
/ . Austral. Math. Soc. (Series A) 61 (1996), 96-105

UNIVERSAL AND PROXIMATELY UNIVERSAL LIMITS

ZVONKO CERIN and JOSE M. R. SANJURJO

(Received 15 October 1992; revised 27 July 1994)

Communicated by J. H. Rubinstein

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Abstract

We present sufficient conditions on an approximate mapping F : X -> ty of approximate inverse
systems in order that the limit / : X —*• Y of F is a universal map in the sense of Holsztyriski. A
similar theorem holds for a more restrictive concept of a proximately universal map introduced recently
by the second author. We get as corollaries some sufficient conditions on an approximate inverse system
implying that the its limit has the (proximate) fixed point property. In particular, every chainable compact
Hausdorff space has the proximate fixed point property.
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1. Introduction

This paper belongs to a part of topology in which special classes of maps and properties
of spaces described by maps are studied. In fact, we consider universal maps in
the sense of Holsztyriski [2] and their analogue, proximately universal maps [8] in
proximate topology of Klee and Yandl [6].

In the late sixties and early seventies, Holsztyriski has established many nice
properties of universal maps including (see [3]) a result which tries to answer the
question: is the inverse limit of universal maps itself universal? We address the same
question by looking for conditions under which the limit of an approximate mapping
between approximate inverse systems [7] will be either universal or proximately
universal.
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[2] Universal and proximately universal limits 97

The approximate inverse systems have been recently introduced with a desire to
eliminate some of the unpleasant features of inverse systems that are a consequence of
insistence on strict commutativity of all diagrams. This is accomplished by replacing
equality of maps with equality up to an open cover. The new concept (whose definition,
with all the preliminaries, is recalled in Section 2) has clear advantages over the old. It
deserves the attention of a more general audience in spite of a somewhat complicated
definition.

The applications of our results are to fixed point theory. We can conclude (Co-
rollary 1) that the limits of special approximate inverse systems have the fixed point
property and (Corollary 2) that every chainable compact Hausdorff space has the
proximate fixed point property.

The authors thank a referee for many useful remarks which helped to improve
considerably the presentation of our results.

2. Universalities and systems

Unless stated otherwise, by a space we mean a compact Hausdorff space and by a
map we mean a continuous (single-valued) function. For a space X, we let X denote
the family of all open covers of X. If x and y are points of a space X and e e X, we
shall use x = y to mean that some member of e contains both x and y. For functions
/ , g : Z ->• X we let the relations / = g, f « g , and / « g mean that f(z) = g(z)
for every z e Z, /(z) = g(z) for some z & Z, and f(z) = g(z) for some z e Z,
respectively.

The following two notions are basic for proximate topology. For an introduction
to its motivation and results, the reader should see [6].

Let X and Y be spaces. Let a e X and p e Y. A function / : X - • Y is an
(a, ^-function provided for every A e a there is a B e /} with f(A) c B. We call
/ a fi-function if there is an a € X such that / is an (a, (})-function.

We shall now define universal maps (or t/-maps) and proximately universal maps
(or P-maps) as follows. A map / : X -> Y is a U-map provided / « g for every
map g : X —>• F. It is a P-map if for every e e 7 there is a i e f such that / «s g
for every <5-function g : X -> y.

When X and F are compact metric spaces, the last definition is equivalent to the
definition of a P-map in [8]. Since a map g : X —• Y is a 5-function for every S e Y,
every P-map is a [/-map. The converse is not true (see [8]).

Let us now recall basic facts from [7] about approximate inverse systems (or
systems) and approximate mappings (or mappings).

Let (A, <) be a partially ordered set and let a € A. We let a+ denote the set of
all b 6 A with a < b. For a space X we consider X partially ordered with the
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relation of refinement. Hence, for a € X, a+ denotes the collection of all n € X
which refine a. Also, a+" stands for the collection of all it € X such that the «th star
st"(n) of n refines a, where we define st"(n) inductively by st1 (jt) = st(7r) and st"(n)
= {st(H, n): H e st"-l(n)} for« > 1.

hi order to avoid repetitions, some statements in the text will be labelled in bold
face. It is understood that the statement runs from the first appearance of the label to
the first comma or point thereafter.

