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THE LATTICE OF EQUATIONAL CLASSES 
OF COMMUTATIVE SEMIGROUPS 

EVELYN NELSON 

Introduction. There has been some interest lately in equational classes 
of commutative semigroups (see, for example, [2; 4; 7; 8]). The atoms of the 
lattice of equational classes of commutative semigroups have been known for 
some time [5]. Perkins [6] has shown that each equational class of commutative 
semigroups is finitely based. Recently, Schwabauer [7; 8] proved that the 
lattice is not modular, and described a distributive sublattice of the lattice. 

The present paper describes a "skeleton" sublattice of the lattice, which is 
isomorphic to A X N+ with a unit adjoined, where A is the lattice of pairs 
(r, s) of non-negative integers with r ^ s and s ^ 1, ordered component-wise, 
and N+ is the natural numbers with division. Every other equational class 
"hangs between" two members of the skeleton in a certain way; the relation­
ships between intervals of the form [$i, $2] where $i , $ 2 are members of the 
skeleton are investigated. Finally, it is shown that Schwabauer's distributive 
sublattice is actually a maximal modular sublattice. 

1. BASIC CONCEPTS 

1.1. Equations and completeness. A semigroup is a pair ( S , / ) consisting 
of a set 5 and a binary operation / on 5 satisfying / ( / ( # , ô), c) = f(a,f(b, c)) 
for all a,b, c G S. (S,f ) is called commutative if, for all a , K S,f(a, b) = f(b, a). 
We deal exclusively with commutative semigroups and will write simply ab 
for f(a, b) and 5 for (S,f). 

The free commutative semigroup on countably many generators, F(œ), is 
the set of sequences (un)neN of non-negative integers, such that un = 0 for all 
but finitely many n £ N and ]L un ^ 1, with component-wise addition. For 
convenience we write (un) for (un)n^N and, if un = 0 for all n > m, we some­
times write (ui, u2, . . . um) for (un)nç.N. 

A commutative semigroup equation is a pair ((un), (vn)) of elements of 
F(œ). A commutative semigroup 5 is said to satisfy the equation ((un), (vn)) 
if, for every family (an)nç.N of elements of 5, 

n w<k<̂ o} =rn^h^o}. 
A class S of commutative semigroups is said to satisfy an equation e (a set 2 of 
equations) if every semigroup in M satisfies e (satisfies every equation in 2) . 
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For a set 2 of equations, we define a set TS of equations as follows: g Ç T2 
if and only if there exists a finite sequence ei, e2i . . . em of equations such that 
em = e, and such that 

(P): for each i rg m, one of the following holds. 
(PI) et 6 S or et = ((un), (un)) for some (un)nÇ.N G ^(co). 
(P2) There exists7 < i such that e^ = ((wn), (vn)) and e* = ((zO, (un)). 
(P3) There existsj < i and a permutation 7r of Nsuch that £., = ((un), (vn)) 

a n d £* = ((«x(n))i (*V(n)))-

(P4) There exists 7 < i such that e% is obtained from ^ by multiplication, 
i.e., ej = ( W , CO) and e, = ( 0 „ + wn), (»w + wn)) for some (wn)neN Ç ^(w). 

(P5) There exists7 < i such that d is obtained from e^ by substitution, i.e., 
tj = ((«n)t (*0) and for some p £ N and (kn)n(iN £ F(co), et = ((«„ + &„«?), 
(^ + knvp)). (See note below.) 

(P6) There exists j < i such that et is obtained from e;- by identification of 
variables, i.e., e^ = ((un), (vn)) and there exist p, q with 1 S P < q such that 

£* = ((Ui, . . . Wp_l, 0, Up+i, . . . Ug-i, Ug + Up, Uq+i, . . . ) , 

( » ! , . . . ^ - 1 , 0, Up+i, . . . Vq-l, ^ + fy, Vff+i, . . . ) ) . 

(P7) There exist j , k < i such that e^ = ((un), (vn)), ek = ((vn), (wn)) and 
et = ((#»), W ) . 

iNfofe. (P5) does not yield what intuitively is the result of substituting some 
term (hn)n(zN for the pth variable in e^ to obtain 

((ui + hiUp, . . . Up-i + hp-iup, hpup, Up+i + hp+iup, . . .), 

(z/i + Ax^, . . . ^_ i + hp-ivp, hvVp, vp+1 + hp+1vp, . . .)) 

from ((un)nç.Nl (vn)nçtf). However, these two operations are equivalent modulo 
(P6). For example, to obtain the above equation from ((un), (vn)) using (P5) 
and (P6): if hp ^ 1 then apply (P5) with kt = ht for i 9^ p and kp = hp — 1. 
If hP = 0 then we may assume, in view of (P3), that hq ^ 1 for some q > p 
and then apply (P5) with kt = ht for i ?± q, kq = hq — 1. The result will be 

{{u\ + hiUp, . . . Up-i + hp-iUp, Up, up+i + hp+iUp, . . . uq -\- hqup — up, . . .), 

(*/i + Ali;,,, . . . vv-i + A„_i^, ^ , ^+i + hp+iVp, . . . vg + ^ A — ^PI • • •))• 

If (P6) is then applied to identify the pth variable with the gth, one obtains 
the desired result. 

A set 2 of equations is called closed if 2 = T2. We also write 2 —> e for 
e G T2 and in the case 2 consists of exactly one equation/, we write/—> e. 

Then e G T2 if and only if every commutative semigroup that satisfies 2 
also satisfies e; this is the completeness theorem for commutative semigroups. 

LEMMA 1.1. If e = {(un)n<zN, (vn)n(zN)), then for each i Ç N, 

e —> ((fli, . . . , Vi-i, Vi + uu vi+u . . .), (»i, • • . f«-i, 2^z, i;<+i, . . .))• 

https://doi.org/10.4153/CJM-1971-098-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-098-0


LATTICE OF EQUATIONAL CLASSES 877 

Proof, By (P4), 

e -> ((«i, . . . Ui-u 2ut, ui+1, . . .), (vu • . • »<-i, Vi + ui9 vi+1, . . .)) 

and by (P5), 

e —» ((wi , . . . « i _ i , 2«< f w f + i , . . . ) , (»i, • . • » i - i , 2»<f » i + 1 , . . . ) ) . 

The result follows from (P2) and (P7). 

For a class $ of commutative semigroups, let $* be the set of all equations 
satisfied by every member of $ ; then $* is closed. For a set S of equations, 
let 2* be the class of all commutative semigroups satisfying 2 ; then 2* is 
equational. For equational classes $ , $ ' , $ C $ ' if and only if $'* £ $*, and 
for closed sets 2, 2 ' of equations, 2 C 2 ' if and only if 2'* C 2*. 

Let 2 be the lattice of equational classes of commutative semigroups, and 
8' the lattice of closed sets of equations; then 2 is dually isomorphic to 8' by 
the mapping $ ~* $*. For $ i , $ 2 G 8, 

« i As $2 = « i H $ 2 = (« i* Vg' $2*)*, 
and 

« i v s $ 2 = («i* A g* «2*)* = («i* r\ $2*)*. 

1.2. T h e invar iants D, V, L, U. The equation ((un), (vn)) is called non-
trivial if un T^ vn for some n Ç iV. A set of equations is called non-trivial if it 
contains at least one non-trivial equation; an equational class $ is called non-
trivial if $* is non-trivial. 

For a non-trivial equation e — ((un), (vn)), define 
D(e) = g.c.d.{|w» - vn\ \n G N,un?* vn) 
V(e) = min{wn> vn\n £ N,un ^ Vjl] 
L[e) = min{max{un\n 6 N}} max{vn\n £ N}} 

m i n ^ X ) un, X »n( if X ) «n ^ Z ) ^n 

I S wn + (̂*0 if X) «n = S n̂-

Note that D(e), Lie), and 27(e) ^ 1 and that V(e) S L{e) S U(e). 
For example, if e = ((0, 1), (1, 0)), t h e n c e ) = 1, V(e) = 0,L(e) = 1 and 

Z7(e) = 1 + 0 = 1. A semigroup 5 satisfies e if and only if 5 has at most one 
element. 

