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Abstract

Designing rewriting systems that respect functional extensionality for call-by-name languages

with effects turns out to be surprisingly challenging. Simply interpreting extensional laws

like η as reduction rules easily breaks confluence. We explore these issues in the setting of

a sequent calculus. Building on an insight that appears in different aspects of the theory of

call-by-name functional languages—confluent rewriting for two independent control calculi

and sound continuation-passing style transformations—we give a confluent reduction system

for lazy extensional functions. Finally, we consider limitations to this approach when used

for strict evaluation and types beyond functions.

1 Introduction

Extensionality helps make syntactic theories less syntactic—objects that behave the

same are the same even though they appear to be different. However, combining a

call-by-name parameter passing technique with extensionality presents unexpected

challenges. For example, a useful property for rewriting theories is confluence,

which says that the chosen order of reductions does not impact the result—all

diverging paths will eventually meet back up in the end. In a logic, confluence

guarantees consistency so that we do not end up equating true to false. It also

provides a good vehicle to conduct proofs establishing a standard reduction path,

thus demonstrating that the rewriting theory can be implemented in a deterministic

fashion. Indeed, the λ-calculus with the extensional η law is confluent (Barendregt,

1984). However, once the calculus is extended with control effects, confluence is lost

(David & Py, 2001). Even worse, just adding extensional products with a surjectivity

law breaks confluence of the pure λ-calculus as well (Klop & de Vrijer, 1989).

Given these troublesome problems, we might be inclined to conclude that con-

fluence is too syntactic and low level. After all, the consistency of a logic can

be demonstrated using alternative techniques (Klop & de Vrijer, 1989), and if we

are only interested in capturing program execution, we can focus directly on an

operational semantics instead of starting with such a flexible rewriting system. These

are sensible arguments, and indeed there are cases where more abstract notions

of confluence are needed, as in a calculus with cyclic structures (Ariola & Blom,

2002). However, it might come as a surprise that extensionality creates issues even

when focusing on the pure λ-calculus alone without any extensions. For example,
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2 P. Johnson-Freyd et al.

continuation-passing style transformations hard-wire the evaluation strategy of a

language directly in the program itself. Naturally, we expect that equivalent source

programs continue to be equivalent after the transformation. But under a known

call-by-name continuation-passing style transformation due to Plotkin (1975), β-

equivalence is preserved while η-equivalence is violated.

Since these issues surrounding extensionality show up in multiple disconnected

places, we wonder if they act as the canary in a coal mine, signaling that the pieces

of the calculus do not quite fit perfectly together and that we should question our

basic assumptions. Indeed, both the efforts to solve the confluence problem and the

search for a sound continuation-passing style transformation have made use of the

same insight about the nature of lazy functions. The goal of this paper is to present

this alternative and fundamental view of lazy functions in an incremental way, in a

setting that brings out better intuition about the insight. We do not claim originality

of the solution, however, we hope the framework used here will serve as a more

suitable starting point for tackling the remaining issues of integrating extensionality

with other structures.

The central idea developed in later articles, and which in hindsight can be

recognized in at least Danos et al. (1997), is that functions are co-data (Zeilberger,

2009; Downen & Ariola, 2014). That is, they are not concretely constructed objects

like tuples in an ML-like language, but rather abstract objects that only respond

to messages. The co-data nature of functions suggests a shift in focus away from

functions themselves and toward the observations that use them. How can we use a

function? We need to provide an argument and a return point that does something

with the result. This highlights the fact that the observations on functions are

constructed, and we refer to this structure as a call stack (Pitts, 2000). Thus, a

function is a destructor for call stacks. Concretely, that means that we want to

treat “inside out” contexts as primitive (Felleisen et al., 1988). Since we want both

functions and their observations to have equal status, we leave the λ-calculus and

instead embrace the sequent calculus as a language that clearly delineates those who

produce from those who consume.

Another reason for using the sequent calculus is that control is inherent in the

framework rather than being added as an afterthought. But what does control

have to do with functions? The two seem unrelated because we are accustomed to

associating control with operators like Scheme’s call/cc, and indeed if we assume

that control is just for expressing call/cc then there is little justification for using

it to explain functions. Instead, control should be seen as a way to give a name to

the call stack, similar to the way we name values (Curien & Munch-Maccagnoni,

2010). Thus, much as we match on the structure of a tuple, functions are objects that

match on the structure of a call stack. Note that this view of functions as call-stack

destructors is independent of the evaluation strategy. It is not tied to call-by-name

but is inherent to the primordial notion of a function itself, so it holds just as well

in a call-by-value setting (Zeilberger, 2009).

All three of these ideas—functions as pattern matching, contexts as primitive, and

control as the naming of contexts—have recently received an extensive analysis and

justification from a logical perspective (Munch-Maccagnoni & Scherer, 2015).
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What, then, is the essence of a lazy function? The essential ingredient is that

lazy functions perform a lazy pattern match on their call stack, so functional

extensionality is captured by the surjectivity of the call stack as a pairing construct.