A system S£ = (Xa, ea, p
a
b, A) consists of an unbounded directed set (A, >), a

collection [Xa}a€A of spaces, a collection {Ea}a€A of covers ea e Xa, and a collection
{Pt)(«.*)€< of maps pa

b:Xb^ Xa such that

(Al) p"b o pb
c = p° and p° = id for every (a, b, c) e A x a+ x b+,

(A2) for every (a, s) e A x Xa there is a b e a+ with pa
c o pc

d = p"d for every
(c, d) e b+ x c+, and

(A3) for every (a, s) e A x Xa there is a b € a+ with pa
c{u) = pa

c(v) whenever
c 6 b+ and u and v satisfy u = v.

Every system 3£ determines a subset X of the product \\ X = rLe/t^s (called
the limit of 3£) consisting of all points (xa) satisfying the condition (see [7, (1.12)])

(L) for every (a, rj) e A x Xa there is a b ea+with xa = pa
c{xc) for every c eb+.

Let 3C = (Xa, ea, p
a
b, A) and & = (Yc, ac, r

c
d, C) be systems with limits X and

Y, and for an a e A and a c e C, let pa : X -> Xa and rc : F ->• Yc denote the
restrictions of natural projections it" :\\3C ^>- Xa and £c : \\ & ->• yc.

A mapping F : X -> ^ is a pair F = (<p, {/c}ceC) consisting of a function
0> : C -»• A and maps /c : Xv(c) - • Ff such that whenever c < d in C there is an
a><p(c), <p(d) in A with fc o pv

b
(c) = rc

dofdo plw for every k a + .
It was shown in [7, (5.8)] that a mapping F induces a map / : X -> 7 (called the

of F) such that ([7, (5.6)])

(AM) /c o pf(c) = rcof for every ceC.

Let F = (^), {/c}ceC) be a mapping F : SC -* 9 with the limit / : X - • y. Let
J : JT ->• ^* be the identity mapping (idA, {idxJatA)-

For each b e A we define an embedding 4 : Xb ->• fj ^T as follows. Let
;y e ]~[ ^T. For a w e Xb, put 4(u) = w, where wa = pa

b(v) if a < b and wa = va

otherwise.

LEMMA 1. Let N be a neighbourhood ofXin\\3£- Then there is a d € A such
that ie(Xe) c N for every e > d.
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PROOF. For each x e X, choose a finite subset B(x) of A and a 8(x,b) e Xb

for each b e B(x) such that H(x) = n{st(xfc, S(x, b)) : b e B(x)} x Y\{Xa : a e
A \ B(x)} c N. Let y(x,b) e S(x,b)+l for each x e X and b e B(x). Let
G(x) = Y\{f>t(xb, y(x, b)) : b € B(x)} x Y[{Xa : a e A\ B(x)}. The collection
{G(x)}xeX covers X. Since X is a compact Hausdorff space [7, (4.1)], there is a finite
subset Z of X such that the collection {G(z)]z€Z also covers X. Let B = \Jz€ZB(z).
For each b € B, let y(b) e fl{y(z. b)+2 : z s Z}.

For every fee 6, by the condition (A2), there is an m(b) > b such that

(1) p* o p; ^ p^ for every 5 > r > m(b).

On the other hand, by [7, (1.14), (1.9), (1.10)] there is an n(b) > b such that

(2) pb
eope = pb for every e>n(b).

Letc e n ^ W n »(b)+ : b e B}. Let rj e f|{(Pc)"'(y W) + : i e f i ) . Finally, we
use [7, (4.2), (2.12), (2.10)] to select a required index d > c such that

(3) pc
e(Xe) C st(pc(X), IJ) for every e > d.

Consider an index e > d and a point ) € X » . The relation (3) shows that we can find
an x e X so that pc

e(y) = pc(x). Let b € £. Then

Since e > c > m(ft), from (1) we get

(5) Pc*°tfO0 = />*O0,

and since c > n(fe), from (2) we get

(6) p* o pc(x) ^ p*(jc).

The relations (4) - (6) together imply

(7) n\x) = nb(ie(y)) for every z e Z and every be B.

Choose a z 6 Z with x e G(z). Clearly,

(8) 7Tb(z) = nb{x) for every b e B(z).