If e = ((1,0), (l,p)) then D(e) = p, V(e) = 0, and Lie) = U(e) = 1. 
A commutative semigroup 5 satisfies e if and only if for all s, t £ 5, 5 = s£p

f i.e., 
if and only if 5* is an abelian group satisfying sp = 1 for all s (z S. 

For a non-trivial set 2 of equations, we define 
D ( 2 ) = g.c.d.{D(e)\e £ 2, e non-trivial} 
7 ( 2 ) = min{ V(e)\e 6 2, g non-trivial} 
L(2 ) = min{L(£)|e Ç 2, e non-trivial} 
£7(2) = min{£/(e)|e £ 2, e non-trivial}. 
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For each pair (r, n) of natural numbers, define 

f r f B : / + ~ > { 0 , l l . . . r + » - 1} 
as follows: 

f (h\ - ft if * - r 

Jr»W ~ \ r + [ k - r ] n if k>r, 

where [m]n is the least non-negative residue of m modulo n, and /+ is the set 
of non-negative integers. 

Let Frt7l = {1, 2, . . . r + n — 1} and for ii,i% G FTtn define iii2 = fr,n(ii + H)> 
Then FT%n with this operation is a commutative semigroup satisfying 
((0, (r + n)). 

Let Frtn
+ be 7<V,n with a unit adjoined, i.e., FTtn+ = Fr%n\J {u\ where 

ux = xu = x for all x Ç Fr,w
+-

LEMMA 1.2. 7 r̂>n satisfies a non-trivial equation e if and only if U(e) ^ r and 
n\D(e). 

Proof. Let e — ((Ui)ieN, (Vi)i(zN) be a non-trivial equation with r ^ Z7(e) 
and n\D(e). 

Case 1. ^ M j ^ S ^ . Then E uu E ^ ^ ^ If (ki)i£N is a family in 7<Vin 

then 

and 

n {*<f<b< ^ o} = /r .„(E {*i»ii»i ^ on . 
But E {^i^tl^i ^ 0} ^ E {̂ < N* 7e 0} = X) ^i = ^; similarly 

E {*<»>< 5* 0} ^ r. 
Moreover, since «|Z>(e), it follows that n\ui — vt for all i\ thus, E ktUi = 
E ^z^z (modulo #) . This implies tha t / r > w (E ^ ^ 0 = /r ,n(E kfli); thus, 

IT {^zMl>z ^ 0} = n {*/'>< 5*0}. 
Case 2. ^ M j = ^ z .̂ Then t/(e) = E ut + V(e) ^ f. Let (kt)ieN be a 

family in Fr>n. If &z- = 1 for all i with z^ =̂  vt then E &^* ~ E &^;z- If &* > 1 
for some i with ^ ^ ẑ  then, since z^ ^ ẑ  implies that w4, vt ^ F(e), it follows 
that E &*«i è E Ui + F(e) ^ r, E &*«>< ̂  E ẑ + ^OO è r. Thus we again 
have / r , n (E kiUi) = fr.nŒ, &^0 Î hence 

It follows that Fr>n satisfies e. 

For the converse, assume that e = ((Ui)ieN, (vt) ieN) is a non-trivial equation 
with U(e) < r. If E u% y^ E ^u then r > min{E Uu E Vt}j (l)zov is a family 
in FTtn and 
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Thus, in this case FT%n does not satisfy e. If J^ ut = ]T vu then we may assume 
without loss of generality that V(e) = U\ (and then 

V\ > U\ and X) ui + ui < r)-

Thus, by Lemma 1.1, e —> ((2*/i, p2, . . • )> (yi + 2J1, ^2, . • .))• (!)*€# is a 
family in ZYïW and 

n {lWi\u>i = 2vhWi = vt fori ^ 2} = / r , n ( ^ » f + »i) ^/r.n(]Cï>< + «1) 

= n {1**1̂ 1 = «1 + »i, * * = ^ for i ^ 2}. 

Thus Fr,w does not satisfy ((2z/i, z>2, . . .), (yi + 1̂» ̂ 2, . . .)) a n d hence does not 
satisfy e. 

If U(e) ^ r but w | D ( é ) then we may assume without loss of generality 
that u\ ^ Vi and n \ \u\ — Vi\. As above, e —> ((2vu v2, . . .)» (̂ 1 + ^i» ^2, • • •))• 
But since ]£ fl* + #i ?̂  2 *>* + ^i (modulo w), it follows that FTtVi does not 
satisfy ((2^i, z/2, . . .), fai + ^1, ^2, . . .)) and hence does not satisfy e. 

This completes the proof. 

LEMMA 1.3. Frt7l
+ satisfies a non-trivial equation e if and only if V(e) ^ r and 

n\D(e). 

Proof. Fr>n
+ satisfies ((r), (r + n)). ((/-), (r + w)) —> ((r), (r + to)) for 

all k ^ 1. If ^ = ({Ui)iç.N, (vt)ieN) and if F(e) è f and n\D{e), then ^ ^ fl* 
implies that uk, vk ^ r and w|% — zjft; thus, ((r), (r + ^)) —» ((uk), fe))-
Thus ((r), (r + w)) —> {{Ui)iç.Nj (Vi)iÇ.N) = e. It follows that if V{e) ^ r and 
n\D(e) then F r f n

+ satisfies e. 
Conversely, if -Fr,n

+ satisfies e = ((Ui)ieNl (*>*)*€#) > then since T7,.̂  is a sub-
semigroup of FTtU

+, it follows that FTtU satisfies e and thus n\D{e). We may 
assume without loss of generality that V(e) = u\ (and then U\ < Vi). Let 
d\ = 1 G ^r,7z+ and for i ^ 2, let at = u € ZV,W

+- Then (#*)*€# is a family in 
7VW

+ and 

n M . . , * o,. {/-*-•) ;; »;;° 
and 

n i ^ ^ ^ o } =/r.„(wi). 
Since Fryn

+ satisfies e, it follows that U\ = 0 and fr,n(ui) = fr,n(vi). But 
Wi F^ z>i: thus, Wi, ̂ 1 ^ r. This means that F(e) ^ r. 

THEOREM 1.1. if 2 —» £ awd £ is non-trivial, then 27(2) :§ £/(e), 
F(S) g F(e) ,L(S) g £(*) andD(2)\D(e). 

Proof. Assume S —-> e. Since /V(2),z>(2) satisfies 2, it also satisfies e; thus, 
J7(2) ^ £/(e) and Z>(2)|D(^). Moreover, if F(S) > 0, then Fv^)tD(i:)+ 
satisfies S, and hence also e, and thus F(S) ^ F(^). 

To show that 1/(2) ^ Z, (e) it is enough to show that if ei, . . . ^m is a sequence 
of equations satisfying (P) andL(^ ) ^ L (2) for ali i < m, then L(em) ^ -Z(2). 
Let gf = («f, /3Z) where «j-, /3̂  G P(w). Then L{et) ^ Z(2) means that there 
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exists an entry §:L(2) in each of at and /?*. But if this holds for all i < m, 
then it is clear that whichever of (PI) to (P7) em satisfies, there will be an 
entry ^ L ( S ) in each of am and /3W, i.e., L(em) ^ L(1). 

COROLLARY 1. If 2-^2', then Z7(2) ^ Z7(2'), F(S) ^ 7 ( 2 ' ) , £ ( 2 ) ^ L ( S ' ) 
a«dZ>(2)|Z>(2'). 

COROLLARY 2. D, F, L, Z7 as operators on sets of equations are invariant under 
Tyi.e.y for any non-trivial set 2 of equations, Z>(2) = Z>(T2), F (2 ) = F ( T 2 ) , 
L (2 ) = L(T2) a«d J7(2) = C7(rs). 

For a non-trivial equational classa, define £>($) = £>($*), F ( $ ) = F($*) , 
L ($ ) = L($*) and £/($) = £/($*). Since for two equational classes 
« i , «2, Si Q $2 if and only if ftf -> $2*, it follows that if ®i C $ 2 then 
Z7(fli) ^ C/(«2), F(Si) ^ 7 ( « 2 ) , i ( « i ) ^ L ( « 2 ) and£>(fli)|Z>($2). 

2. THE SKELETON SUBLATTICE CONSISTING OF THE CLASSES 

2.1. Definition of the skeleton. For non-negative integers r, sy n with 
r ^ s and n M , let ttr,s,n = {((r, s), (r + n, s)), ((s), (s + n))}*. Then 
U(toT.8,n) = s = L(Or>SjW), V(ttr,s,n) = r and D(12r>s>„) = n. 

