is a lattice isomorphism.

It follows that v is lattice isomorphic with v; X Nt with a unit adjoined.

LemMA 3.11. [Q0,1,1, Qo,:,1] M v &5 distributive for all ¢ = 1.

Proof. For T C T,,, define T to be the set of those sequences (u;)nx € T1.,
such that ((#)icxy, @1+ 1, %2, us, . ..)) € T(T(1)\UQ,,1*). Then (u)yen € T
if and only if there exists (v;)n € T such that

{ (vi)iéNy (7}1 + 11 Vo, Uzy o« ')} U QO,t,l* - ((ui)tﬂ\h (ul + 17 Ugy U3y - - '))'

Thus the set of all 77 C T , such that 7" = T is closed under unions and inter-
sections. Moreover, if 74, 75 C Ty, and T3 = T4, Ty = T then

(T ()* A Qo e1) A (To(D)* A Qo) = (T U To)(1D)* A Qoo
and
(T1(* A Qoe1) V (T2)* A Q1) = (TN T)(1)* A Q0,110

Since for each ® € [Qo.1.1, Q0,.,1] M v there exists T C T, such that 7 = T
and ® = T(1)* A Q,..1, it follows that [Q0,1.1, Q0,,.1] M v is isomorphic to a
sublattice of the power set of 771, and hence is distributive.

COROLLARY. v1,0 = 21,0\ v s distributive.

Proof. This follows immediately from the lemma and the fact that
{[Q0,1,1, Qo,¢.1] N v|t = 1} forms an ascending chain and

1,0 = Uizt [Q0,1,1 Qo,2.1] M 7.

Since for p < ¢, 6,,4,1 maps S-classes to S-classes, it follows that the mapping
R~ 60,y 1(R), V(R)) is a meet monomorphism of v, into v5,0 X I*.
Moreover, this mapping preserves joins: let

@1) t@2 E Y1, V(‘Ql) = Pr V(‘@2) = dq.
We may assume without loss of generality that p < ¢. Let

u = max{U(R1), U(R2)}.
Then

805,1(81) V 80,0,1(82) V Q01 = 80p,1(81) V L1 V 80,0.1(R2) V Q01
= 1V K

But & 2 Q,.,.1; thus, 80,4.1(82) 2 Qo 4.1 and thus
50,1;,1(@1) \/ 60,(1,1('@2) E [ﬂo,g,ly QO,uJ] m Y-
It follows from Corollary 1 of Lemma 3.6 that there exists

& € [Q01, Qua] Ny with 6O,q.l(‘@) = 6O,p,l(ﬁl) Vv 50,(1,1(*@2)'
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But then 81 V & = 60,1(81) V 60,6,1(82) V Qg1 = 80,01 (R) V Q01 = K.
Thus 6¢,,,1(81) V 60,0,1(R2) = 60,0,1(81 V K).

It follows that v; is lattice isomorphic to a sublattice of vy X I*. But
v1,¢ 1s distributive; thus, v; is also distributive.

Thus, since v is isomorphic to y; X NT with a unit adjoined, we can state
the following:

THEOREM 3.5. v s distributive.
THEOREM 3.6. v s maximal modular.

Proof. Let § be any equational class not in v, & € [Q; s, Qr,:.0], say. Choose
m such that n|m and » + m = ¢. Then & is not in the image of a, ;,;...m and
thus & # (& V @ 5.n) A @, But this implies that the sublattice of ¢
generated by v U {f} is not modular. Thus v is a maximal modular sublattice.

One might well ask whether the set of maximal distributive sublattices of £
coincides with the set of maximal modular sublattices of &; this is the case if
and only if every modular sublattice of € is distributive. However, by a result
of [1], € has a sublattice isomorphic to the partition lattice on a three-element
set; this lattice is the five-element modular, non-distributive lattice.
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