It follows from (7) and (8) that 7ib(ie(y)) = nb(z) for every b e B(z). Hence,
ie(y) € H(z) C N.

https://doi.org/10.1017/S1446788700000094 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000094


100 Zvonko Cerin and J6se M. R. Sanjurjo [5]

LEMMA 2. Let g : Z —>• Y be a map into the limit of a system W.

(a) If for every d € C and every a e Yd there is an e > d such that rd o g ss rd
e o h

for every map h : Z —>• Ye, then g is a U-map.

(b) If for every d e C and every a e Yd there is an e > d and an s e Ye such that

r o g ss re o h for every e-function h : Z -*• Ye, then g is a P-map.

PROOF OF (a). It suffices to prove that g % h for every map h : Z -> Y and every
e € Y. We first apply [7, (4.2), (2.11), (2.9)] to get an index c e C and an r\ e Yc

such that (rc)~l (rj) refines e. Let a e rj+2. Then we utilize the property (A2) and [7,
(1.14), (1.9), (1.10)] again to get an index d > c such that for every e > d we have

(9) rc
e=rc

dord
e, and

(10) rc=rc
eore.

Finally, we use the above assumption, to get an e > d such that rc
d o rd o g =

rd ° re ° ̂  f° r every map k : Z ^ Ye. In particular, there is a point z e Z such that

rc
dordog{z) = rc

dordoreoh(z). With relations (9)and (10)wegetrcog(z) = rcoh(z).

Therefore, g^h.

PROOF OF (b). Let e e Y. We shall show the existence of a S e Y with the property
that for every ^-function h : X -» Y there is an x e X with g(x) = h{x).

We first choose indices c and d in C and covers r\ and a in Yc as in the proof of (a).
Then we use the above assumption to get an e > d and ay € Ye such that for every
y-function Ic : X —>• Ye there is an x e X with rd o rd o ^(x) = rd o rd o k(x). Let

« = (/•')"'(K).
Let /i : X -> F be a <5-function. Then rc o /j : X -> 1̂  is a y-function. Hence,

there is an x e X with

(11) rc
dordog{x) = rdordoreoh(x).

It is easy to verify that (9), (10), and (11) imply rc o g(x) = rc o h{x). Hence,
g(x) = h{x).

A mapping F is a U-mapping provided for every c e C and every u e ^ there is

a n a > <p(c) with g % / c o p£<<:) for every 6 > a and every map g : Xb -+ Yc. It is

a P-mapping provided for every c e C and every a e r t there is a 7r e CT+ and an

a > (p(c) with g « / c o p*(c) for every 6 > a and every 7r-function g : Xb ->• yc.
A system ^T is a U-system (a P-system) provided the mapping / : SC ->• JT is a

{/-mapping (a f-mapping).
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A system <3f is a V-system provided that for every c € C and every a e Yc there
is a d > c such that for every map g : W —> Yd defined on a closed subset W of a
space Z there is a neighbourhood N of VK in Z and a map h : N —>• Yd which satisfies
rd°S = rc

doh\w-
The following lemma implies that every AP-system (that is, a system with the

approximate polyhedra as bonding spaces) and therefore every ANR-system is a V-
system. Recall [7, (2.3)] that a space X is an approximate polyhedron provided that
for every a e X there is a finite polyhedron P and maps u : X ->• P and d : P —>• X
with id = d ou.

LEMMA 3. 7/X is an approximate polyhedron, then for every a e X and every map
f : W ->• X defined on a closed subset Wofa space Z there is a neighbourhood N
ofW in Z and a map g : N -> X with f = g\w.

PROOF. Choose a finite polyhedron P and maps u : X —> P and d : P —• X such
that jrf = cf o «. Let h = u o f. Since finite polyhedra are absolute neighbourhood
extensors for the class of all compact Hausdorff spaces [5], there is a neighbourhood
N of W in Z and a map k : N —>• P with /z = Jt|w. Let g = d ok.

A system ^ is a Q-system provided that for every c & C and every o e Fc there
is a d > c and a 7T e yd so that for every n -function g : W —> Yd defined on a
closed subset W of a space Z there is a neighbourhood N of W in Z and a function
h : N ^ Yd such that the composition r^ o /i is a a-function and rc

do g = rc
doh\w.