Note that since ((0, s), (n, s)) -> ((5), (5 + w)) by (P6), Q0,s,n = 
{((0, 5), (n, 5))}*. Since ((r), (r + n)) - • ((r, r) , (r + *, r)) by (P4), 
Qr.r.n= {((r), (r + n))}*. 

fio,i,p is the class of all commutative groups G satisfying xp = 1 for all 
x e G. ^0,1,1 = {((0, 1), (1, 1))}* and since ((0, 1), (1, 1)) -> ((0, 1), (1, 0)) 
it follows that Qo,i,i is the zero of the lattice 8. 

Clearly, in view of (P4), if r ^ £ and 5 g w then 0rjStW C Œ*>W>7Î. If in addition 
w|m, then a simple induction argument yields tir,s,n £ ^«,«,m- On the other 
hand, by the remark at the end of Chapter 1, if iïT,s,n £ ®t,u,m then r S t9 

s ^ u and w|m. Thus tir,s,n £ ^̂ ,w,m if and only if r ^ t, s :g w and w|ra. 

2.2. The set Or,s,n* of equations holding in Qr,,,n. 

THEOREM 2.1. / w a non-trivial equation e, e G Or>s>n* 2/ awd o«/̂ y if r S V(e), 
s ^ L(e) and n\D(e). 

Proof, The "only if" part is a direct consequence of the results of the last 
section of Chapter 1. 

For the converse, let e = ((^0Î(=JV, (^O^JV)) and assume that r 5* V(e), 
s ^ L(e) and n\D(e). It follows directly from the definition of V, D, and L 
that there exist j , k with w ,̂ ^ ^ 5 and that if ut 9^ vu then n\ut — vt and 
Ui,vt ^ r. We may assume without loss of generality that U\ ^ s. But then 

((r, s), (r + n, s)) -> ((w3, u2 . . .), (wi, fl2, *>s, • • •))• 

If Vi ^ 5 then 

((5), (̂  + w)) -> ((wi), (wi)) -> ((wi, y2, . . .), (01, ^2, . . •))• 
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If Vi < s then Vj ^ 5 for some j ^ 2 and then 

(0 , s), (r + n, s)) -> ((wi, Vj), (vh vf)) - • (Oi, i;2, . . .), 0i , i/2, . • .))-

Thus 12r>SfW* •—» e, i.e., g Ç Œr>s>72*. 

COROLLARY 1. For an equational class $ , 12r>5>n C $ if and only if r rg F ( $ ) , 
5 g L ( f ) andn\D($). 

COROLLARY 2. fir,s>ra V ^)W>m = iïv,w,p, where v = max{r, t}, w = max{s, u], 
p = l.c.m.{w, m}. 

Proof. Since flr,5fW £ fi»>w,p and Œ*,M,m C 0 ^ ^ , it follows that 

Thus it is enough to show that Q,VtWtP Q tir,s,n V &t,u,m, i.e., that 
O * / r > \ 0 * C~ O * 

But e non-trivial and e G fir,s,w* ̂  Œ*,«,m* imply by the theorem that V(e) ^ r, 
L(e) ^ 5, n\D(e) and V(e) ^t,L(e)^u and m|Z>(eO; thus, V(e) '^v1L{e)'^w 
and p\D(e). It follows from the theorem that e Ç fiP ,«,,?* and this completes the 
proof. 

Since every non-trivial equational class is contained in some fir,SfW, it follows 
from Corollary 2 that the class of all commutative semigroups is not the join 
of two smaller classes. This was also proved in [2]. 

THEOREM 2.2. &r,s,n A &t,u,m = ®v,w,d, where v = min{r, t},w = min{s, u] 
and d = g.c.d.{^, w}. 

Proof. Since tir,s,n 2 &v,w,d, and Çlt,u,m 3 &v,w,d, it follows that 

^r,s,n A *lt,u,m =2. ^v,w,d* 

To show the reverse inclusion, it is enough to show that 

{((», w), (p + d, w)), ((w), (w + d))} Ç (tir,Stn A Olfllim)* = ttr,5,n* V OlitlfOT*. 

Assume that s ^ u. Then there exist natural numbers p, q such that 
pn = qm + d and /w ^ u. By Theorem 2.1, 

((5), (5 + 2pn)) = ((5), (s + jm + qm + d)) G Q,.,.,* 

((5 + pn + qm + d), (s + pn + d)) £ ttt,u,m* 
«s + pn + d,s + d)) G Ori,tn*. 

Thus ((5), (5 + ^)) G ^r,5,«* V ^*,w,m*- The case u < s follows by symmetry; 
t h u s , ( O ) , (W + d)) e Qr'.,.n* V 6ttUtm*. 

Now assume that r S t. Then v = r. There exist natural numbers h, k such 
that w + kd ^ s, r + hn ^ w. Then: 

((r, w), (r, w + fed)) G Œr>SjW* V 12*,MfOT* 
((r, ze; + &d), (r + te, ze; + kd)) Ç Œ,.̂ ^* 

((r + te, w + èd), (f + te + J, w + kd)) <c ^r . s , / V Œi)W>m* 
((r + te + d, w + fed), (r + d, w + ferf)) G fiî;5,w* 

((r + d, w + kd), (r + d, w)) e 0rf,,n* V Qt.u.m*. 
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Thus, ( 0 , w), (v + dt w)) G ( 0 r , s / V ttt,u,m*) V Q*,MfW* = Ûr,*,»* V Û/fM,TO*. 
The case £ < f follows by symmetry. This completes the proof. 

Let A be the lattice of pairs (r, s) of non-negative integers such that r S s 
and s ^ 1, ordered component-wise, i.e., (r, s) ^ (£, w) if and only if r S t 
and s ^ u. Let A74- be the lattice of natural numbers ordered by division. 
Then, by the above theorems, the map given by (r, s, n) -~» toTjS>n is

 a lattice 
isomorphism of A X N+ onto a sublattice of 8. 

2.3. Equations implying Î2r,s,n*. 

THEOREM 2.3. For a non-trivial equation e, e —* tiT,s,n* if and only if V(e) ^ r, 
U(e) S s and D(e)\n. 

Proof. It follows from the results in the last section of Chapter 1 that if 
e->ttr,s,n* then V(e) g r = 7(Ûr,,,n), U(e) g 5 = U(Qr,8,n) and Z>(eO|« = 

For the converse, let e = ((ui)ieN, (Vi)ieN) and assume that V(e) S r, 
U(e) S s and D(e)\n. For each i G A7, by Lemma 1.1, 

e —» (0i , . . . */f_i, ẑ + uu vt+1, . . .)> (»i, • • • »<-i, 2z/*, » i+i, . . . )) . 

Let î^j = Syev Vj + min{w*, z>*} and let dt = |w* — vt\. Then for each i G A7, 
6 —> ((Wi), (Wi + #%)). Thus for each i G A7 with ut ^ z;*, e* C 12w.^.^-. By 
Theorem 2.2, £* Ç 0WfM,td where w = min{wz |^ ?£ vt}, and 

d = g.c.d.{d,|d, ^ 0 } = £>(e). 

If E i ^ ^ i = S^iv^ï then U(e) = Wj for some j G A7 and thus 
e* Q toute),ute)tD(e)- If E w< ^ E »*, then 

e->(ŒwUi), (EitNi>i))-*UU(e)), (U(e) + h)) 

where h = | E ut
 — S ^1 is divisible by £>(e). But then £* C Œtf(C)>Z7(e)>J[>(C). 

Now assume without loss of generality that V(e) = U\. Then 

- > ( (Wl , Z / f c ) + ] C * £ 2 t t i ) , (» ! , [ / ( e ) + Z l z > 2 ^ z ) ) . 

Since £>0) |Z^2 ^j — 2^>2 *>* and since e —* ((U(e)), (U(e) + D(e))), it 
follows that e •—» ((^i, U(e)), (vi, U{e))). Thus e* Ç 12F(e))C7(e))/i, where 
h = Vi — Ui is divisible by £>(<?)• This, together with e* C Œu^^g)^^) yields 
e* Q £V(e),ere*),/>(*)• Since F(e) ^ r, £/(#) ^ s and D(e)\n, it follows that 
e* C Qr,,>n. 