Indeed, this same insight has sprung up as the key linchpin to the problems sur-

rounding the implementation of the η law. An alternative call-by-name continuation-

passing translation based on pairs arises from a polarized translation of classical

logic (Lafont et al., 1991). Moreover, at least as long as the pairs in the target

are categorical products, that is, surjective pairs, this translation validates the

η law (Hofmann & Streicher, 2002; Fujita, 2003). Surjective call stacks have

also been used to establish an extensional confluent rewriting system in two

independently developed calculi: The Λμ-calculus (Nakazawa & Nagai, 2014), which

is interesting for its connections with Böhm separability (Saurin, 2010) and delimited

control (Herbelin & Ghilezan, 2008); and the stack calculus, which can be seen as

the dual to natural deduction (Carraro et al., 2012). It is surprising to see that these

different problem domains unveil the same key insight about lazy functions.

In the end, we have a satisfying solution to confluence in the λ-calculus with

both extensionality and classical control effects as well as a sound call-by-name

continuation-passing style transformation. This immediately invites the question:

Does the solution scale up to more realistic calculi with other structures, like

products and sums, found in programming languages? Unfortunately, the answer is

a frustrating “no”. The solution does not easily apply to programming constructs like

sum types, which involve decision points with multiple branches. Worse, confluence

appears to break down again when we combine both data and co-data. However,

since the use of surjective call stacks works so well for functions in isolation, we see

these roadblocks as prompts for a new avenue of study into extensional rewriting

systems for other programming structures.

1.1 Contents

We begin our exploration of extensionality and control with an extensional call-

by-name sequent calculus that has a traditional presentation of functions as λ-

abstraction (Figure 1), and contrast this traditional view with an alternative one

based on pattern matching (Figure 3), which we show is equivalent to the first

(Section 2). Next, we show how the näıve rewriting theory for this sequent calculus

lacks confluence and present an alternative rewriting theory that rewrites pattern

matching into projections (Section 3). The projection-based system is presented in

both sequent (Figure 5) and natural deduction style (Figure 7), and the two styles are

shown to be in equational correspondence. This new projection-based formulation of

functions is then shown to be equivalent to the two previous presentations (Section

4). Confluence of the extensional rewriting theory is shown by reducing the full

calculus down to a small core calculus (Figure 12) which is known to be confluent

(Section 5). Finally, we discuss how this solution to confluence can break down

when the calculus is extended with other structures from programming languages

(Section 6).
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Fig. 1. The call-by-name λ̄μμ̃-calculus extended with η (λ̄μμ̃η).

Fig. 2. Simple type assignment for λ̄μμ̃η .

2 An extensional call-by-name equational theory

As a native language for studying first-class control, we consider λ̄μμ̃η (Figure 1), an

extensional version of a call-by-name sequent calculus (Curien & Herbelin, 2000).

Note that throughout this paper, we present rules with the implicit assumption that

they respect static scope: rules are always restricted to avoid variable capture or

escape. Although our focus is on the underlying untyped term language, λ̄μμ̃η is

motivated by its typed version (Figure 2) which corresponds to a two-sided classical

sequent calculus in much the same way that the simply typed λ-calculus corresponds

to institutionistic natural deduction.

Since λ̄μμ̃η is based on the sequent calculus, where proof dynamics is captured by

the elimination of cuts, programs are written as two-sided entities called commands,

where the two sides represent two opposing forces of computation—the production

(via terms) and consumption (via co-terms) of information—corresponding to the

two sides of a cut. For example, a λ-abstraction λx.v, as is written in the λ-calculus,

is a term that describes the necessary behavior for creating a functional value,

whereas a call stack v · e is a co-term that describes the method for using a function.

Additionally, we have generic abstractions which allow each side to give a name

to the other, regardless of their specific form. The μ̃-abstraction μ̃x.c is a consumer

which names its input x before running the command c. Dually, the μ-abstraction
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μα.c is a producer which names the location for its output α before running c. The

typing judgment for terms corresponds to the collection of proofs with an active

formula on the right, and dually, co-terms correspond to proofs with an active

formula on the left. Readers unaccustomed to the sequent calculus may find it

helpful to think of co-terms as contexts in the lambda calculus and the construct

〈v||e〉 as filling the hole in e with the term v. In this view, μ̃x.c corresponds roughly

to let x = � in c while v · e corresponds to the context e[� v]. We can see

that μ̃ allows us to build more complicated compound contexts, beyond just the

applicative contexts formed with the call stack constructor (i.e., the · constructor).

Similarly, μ-abstraction lets us build more complicated compound terms beyond just

λ. Indeed, the μ operator can be seen as arising as a solution to the problem of

how to encode elimination forms, and their associated reduction equations, into an

abstract machine language like λ̄μμ̃η (Curien & Munch-Maccagnoni, 2010; Munch-

Maccagnoni & Scherer, 2015). In the Krivine abstract machine (Krivine, 2007), the

function application construct from the lambda calculus is handled by way of a

reduction rule:

〈v v′||E〉 → 〈v||v′ · E〉

which refocuses (Danvy & Nielsen, 2004) the command to incrementally replace an

outside-in context with its associated inside-out co-value. Indeed, we can take this

reduction rule as defining the meaning of application as a syntactic construct for

extending the context. However, in order to directly define application internally to

the calculus, we need a way to define terms by giving a name to their context. Thus,

v v′ can be represented as the compound term μα.〈v||v′ · α〉 which implements the

same reduction rule.