The second of the following two lemmas implies that every PANR-system (that
is, a system with proximate absolute neighbourhood retracts as bonding spaces) is a
2-system. Recall [6] that a space X is a proximate absolute neighbourhood retract
(PANR) provided for every a e X and every space Y which contains X as a closed
subset there is a neighbourhood Af of X in Y and some a -function r : N —>• X with
id = r\x.

LEMMA A. If a space X is an approximate polyhedron, then for every % e X there
is aS e X such that for every S-function f : Z —>• X there is a map g : Z —*• X with

PROOF. Let £ e X. Let r\ € £+1. Choose a finite polyhedron /> and maps
u : X ^> P andd : P ^> X such that id = d o M. Let ft = fiT'(r/). By Theorem 2.1
in [1], there exists a y € P such that for every y-function h : Z —• P there is a map
k : Z - > Pwith/z = * . Puts = « - ' ( / ) .

Let / : Z -> X be a S-function. Let h = u o / . Then ft : Z —> P is a y-function.
Hence, there is a map k : Z -^ P such that h = k. Put g = dok. Clearly, g : Z —> X
is continuous and f = g.
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LEMMA 5. A space X is a PANR if and only if for every £ e X there is a 8 e X
so that for every S-function f : W —»• X defined on a closed subset W of a space Z
there is a neighbourhood NofW in Z and a I--function g : N —»• X with f = g\w-

PROOF. Suppose X is a PANR. Let £ G X. Let r) e | + 2 . We consider X as a closed
subset of a suitable Tychonoff cube K. Since X is a PANR, there is an approximate
polyhedron neighbourhood M of X in K and an ^-function r : M —> X with id = r\x.
For every m e M, let Vm be an open set in Af such that y € Vm implies r(y) = r{m).
Lety = {Vm : m € M}. By Lemma 4, we can find a yS e M such that every £-function
into M has a continuous /-approximation. Let S = [U n X : U e fi}.

Consider a (5-function / : W ->• X defined on a closed subset W of a space Z.
Choose a map /J : W ->• M with / = h. By Lemma 3 , there is a neighbourhood Af
of W in Z and a map £ : N ->• M with A = jfc|w. Put^ = r o i t : A / ^ - X .

Then g is obviously a |-function. Let w e W. Select m,n € M such that
/j(w>), *(iu) e Vm and A(u;), /( io) 6 Vn. Hence, we can find S,T,U,V e r) with

e 5, r oh(w) e T, r{m) e SnT, ro h(w) e U, f(w) € V, and r{n) e
[/ n V. It follows that / = g\w.

The converse implication is obvious.

3. Universality of limits

The previous results will be applied here to prove the following theorem.

THEOREM.

(c) IfF is a U-mapping of a system X into a V-system &, then the limit f : X -»• Y
of F is a U-map.

(d) If F is a P-mapping of a system X into a Q-system &', then the limit f : X —> Y
of F is a P-map.

PROOF OF (C). By Lemma 2 (a), it suffices to show for every c e C and every
e e Yc there is a d > c such that for every map g : X —• Yd there is an x e X with

(12) rcof(x) = rc
dog(x).

Let c e C and e e Yc be given. Let rj e e"1"4. We utilize now the property (A3), [7,
(1.14), (1.9), (1.10)], the property (A2), and the fact that <& is a V-system to select
indices p , q, r e c+, an s e p + D q+ D r+, and ad > s such that

(13) st\am) e (rc
myl(r,)+ for every/n > p ,

(14) rc=rc
mo rm for every m > q,

(15) r
c
n=rc

mo r™ for every n > m > r,
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and for every map j : W -> Yd defined on a closed subset W of a space Z there
is a neighbourhood N of W in Z and a map & : N —>• yd such that the relation
rf o rj o ; =2= r / o r j o (*!,,,) holds.

Consider a map g : X —• Yd. Choose a compact neighbourhood N of X in ]~[ $T
and a map h : N ̂  Yd such that

(16) r J o r J o g ^ r / o r ' o W * ) .

Let £ = (rp"1^?) 6 l j . Select apeAf such that u = w in N implies h(v) = h(w).
LetAt = (/d)- ' (?)eXr f .