COROLLARY, / W aw equational class $ , $ ç Or>S(W i/" a^J only if V($î) ^ r, 
U($) è s andD(®)\n. 

Proof. The "only if" part follows from the remark at the end of Chapter 1; 
the converse follows from the fact that if $ is a non-trivial equational class, 
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then there exist equations eu e2, ez Ç $* such that V{e{) = V($), U(e2) = 
U(St) and£>ft3) = D(®). 

LEMMA 2.1. For a non-trivial equation e, if L(e) St then there exists k 6 N 
such that 

e -» (ft t, . . . t), (t + Die), t,t, . . . 0 ) . 

jfe k - 1 

Proof. Let e be a non-trivial equation with Lft) ^ / and -D(e) = d. We may 
assume without loss of generality that e = ((ui, . . . un), fti, . . . vn)) where 
ut S t for all i ^ n. If Uj < vô for somej g w then 

e -> ((/, /, . . . t), fa + t - uu . . . vn + / - un)) 

where Vj-\-t — Uj > /. If ut è z>* for all i S n} then 

e —> ((«i + / — fli, . . . M„ + * — vw), ft . . . /)) 

where, since e is non-trivial, ut -\- t — vt > t for some i ^ w. Thus, in either 
case, there exist w2f . . . wn and s §: 1 such that 

e —> (ft . . . * ) , ( * + s, w2, . . . wn)). 

Choose h so that t -\- hs ^ U(e) and let k = h(n — 1) + 1. For each w with 
0 g w ^ A, let 

«ro = (/ + W5, «/2, • • . wn, . . . w2, . . . wn, t, . . . t). 

m(n — 1) & — m(n — 1) — 1 

By (P4), 

e —-» ((£ + W5, t, . . . t), (t -\- ms -{- s, w2, . . . wn)) 

n — 1 

for each m ^ 0. Thus, again by (P4), g —» (am, am+1) for each w with 
0 ^ w < A. By (P7), it follows that 

e —> («o, «A) = (ft . . .*)»(* + **» w2, . . . wni . . . wn)) 

k k 
and thus by (P4), 

e —> (t + d, t, . . . t), (t + hs + d, w2, . . . wn, . . . w2, . . . w„)). 

But £ + As ^ £7(e); thus g —> ((/ + As), (£ + As + d)). It follows that 

«-» (ft_. ..t), (tj\-d,t,...J)). 

T r 
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COROLLARY. For non-trivial equational classes $1, $J2, £ ( $ i V $2) = 
max(L(8i) ,L(f l2)) . 

Proof. Assume without loss of generality that L($ i ) = t ^ L(®2)- Then 
there exist et G $** for i = 1, 2 such that L(e*) ^ t. By the lemma there 
exists k (z N such that 

**-> ((U^-.^j), (* + </,*,...*)) 
r è - 1 

for i = 1, 2 where J is the least common multiple of D($i) and J9($2). Thus 

( ( / , . . . / ) , (t + d,t,...t)) G ( t i v «2)*. 

& jfe - 1 

It follows that L ( f 1 V $2) ^ /. On the other hand L ($ i V f 2) ^ L ( f 1) = t\ 
t h u s L ( « x V $2) = max{L(«i) f L(« 2 )} . 

Summarizing the results of this section and the preceding one, we have that 
for a non-trivial equational class $ , QV(SI),U8),D&) £ $ £ ^F(«)fi7(«)fD(«)-
Moreover, these choices of the O's are the best possible in the following sense: 
if nr.*,« £ $ then QrfStW C 0F ($ ) > J L(£)> J D ($) and if $ ÇI Qr>,fW then 

Thus if « G [0r,,.n,12rf<,n],then F ($ ) = r ,^(^î) è 5, i7($) g / a n d D ( t ) = n. 

THEOREM 2.4. .D is a lattice homomorphism from 2 — {E} to N+ and V, L and 
U are lattice homomorphisms from 8 — {E} to the non-negative integers with 
their usual order, where E is the class of all commutative semigroups. 

Proof. For non-trivial equational classes $1, $2, 

U(Sti A $2) = tf(«i*U$2*) = min{E7(«i), *7(«2)}. 

The rest of the proof follows from the above remarks, and the corollary to 
the last lemma. 

3. HANGING THE MEAT ON THE BONES 

3.1. The intervals [Œr,,,n, Œ*lW,m]. Since for each equational class $ there 
exist r, s, t, n G N with Çlr,s,n £ $ £ r̂,*,w> it follows that the interval 
p2r,s,n» fir,s,pw] is a jump for £ prime and that [fir,stw> ^r+i,«,w] is a jump for all 
r ^ 0. Thus p2r,s,i! ^r.s.m] consists of exactly the classes Œr)SjW where n\m and 
[O0iS,n, fi*,5,w] consists of exactly the classes fir,SfW where r ^ s. Moreover, if 
$ C ®r,r,n, then either $ C Qr__1>r>n or $ C Or>r>m for some m < n. Thus 
Œi.i.it the class of all semilattices, is an atom in S and for p prime, O0,i,p, the 
class of all abelian groups G satisfying xp = 1 for all x G G, is an atom in 8. 
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{((1, 1, 0), (0, 0, 2))}*, the class of all semigroups with constant multiplica­
tion, is also an atom in 8. Moreover, it is an easy consequence of the above 
remarks that this exhausts the set of atoms in ?, a result proved in [5]. 

It remains only to investigate intervals of the form p2r,,,re, ®r,t,n] where 
s < t. It is easy to see that every such interval is infinite: for each p ^ t, let 
®P = ttr,s,n V {ettP}* where 

ettV= (OUI , . . . 1 , 0 ) , (0, . . . 0 , 0 ) . 

P P 

Then ®p G [ûr,*f», ®r,ttn] and if p ^ q, then ®p £ $tQ. Moreover, if p > r + s, 
then 

/„ = ((r, s, 1, 1, . . . 1), (r + », 5, 1, 1, . . . 1)) G $ / 
v y < y 

p — r — s p — r — s 

but/?, g fip+i* since eUP -/* fp. Thus {®p\p ^ ty p > r + s} is an infinite chain 

The following lemma will be useful in the rest of this chapter. 

LEMMA 3.1. If tir,t,n £ Stfor some t then e G ($ A ^r,s,n)* # ##d 0̂ 3> i/ /Aere 
m r f Tl, T2, T3, T4 £ P ( ^ ) S^C& / t o £ = ( r i , T4) # » d ( r i , T2), (r3 , T 4 ) £ $ * , 

( r 2 , r 3 ) € ^r,s,7i*. 

Proo/. The "if" part is trivial. On the other hand, if e G (fi A Ûr.«.n)* = 
fi* V ^r.s.w*, then, since for arbitrary congruence relations 0i, 02, 

0i V 02 = U{0] o 02 o 0i 0i|» ^ 1, » odd} 

and since ^ and Ors,w* are congruence relations on P(co), it follows that there 
exists a finite sequence n , r2, . . . r2p 6 P(<o) such that £ = (n, T2j>) and 

, . _ (®* for i odd 
( T i , T m ) M W for .even. 

We may assume without loss of generality that (r*, r*+i) is non-trivial for all 
i •£ 1 or 2p - 1 and that £ ^ 2. But then, by Theorem 2.1, L((r*, r<+i)) àfs 
for even i, i.e., for all i with 2 ^ i ^ 2p — 1, n has an entry ^s. But then for 
all odd i with 3 é i£ 2p - 3, 7((r , , ri+1)) ^ r, L( (T*, T ,+I ) ) ^ 5 and 
n\D((ju Tt+i)); thus, (TUTÎ+1) £ &r,s,w*. It follows that (r2, T2P_I) 6 &r,s,/. 
Thus we may take n , T2, T2P-I, T2P for the four elements of P(co) in the theorem 
statement. 

THEOREM 3.1. If $1 € [Ûrf*.»> ^r,*,»] ^wrf if u S r and m\n, then 

® = (fi A Ik.,.*) V Ûr>s,tt. 
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Proof. Since $ A tou,t,m Q $ and Or>s>w C ^ it follows tha t 

( # A Q ^ . L J V O r ia,n Ç « . 

T h u s it is enough to show t h a t if e G ( ( ^ A fiM,*,m) V fir,s,n)*, then e G fi*. 
Assume t h a t g 6 ( ( $ A ^,*,m) V 0r.*(»)* = ( £ A 0*,,.*)* H O r,, tn*. Then 

by Lemma 3.1, there exist n , r2, r3, r4 G ^(co) such t h a t (ri , r 2 ) , (r3, r4) G $*, 
(r2, T 3 ) G fiWfr,m* and e = ( n , r4) € Gr,*,**. But S* C Q r , , t n*; thus, 

{ (ri, r 4 ) , (ri, r 2 ) , (r3, r4)} Ç $2r>5>n*. 

Since { (r l f r 4 ) , (ri , r 2 ) , (r3, r 4 ) j —> (r2, r 3 ) , it follows t h a t (T2, TS) G Qr,*,w*. 
Since (r2, r3) G 14,*,™*, we have t h a t (r2, r3) € fir,*,»* ^ ^ j / = Q r . t / - B u t 
Qr,«,»* £ $* ; thus , it follows t h a t e G $*. 

COROLLARY. If St € [toT,s,n, ®r.t,n] and m\n, then $è = ($£ A fir,«fw) V fio.i.n. 

P / w / . By the theorem, S = (fi A G r, t,m) V Q r.,,n. Bu t QffS>ro Ç fi A ttr,t,m 
and 12r,Stm V fio.i.» = %,s,n\ this yields the desired result. 

L E M M A 3.2. If 

F ( « i ) ^ F ( « 2 ) , g ^ F ( f i i ) , £ ^ V(®2),q û P,mzx{p, F(f i i )} ^ F(f i 2) 

andif n\m = D(f i i ) = D ( $ 2 ) , ^ e » 

( « ! A QfffttiB) V ( « 2 A Qp^n) = ($1 V fi2) A ^ w , 

wAerett è J7(fii), l/(ffi2). 

P w o / . Clearly (fii V fi2) A G w 2 (fii A S W ) V (fi2 A fi, ,«.»)• On the 
other hand, if e G (fii* V O w * ) H (fi2* V S2P ,„,„*), then, by Lemma 3.1, 
there exist n G P(co) for 1 ^ f ^ 6 such t h a t e = (rx, r6) and ( n , r 2 ) , 
(r3, r6) G fii*, ( r i , r 4 ) , (r5> r6) G Ë2*, (T2, TZ) G QfffMfW* and (r4, T5) G Û*,«,«*. 
Let r = F (fii). If both (r2, r3) and (r4, r5) are non-trivial then r2, r3, r4 and 
r5 all contain an en t ry ^u. Bu t ( n , r 2) G fii* ÇI ^r.r.m* and 

(ri, r 4 ) G fi2* £ ^ r> / (W* implies t h a t (r2, r 4 ) G Qr,r,ro*. 

I t follows t h a t (r2, r4) £ Or,Mim* Cf ix* . T h u s (ri, r 4) G fii*. Similarly, 
(r5, T 6 ) G fii*. T h u s e G (fii* H fi2*) V O w * . If (r2, r 3) is trivial, then 
e = (TI,TG) G fii*. T h u s (ri, r 4 ) , (r5, r 6) and (ri, r 6) G ^r,r,m*- Since 
{ ( n , r 4 ) , (r5, r 6 ) , (ri, r6)} —> (r4, r 5 ) , we have (r4, r 5) G tir,r,m*- T h u s 
(r4, r5) G &r,r,m* r\ 0,.*.»* Ç fi2*. I t follows t ha t g G fii* H fi2*. Similarly, 
if (r4, r5) is trivial then e G fii* H ^2^. T h u s in a n y case, 

e G (fii* H fi2*) V QPtUtn*. 

This completes the proof. 

3.2. T h e s u b l a t t i c e 2W w i t h c o n s t a n t D. For n £ N, let 

8„ = {fi G £ | £ ( f i ) = »} 
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and for each non-negative integer fe, let 2n,k = {̂ î G %n\V($) = k}. Then the 
Sn.fc's are pairwise disjoint, and 2n = U/b^o 8Wffc-

For p S q, define a mapping <V<7,w : %n,q ~> %n,p a s follows: for S G 8n>ff with 
Z7(S) = «, 5p>*fn($) = S A 12Pi„,w. If u g 5, then, since $ Ç î2fltM.n, 

01 A **p,s,n ~ «t A ^q,u,n A ^'p,s,w ~ ot A ^p,u,n == Op,q,n\v^ ) • 

Thus 5p>fffW is a meet homomorphism. It follows from Lemma 3.2 that V<?,n is a 
join homomorphism. By Theorem 3.1, if S G Sw>tf and p < q then 

W » ( « ) V Qfftjr.„ = S; 

thus, 5PffffW is one-to-one. 
Thus, for p < q, ôPtQtn is a lattice monomorphism of 2n,q into 2n,P with the 

property that ôPtQtn($) V fiff,ff>w = S. Clearly, if p < q < r then 

Op,r,n Op,q,n O Oq,r,7i' 

THEOREM 3.2. The mapping S -~> (<Vn£)(W(S), ^ ( $ ) ) ̂  ^ embedding of %n 

as a me££ subsemilattice into 2n,o X I+, where 1+ is the lattice of non-negative 
integers with their usual order. 

Proof. Since F(Si A S2) = min{F(Si), F(S2)} and since the «V^'s are 
one-to-one, it is enough to show that if Si, S2 G 8» then 

(Si A S2). 

Assume that Si, S 2 G 8» and let w = maxj Z7(Si), £7(S2)}. Then 

5o,F(fli),n($i) A ôofF(*2).»(^2) = (ffii A O0fMf„) A (S 2 A S20,M.„) 

= (Si A Q0iMi») A (S2 A Qo,«f») 

= (Si A S2) A Go,«,» 
= 5o,y(«,A«2),n(®l A S 2 ) 

and this completes the proof. 

It will be shown in Section 4 that this embedding is not a lattice embedding, 
i.e., that it does not preserve joins. 

3.3. A mapping between intervals of the lattice. If r, s} t, u, n are non-
negative integers such that r < s ^ t < u and n è 1, then, since 

*us,t,n A *h,u,n = ^r,«,re a n d *&s,u,n A Mr.w.n = = ^r tw,w» 

it follows that the restriction of <5r>5)W to [&Sti,n, &*,«,*] is a lattice monomorphism 
mapping into ft2r,<iB, Qr.«,»]. Let <j>T,s,t,u,n : ft*,,*,», Û,,«,»] —> [Qr.i.n, Qr,«fJ be the 
restriction of <5r>SjW. We will investigate which of the cf>r StttU>n

Js are actually 
isomorphisms, i.e., for which values of r, s, t, u, n the image of <t>r,a%ttu,n is the 
whole interval [flrf*,n> ®r,u,n]-

LEMMA 3.3. #0,1, «.w.n w a ^ 0^/0 PV«,n» ̂ o,w,»] /or all t,u,n ^ 1. 
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Proof. Let $ G l&o,t,n, ^0>W>J. It is enough to show that for each non-trivial 
e G $*, there exists 2 e Ç iïlfttn* such that {<?} U O0,M,n* <-> 2 e U ^0?M,n*, for 
then $ = <Ki ,^( (Ue€^*2 e )* A tti,u,n)-

Let e G $* be non-trivial. Then L(e) ^ / and ^ |P(^) . If V(e) ^ 1, then 
we can take 2 e = {e}. If V(e) — 0, then we may assume without loss of 
generality that e = ((Ui)i(zN, (Vi)ieN) where U\ = 0, V\ > 0 (and then n\v^) 
and u2 > 0. Then let 

?e = { ( 0 z ) ^ V > (2^1,^2, • • . ) ) i ( («2, «3, . . . ) , (>2 + »l, «3 , . • • ) ) } • 

Clearly, 2 e £ ^if«,»* and e —> 2 e . It remains only to show that Sô VJ 120)M>/i* —* e. 
But 

O z W , (^1,^2,^3, • • •)) G T2 e 

((W»l, V2, Vz, . . . ) , (0, M2 + ^ 1 , «3, . . . ) ) £ ^0.M>/2* 

( ( 0 , ^ 2 + UVU tt3, . . . ) , (0, «2, «3 , • * •)) ^ r 2 e -

Thus, 2 e U fio,Mfn* —> £• This completes the proof. 