We use now Lemma 1 and the assumption that F is a U -mapping to get an index
"> > <p(d) such that 4(Xn) c iV, for every n > m, and for every n > m and every
map f : Xn ->• yd there is a z e Xn with t(z) = /d o pfd)(z). Let n > m. Since
h oin : Xn ̂  Yd is well-defined and continuous, there is a point .*„ e Xn with

(17) r ;o / ,o in(xn) = rc
dofdo pf

n
w(xH).

It follows from Lemma 1 that the net {in(xn) : n > m} has an adherence point x in X.
This * is the required point.

Indeed, let M and /? be members of /x and p which contain xvW and x, respectively.
Let V = /? n (M x n t ^ a :aeA,a^ <p(d)}). Choose an « > m so that /„(*„) e V.
Since the <p(d)-coordinate of ;„ (jcn) is pfd)(xn), it follows that both xv(d) and p%id)(xn)
are in M. Hence,

(18) rd o / , o p^\x) 4 r,c o / , o p:W)(^n).

Since the points /„(*„) and JC are in R , we get

(19) rdoh{x)±rc
dohoin{xn).

From (13) and (AM), we get

(20) rc
dordof^rc

dofdop*(d\

From (14), we get

(21) rcof(x)±rc
dordof(x),

while from (15), we get

(22) rc
doh(x)±rc

sordoh(x),

and

(23) rdog(x)±rc
sordog(x).

Relations (16) - (23) together imply (12).
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PROOF OF (d). By Lemma 2 (b), it suffices to show that for every c € C and every
s € Yc there is a d > c and a S e Yd such that for every 5-function g : X ->• Yd there
is an x € X with

(24) rc o f{x) = rc
d o g(x)) f { ) d g ( )

Le t a c e C a n d a n e e Yc b e g i v e n . L e t 77 e e + 4 . Se lec t ind ices p , q,r,s,d

d a n a e A a n d c o v e r s £ , S e Yd s u c h tha t p,q,r e c+, s > p , s > r, a > (

(25) 5r2(am) € (^)- : (??)+ for every m > p,

(26) rc = rc
m o rm for every m > q,

(27) < = rc
m o r™ for every n > m > r,

and for every b > a and every £-function / : Xb -> Fs there is an JC e X(, with
r5

c o J(JC) = rj o / j o p%ls)(x), and for every 5-function j : W -> Yd defined on a
closed subset W of a space Z there is a neighbourhood N of W in Z and a function
& : N —> Yd so that Â  O )t is a ^-function and rs

c ors
d o j = r5

c o r j o (^|w).
Consider a <5-function g : X —• Frf. Choose a compact neighbourhood / / of X in

Y[ 3C and a function h : N ^- Yd such that r^ o h is a f -function and

(28) rc
sordog±rc

sordo(h\x).

Let v — (rd)~
l(r)). Select a p e N such that u = w in Â  implies h(v) = h(w). Let

/ 1

By Lemma 1, there is an index m e A such that m > d and Jn(Xn) c N for every
n > m. Let n > m. Since rd o h o in : Xn -+ Ys is a well-defined £-function, there is
an *„ e Xn with

(29) r,c o / , o pf\xn) ±rc
sordoho in(xn).

The rest of the proof (that is, the selection of a point x and the verification that it
has the required property) is analogous to the proof of (c) and we leave it to the reader.

COROLLARY 1.

(i) A limit X of a system SC that is both a U-system and a V-system has the fixed
point property.

(ii) A limit X of a system 3£ that is both a P-system and a Q-system has the
proximate fixed point property.
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PROOF OF (i). Since, by assumption, the identity mapping / is a {/-mapping, it
follows from the theorem that the identity map idx on X is universal. However, this
implies that X has the fixed point property (see Proposition 3 in [3]).

PROOF OF (ii). As above we conclude that idx is proximately universal. Hence, X
has the proximate fixed point property (see [8, Theorem 4]).

COROLLARY 2. Every chainable compact Hausdorff space X has the proximate
fixed point property.

PROOF. We can assume that the space X is non-degenerate. It is known that X is
homeomorphic to a limit of a system SC with each Xa the closed unit segment / and
each pi an onto map. Since / is a PANR and every map of / onto itself is a (/-map
[8], it follows that 3£ is both a P-system and a Q-system. The conclusion is now a
consequence of Corollary 1.
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