COROLLARY. 5O,M ^ #w isomorphism of 2n,i onto 2n,ofor each n G iV. 

LEMMA 3.4. If r > 0 a ^ r + ^ < u then ^Tts%t,u,n does n°t map onto 

Proof. Let e — ((V, r + n, t), (r + n, r, t)) and let $ = e* A fir.w,». Then 
$ G [Ûr.*,«, Gr,«.n]. If J? = <j>r,s,t,u,n($') for some $ ' G [fi,,«fn,0,,«.„], then by 
Theorem 3.1, $ V fi,ftt„ = ($ ' A Ûr,«,n) V Q8tt,n = $ ' and this implies that 
$ = 0r,*f«,«tn($ V Q,,«,w) = (S V fi*,*,») A tor,u,n> Thus to prove the lemma, 
it is enough to show that $ ^ ($ V Œs,*,n) A fir.w.w 

Since e G $*, it is enough to show that e G ( ( f V Œs,*tW) A Œr.w,»)* = 
(«* H Q,iliB*) V O w * . Suppose that g G («* H S^,«*) 'v 0 W < 'Then 
there exist n , r2 G -F(co) such that 

((r, r + », /), n ) , (r2, (r + n, r, t)) G $* H Q,it.n* 

and (n, r2) G ^r)M,«*. 
Now ((r, r + w, /), ri) G $* = Te V Ûr,«,»* implies that there exist 

T8, r4 G F(co) such that ((r, f + » , / ) , r3) G re, (r3, r4) G Œr.ti.»* and 
(T4, ri) G r^. But ((r, r + n, t), r3) G Te implies that r3 = (r, r + n, t) or 
(r + n} r, /) in the case r -\- n 9^ t and that 

T3 = (r, r + n,r + n), (r -\- n, r + n, r) or (r + n, r, r -\- n) 

in the case r + n — t. In any case, since r + n < u and (r3, r4) G &r,u,n*, it 
follows that TZ = T4. Thus ((r, r + », ^), n ) G Te. A repetition of this argu­
ment yields n = r2. Thus ((r, r + n, t), (r + n, r, t)) G ^s,z,w*. But this is a 
contradiction, since r < s. This completes the proof. 

3.4. Restriction of the mapping to Schwabauer classes. An equational 
class is called a Schwabauer class, or 5-class, if it can be defined by equations 

https://doi.org/10.4153/CJM-1971-098-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-098-0


LATTICE OF EQUATIONAL CLASSES 889 

of the form ((Ui)i(:N, (vt)ieN) where ut ^ vt for all i G N. Clearly, all the 
^r.s.n's are S-classes. The set of all 5-classes forms a distributive sublattice y 
of the lattice of equational classes of commutative semigroups (see [8]); this 
will be proved in Section 7. 

LEMMA 3.5. If r + n ^ /, then [&r,s,n, &r,t,n] Q y. 

Proof. Let $ G [tir,s,n,®r,t,n] where r + n ^ t. To prove that $ is an 
•S-class, it is enough to prove that every e G $* with e G iïr,t,n* is equivalent to 
an equation of the form ((Ui)if_Nj (fl*)«€#)> where ut S vt for all i G N. 

Assume that e G $* and that g G 0Ttttt*. Since $* C QriStn*, 

where w* 7̂  z>z implies that ^ , vt ^ r and »| (w* — #*). Since g G Or>ZjW* we may 
assume without loss of generality that ut < t for all i G N. But then, if 
ut > vt for some i, it follows that ut = vt + &n where & ^ 1 and vt ^ r. But 
then Ui^Vi + n^r + n^t and this is a contradiction. Thus ut ^ ^ for 
all i G iV. 

For/ < w, let 7 \ w = {{Ui)i^N G P(co)|^ < u for alii, u\ ^ /}. For T C 7 \ w 

and w è 1, let r ( » ) = { ( 0 * ) ^ , («i + n, u2, u3, . . .))!(#*) «av G ^ } - Then 
r(w) £ 0*,*,/, since if (Ui)ieN G 7\ t t , then wi ^ t; thus, 

((/), (* + n)) -> ((«1), («1 + w)) -> ((ut)iw, (ui + n, u2, «3, • • .))• 

LEMMA 3.6. S G [0r,s>n, ûr,t,J ^ ^^ S-class if and only if there exists T C rS)Z 

swc/z. //za/ S = r(w)* A &,•,*,«. 

Pr^o/. Clearly if $ = T(n)* A ^r,«f» for some TQ T8tS, then $ is an 
5-class. 

On the other hand, if $ is an 5-class there exists a set 2 of equations of the 
form ((Ui)iCNl (Vi)ieN) where ut ^ vt for all i G N such that ® = S*. It is 
enough to show that for each e ^ 2 with e G Œr,*,w* there exists e G TStt(n) 
such that {<?} VJ î2r>ïtW* <-> {ë} \J Qr,«,w*; for then 

« = {ê|e G 2 - Or.!.„*}* A tiT>t,n. 

Let g = ((uJw, O t W ) € 2 - Qr,if**. Since 2 Ç f Ç tor,***, there 
exists7 G iV with Uj ^ 5 and if ut < vu then «1^^ — vL. Since 0 $ fir,*,»*, ̂  < / 
for all i G iV. Thus e = ((Ui)ieNi (ut + &^)zw)> where we may assume 
without loss of generality that u\ ^ s. Let e — ({Ui)i(:N, (u\ + n, u2l Ua, . . .))• 
Then e G TStt(n). Now i ^ 1 for some 7 G N. Choose k G iV so that 
^^ + ^^^ ^ /. Then 

((«i)*€^t («* + kktn)ieN) G r^ 

((«i + kkin)içN, (ui + n + kfan, u2 + kk2n, u% + kkzn, . . . ) ) € Or,<>n* 

((wi + n + kkin, u2 + kk2n, Uz + ^^3w,. . .)> (^1 + w> ^2, W3, . . . ) ) € re . 

Thus {e} UQ r.«.„*->«. 
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On the other hand, if h G N is chosen so that uy + hn ^ /, then 

((Ui)ieN, (u\ + hn, u2, uz, . . .)) G r ^ 

((ui + hn, u2, Uz, . . .), (^1 + hn + kin, u2 + &2?z, ̂ 3 + kzn, . . . ) ) € fir.*,n* 

((^1 + Aw + feiw, w2 + k2n, Uz + &3 ,̂ • . .), (ut + kin)i(iN) G Te. 

Thus {ë} U f i r i ( / - > e. This completes the proof. 

COROLLARY 1. (f>r,s,t,u,n restricted to [Çls>t,n, ®s,u.n] ^ 7 is an isomorphism of 

Proof. It is an immediate consequence of the definition of 4>r,s,t,u,n that it 
maps 5-classes to 5-classes. We already know that (t>r,s,t,u,n 1S a lattice mono-
morphism; thus, it is enough to show that for every 5-class in [&r,t,n, ®r,u,n] 
there is an S-class in [tis,t,n, ®s,u,n] that maps onto it under 4>T,&,t,u,n-

Let $ G [&r,t,nt ®r,u,n] ^ 7- By the lemma, there exists T C 7\fM such that 
$ = r(w)* A ttr,u,n- But then r(w)* A ÇlS)Utn G [Q,f«,n, Q«,«,J ^ 7 and 
<i>r,s,t,u,n{T{n)* A &S)W>TC) = r ( » ) * A 12,)W>W A ttr,u,n = $ . This completes the 
proof. 

In view of Lemmas 3.4, 3.5, and the last corollary, 4>T,s,t,u,n maps onto 
[Çlfjt,n, Qr,u,n\ fc*r r > 0 if and only if r + n è w. For 1 < 5 ^ / < w, since 
^o,S)i1«(B = *o)i1«,a)nO<fi,,li(aiB and since 4>o,i, t,u,n is an isomorphism by 
Lemma 3.3, it follows that 4>o,s,t,u,n maps onto [Qo,«,n, ^0,MfW] if and only if 
n + 1 ^ w. 

Thus (j>r,s,t,u,n maps onto [&r>*,w> fir>tt>w] if and only if r = 0 and s = 1, or 
r = 0 and w + l ^ w , o r r > 0 and r + w §; «. 

From this we see that the embedding of %n into 8w>o X / + in Section 2 does 
not preserve joins. Let n è 1 and let £ > w; then 0o,p,p,p+i,» does not map 
onto [Q,o,p,n, ûo,p+i,n]- Let $ G [Œo.p.n, fio,p+ifn] such that $ is not in the image 
of 4>o>P!p!P+i>n. Let $ ' — $lVjP,n- If the above-mentioned embedding preserved 
joins, then we would have 

But ÔO,T($),W($) = £o,<u($) = $ , SO.FC^'),»!^')
 =

 ^P,P.» A &o,p,re = tio,p,n and 
^o>P,w V $ = $ . Thus we would have ® = ($ V $') A Qo,P+],n and this would 
imply that $ is in the image of <f>o,P,p,p+i,n- Thus the embedding does not 
preserve joins. 

LEMMA 3.7. For all n ^ 1, both [Œo,i,w> ^0,2,J #?^ [^i,i,w, ^1,2,J flftf isomorphic 
to œ -\- 1, i.e., to a countable ascending chain with unit adjoined. 

Proof. The proof follows immediately from Lemmas 3.3, 3.5 and 3.6, and 
the fact that 

r l f2 = {(1^1, . . . 2 , 0 , 0 , . . ,)\m è i}. 

m 
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3.5. The relationship between 2n and 8OT. For n ^ m, %n and 2m are 
disjoint. S = UnçN%n ^ {E}. If n\m, we define a mapping /3w>m : 8W —> 8W as 
follows: for $ Ç Sm with F ($ ) = r and £/($) = s,/3„fTO($) = $ A S2r,,,n. 
Then for any /, w with $ Ç Q,tiUim we have that 

$ A û<,«,„ = ( S A Qr,,fW) A Qt,u,n = « A Qr,,,„ = / W $ ) . 

It follows from this that /?n>TO is a meet-homomorphism. Moreover, by the 
corollary to Theorem 3.1, if $ Ç 2m then $ = /3w,m($) V Œo,i,mï thus, j3WfOT 

is one-to-one. Thus, to show that j3njWl is a lattice monomorphism of 2m into 
8W, it suffices to show that it preserves joins. 

Let $i , $ 2 G 8W. We may assume without loss of generality that 
r = 7 (« i ) ^ 7(« 2 ) = 5. Let M = max{[/(ft) , Z7($2)}. Then 

(Ëi V $ 2 ) = ( $ 1 V $ 2 ) A Œs,WlW 

and 
ZWfl i ) V 0„iTO(«2) = (fii A flr>„fn) V (ffi2 A Û,.„,B). 

It follows from Lemma 3.2 that /3n,m($i) V Ai,ro(t2) = / ^ ( S i V $2) . 
Thus /3W>W is a lattice monomorphism of 2m into £w with the property that 

for each $ 6 8m, Pn,m(^) V Qo.i.m = $ . Moreover, &,m retains the skeleton; 
Pn,m(&r,s,m) = ^r,s,w. Clearly, if n\m and w|£ then fin>v = ft,iW o /3m,P. 

THEOREM 3.3. TTze mapping $-~» (/3I,JD($)($), £>($)) w aw embedding of 
2 — {E} as a meet subsemilattice into 81 X N+. 

Proof. Since ^ 1 ^ is one-to-one for each n Ç iV, the mapping in question is 
one-to-one. Since for non-trivial equational classes $1, ®2,D($i A $2) is the 
greatest common divisor of D($i) and J D ( $ 2 ) , it is enough to show that 

/3I.Z>(*IA*,)(«I A $2) = PI.D(*I)(®I) A jSi . ix*,)^) . 

If r, u G iV are chosen such that 

then 
0l.2>(*iA*2>($l A « 2 ) = « 1 A $ 2 A Or.u.1 

= («1 A Q r.Mii) A ( f 2 A Or f l l fi) 

= j8l.D(*:)(«x) A /3i i 2>(* 2 )($ 2) . 
This completes the proof. 

I t will be seen in the next section that this embedding does not preserve 
joins. 

Combining the results of this section with those of Section 2, we see that 2 
is isomorphic to a meet subsemilattice of Sj,o X I+ X N+ with a unit adjoined. 

THEOREM 3.4. For equational classes $1, $2, $1 Ç̂  $2 if and only if 
£($1) W 2 ) , 7(fli) ^ 7(«2) and 
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Proof. If S i C « 2 then Z ? ( « O p ( « 2 ) , 7 ( « i ) ^ 7 ( « 2 ) and L T ^ ) ^ £ / ( f 2 ) ; 
thus , 

= $ 1 A fio, 17(^2).1 — ^ 2 A £Vt/($2), l 

Conversely, i f - D ( « i ) | D ( « 2 ) , 7 ( « i ) ^ V ( « 2 ) and 

£l,Z>(Jh) ( V r ( $ l ) , D ( $ l ) ( $ l ) ) — /5l ,Z)(^2)(^0,T(^2),U(^2)(®2)) 

then 

£ Pl,D(8i)(ào,V(Sti),D(Sèi)(®l)) V ^F(^2),T(^2),Z>(^2) 

£ #1,Z>($2) (^O.F(^2),-D(^2) ( $ 2 ) ) V ^F(^2),F(^2),D(^2) 

= «2» 

This completes the proof. 

3.6. Another mapping between intervals of the lattice. For r S s < t 
and n\m, n 9^ m, let ctr,Stt,n,m be the restriction of PntM to ft2r,s,ro, Qr.M»]» T h e n 
<Xr,s,t,n,m is a latt ice monomorphism of [O r i S ) W , l ] r j ? )J into [iïr,s,n,®T,t,n]- W e 
will investigate for which values of r, s, t, », m, ar,s,t,n,m actual ly maps onto 
the whole interval [iïr,s,nj 12r>ZiJ. 

L E M M A 3.8. If r > 0 and r + n < t, then <xTiS)ttn!m does not map onto 

l^r,s,nf ^ ' r , t,n\' 

Proof. Le t e = ((r, r + », s), (r + », r, 6-)) and let S = e* A Œr.ï.n- Then 

$ G t^r.s.w» ^r,«,re]- If « is in the image of 
°^r,s,t,n,mt t h e n « — Oir s,t,n,m ( « ' ) for 

some $ ' Ç [^r,s,m, ^rsr,m] and then by Theorem 3.1, $ V tor,s,m = $ ' ; thus , 
« = «r(S)f,w,m(« V tir,s,m) = ( $ V ^r,s,m) A Œr,*,w. T h u s it is enough to show 
tha t $ 5* ( $ V fir>,tTO) A Qr,,f„. Clearly 0 G $*. W e will show t h a t 
e ? ( ( f l V Qri,fJII) A 0 f f < i n)*. 

Assume t h a t e G ( ( « V S2r,5.w) A Ûf.i.»)* = ( « * H 0r>s,m*) V Or,*.»*. T h e n 
there exist n , r2 6 -F(w) such t h a t 

((r, r + », 5), n ) , (r2, (r + », r, s)) G $ * H Œr,s,TO* and ( n , r2) G fi,,*,»*-
Bu t ((r, r + », 5), n ) G $ * implies t h a t there exists r3, r4 G ^(w) such t h a t 
( 0 , r + », s), r 3 ) , (TI, T 4 ) G r e , (r3, r4) G Qr,«,n*. Since ((r, f + », 5), r3) G Te, 
it follows tha t , if r + n 7e s and r 9^ s then r3 = (r, r + », 5) or (r + », r, s), 
iî r = s then r3 = (V, r + n, r), (r + », r, r) or (r, r, r + ») and if r + » = s 
then r3 = (r, r + n, r + » ) , (r + n, r, r + » ) or (r + ny r + w, r ) . In any 
case, since r + n < t and s < t and (r3, r 4) G Or>ifW*, i t follows t h a t (r3, r 4 ) is 
trivial. T h u s ((r, r + », 5), n ) G Te. Bu t then the same a rgument yields 
T\ = r2. Bu t this implies t h a t 

((r, r + », s ) , (r + », f, 5)) G $ * H S2r,,,w* Ç Qfi,tlIl* 

and this is a contradiction. This completes the proof. 
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LEMMA 3.9. <xr>s>f)W>m restricted to [tir,s,m, &r,t,w\ P 7 is an isomorphism of 
[&r,s,m, ®r,t,m] H J OfltO [tiT,S,n, ^r,t,n] H 7 . 

Proof. It is clear from the définition of ar,s,t,n,m that it maps ^-classes to 
5-classes. Thus it is enough to show that for every $ Ç [&T,s,n, &r,t,n] P 7 there 
exists $ ' e [Vr,s,m, ^r,t,m] P 7 such that « = aM,{(B(B,(S'). 

Let $ G [fir,*,»» ^r,«,J P 7- By Lemma 3.6 there exists T Q TSjt such that 
$ = r ( » ) * A Ûrf*,n. Since w|m, r (m)* A fir,«,n = r ( « ) * A Ûr,«fn. Thus 
$ = T(m)* A 0M)ffl A firft,„ = ar,Stt.nim{T(m)* A &r,t,m) and this completes 
the proof. 

COROLLARY. If r + n ^ / //zew (xTt8tt,n,m maps onto [0r>s>n, fifff(7J. 

Proof. The proof follows from the lemma, and Lemma 3.5. 

Since ao,s,*,n,ro ° $0,1,s,*,™ = #0,1,5,*,w oaipjitfWiW and since 0o,i,s,«,re and 
<l>o,i,s,t,m are isomorphisms, it follows that a0,s,z,w,m maps onto ft2o,*,w, fio,f,«] if 
and only if ait8tt,n,m maps onto p2ifS>TO, fii,«,w]. From the above results we have 
that aTt8ittn,m maps onto [ttr,s,n, &r,t,n] for r > 0 if and only if r + n ^ /. Thus 
«r,s,f,w,m maps onto ft2r>s,n, Or>ïiW] if and only if r = 0 and ? z + l ^ / o r r > 0 
and r + w è .̂ 

It follows from this that the embedding of 8 — {£} into Si X N+ described 
in the last section does not preserve joins: let $ i 6 8] such that $ i (? image of 
j8i>w and let $ 2 = fio.i.n- Then 

£i.i($i) V 0i.n(#2) = « i V (O0>i.« A Oo.i.i) = « i V Qo.i.i = «i , 

but Si 5* j8i,„(Si V $2) since Si g image of 0 M . 

3.7. The sublattice of Schwabauer classes. It has already been mentioned 
that 7, the set of all 5-classes, forms a distributive sublattice of ?. In this 
section, this and the fact that 7 is a maximal modular sublattice will be proved. 
We first give the following characterization of 5-classes: 

LEMMA 3.10. S G [&r,s,n, ®T,t,n] is an S-class if and only if it satisfies: (1) for 
all u with r < u ^ s, $ is in the image of </>r,s,t,u,n and (2) for all m > n with 
n\m, S is in the image of ar,8,t,n,m-

Proof. If S £ [fir.,.n, Ûr.i,»] H 7 then (1) and (2) follow from Lemma 3.6, 
Corollary 1 and Lemma 3.9, respectively. 

On the other hand, if S satisfies (1) and (2), then choose m > n such that 
r + m ^ /andw|m. Then by (2), S = $ ' A Qr.«,n for some $ ' £ [Qr,,im, Or,«,TO]. 
By Lemma 3.5, $ ' is an 5-class. Thus S is an S-class and this completes the 
proof. 

Let yn = {S G y\D($t) = n} = %n C\ y. Then the yn are pairwise disjoint 
and 7 = Uncisr 7^ ^ {-£}• Moreover, from Lemma 3.9, $nm restricted to ym is 
an isomorphism of ym onto yn. This implies that the mapping 

S~» (|8ifDc*)(«)f£(fl)) 
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is a meet monomorphism of 7 — [E] onto 71 X N+. B u t a mapping from one 
latt ice to another t h a t is one-to-one, onto , and meet preserving is also join 
preserving, i.e., i t is a lat t ice isomorphism. 

I t follows t h a t 7 is lat t ice isomorphic with 71 X N+ with a uni t adjoined. 

L E M M A 3.11. [Œo,i,i, ®o,t,i] r\ 7 is distributive for all t ^ 1. 

Proof. For T C! TitU define T to be the set of those sequences {Ui)^N 6 T\tt 

such t h a t ((Ui)ieN, («1 + 1, u2} uh . . . ) ) € r ( r ( l ) Ufi0 ,*,i*). Then (ut)i€N G f 
if and only if there exists (vi)ieN Ç T such t h a t 

{ (Vi)iÇN, fa + 1, ^2, »8, • • •)} ^ Û0./.1* - » ((uJw («1 + 1, «2, «8, • • •))• 

T h u s the set of all T Ç 7\ ? j such t h a t 7" = T is closed under unions and inter­
sections. Moreover, if 7 \ , T2 C 7 \ f and T\ = 7 \ , T2 = T2 then 

(ri(i)* A Q0llii) A (r2(i)* A o0il.i) = (̂ 1 u r2)(i)* A QM.I 

and 

(^(l)* A Qo.i.i) v (r2(i)* A oMfi) = (Txr\ r2)(i)* A Q0.,.I. 

Since for each $ G [120,i,i, ^o,*,i] ^ 7 there exists J1 ÇZ 7 ^ such t h a t T = T 
and $ = T ( l ) * A ŒO.M, i t follows t ha t [fio.i.i, Œo,*,i] Pi 7 is isomorphic to a 
sublat t ice of the power set of T\tt and hence is dis tr ibut ive. 

COROLLARY. 71 >0 = 81 ,o ^ 7 is distributive. 

Proof. This follows immediately from the lemma and the fact t h a t 

{[O0,i,i, Œot*,i] ^ 7 ^ = 1} forms an ascending chain and 

Ti.o = U ^ i PVi . i , Qo.i.i] P 7-

Since for p < q, ôP,q,i maps 5-classes to 5-classes, it follows t h a t the mapping 
$ ~» ( 5 O , F ( $ ) , I ( $ ) > ^ ( $ ) ) is a meet monomorphism of 71 into 73,0 X / + . 
Moreover, this mapping preserves joins: let 

« 1 , ^2 e 71, F ( « i ) = p, V($t2) = ff. 

W e m a y assume wi thout loss of generali ty t ha t p ^ q. Le t 

« = m a x { £ / ( £ i ) , *7(« 2)} . 
Then 

<5O,*M($I) V 5o,ffpi(^2) V G ^ . i = 5 O , I M ( $ I ) V QPtPtl V ô0><?fi(S2) V ^ t ( ? t i 

= «1 V $ 2 . 

B u t S 2 2 ^ff.ff.iî thus , ô0fç,i(ifî2) 2 Œo.ff.i and thus 

« O J M ( « I ) V 5oitf.i(«2) € [Ûo.ff.i, Ûo.«,i] H 7. 

I t follows from Corollary 1 of L e m m a 3.6 t h a t there exists 

St £ [Qg,q.i, Qtt,v.i] H 7 with ôo i ff.i(«) = <5o,iu($i) V ô o . g . i ^ ) . 
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But then ^ V $2 = V * M ( $ I ) V ô0,ff,i(f 2) V Qq,a,i = 50,ffii($) V Qff,«,i = S. 
Thusô0lJ,.i(«i) V ôo,,,i(«2) = ô<u.i($i V « 2 ) . 

It follows that 71 is lattice isomorphic to a sublattice of YI>0 X / + . But 
71 j0 is distributive; thus, 71 is also distributive. 

Thus, since 7 is isomorphic to 71 X N+ with a unit adjoined, we can state 
the following: 

THEOREM 3.5. 7 is distributive. 

THEOREM 3.6. 7 is maximal modular. 

Proof. Let $ be any equational class not in 7, $ G [Œr,s>w, r̂,*,»]> say. Choose 
m such that n\m and r + m Èè £. Then S is not in the image of aTf3tttfltm and 
thus $ ^ ($ V fir,*,*») A Qr,«,n. But this implies that the sublattice of S 
generated by 7 U {$} is not modular. Thus 7 is a maximal modular sublattice. 

One might well ask whether the set of maximal distributive sublattices of 8 
coincides with the set of maximal modular sublattices of 8; this is the case if 
and only if every modular sublattice of ? is distributive. However, by a result 
of [1], S has a sublattice isomorphic to the partition lattice on a three-element 
set; this lattice is the five-element modular, non-distributive lattice. 
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