The μ-abstraction μα.c can also be read as call/cc(λα.c), and a co-variable α

is akin to a context of the form throw α �, which invokes a stored continuation.

However, we find the sequent calculus presentation instructive as it emphasizes

symmetries, reducing the number of distinct concepts. In a λ-calculus presentation,

control operators often come across as exotic and are difficult to build an intuition

about. Here, μ-abstraction is simply understood as providing a name to an output

channel in a computation: It is no more complicated than μ̃-abstraction which

provides a name to an input.

As a contrast to λ-abstractions, we adopt an alternative notation for functions

(Curien & Munch-Maccagnoni, 2010), shown in Figure 3. A function is not

constructed; instead it is a procedure that reacts by pattern matching on its observing

call stack. As such, we write a function as μ[(x · α).c], which says that the context is

decomposed into an argument named x and a place named α for the result. Indeed,

either representation for functions can be seen as syntactic sugar for the other:

μ[(x · α).c] � λx.μα.c or λx.v � μ[(x · α).〈v||α〉] (1)

From a logical standpoint, this alternative interpretation of functions corresponds

to the right introduction rule for implication, which does not preserve activation on

the right. This can be seen in the type assignment for the μμ̃→η -calculus (Figure 4).
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Fig. 3. The call-by-name μμ̃→η -calculus.

Fig. 4. Simple type assignment for μμ̃→η .

In order to make the equivalence between these two different views of functions

more precise, we utilize the concept of an equational correspondence (Sabry &

Felleisen, 1993). To distinguish the different equational theories, we use the notation

T � t = t′ to indicate that t and t′ are equated by the theory T . Given two equational

theories S and T , the translations � : S → T and � : T → S form an equational

correspondence whenever the following four conditions hold:

1. (�) For all terms s1 and s2 of S , S � s1 = s2 implies T � s
�
1 = s

�
2 .

2. (�) For all terms t1 and t2 of T , T � t1 = t2 implies S � t
�
1 = t

�
2 .

3. (��) For all terms s of S , S � s = (s�)�.

4. (��) For all terms t of T , T � t = (t�)�.

Proposition 1

λ̄μμ̃η and μμ̃→η are in equational correspondence.

Proof

The translations of the equational correspondence are given by the macro definitions

between the two syntactic representations of functions (Equation (1)). The translation

is not a syntactic isomorphism, because λx.v in λ̄μμ̃η becomes μ[(x · α).〈v||α〉] in μμ̃→η ,

which in turn translates back to λ̄μμ̃η as λx.μα.〈v||α〉. However, we have

λx.v =ημ λx.μα.〈v||α〉
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in λ̄μμ̃η . Similarly, μ[(x · α).c] in μμ̃→η becomes λx.μα.c, which roundtrips back to the

term μ[(x · β).〈μα.c||β〉], but

μ[(x · α).c] =α μ[(x · β).c[β/α]] =μ μ[(x · β).〈μα.c||β〉].

All other syntactic constructs roundtrip to themselves exactly. The equational

correspondence is completed by observing that all axioms of λ̄μμ̃η are derivable

in μμ̃→η after translation, and vice versa. �

3 An extensional call-by-name reduction theory

Having seen the equational theory for the μμ̃→η -calculus, we now look for a

corresponding confluent reduction theory. The simplest starting point is to take

the left-to-right reading of each axiom as a reduction. However, this system lacks

confluence due to a conflict between the η and μ rules:

μδ.〈y||β〉 ←η μ[(x · α).〈μδ.〈y||β〉||x · α〉]→μ μ[(x · α).〈y||β〉] (2)

This issue is not caused by the two-sided sequent calculus presentation; it is part

of a fundamental conflict between lazy functions and control. Indeed, a similar

issue occurs in the λμ-calculus (Parigot, 1992), a language with control based on

the λ-calculus (David & Py, 2001); given a term of the form λx.M x, a reduction

in M x could ruin the pattern for the η rule. This phenomenon does not occur in

plain λ-calculus since both reducts are the same. To combat this issue, David and

Py introduce a new rule, written in μμ̃→η as

μδ.c→ν μ[(x · α).c[x · α/δ]]

The above diverging diagram can thus be brought back together:

μδ.〈y||β〉 →ν μ[(x · α).〈y||β〉]

The ν rule can be understood as performing not an η-reduction but rather an

η-expansion followed by a μ-reduction:

μδ.c←η μ[(x · α).〈μδ.c||x · α〉]→μ μ[(x · α).c[x · α/δ]]

Because ν involves expansion, it risks eliminating the concept of (finite) normal

forms. Moreover, confluence is not restored for arbitrary open terms, since terms

with a free co-variable can still lack confluence:

〈y||β〉 ←μ〈μδ.〈y||β〉||δ〉 ←η〈μ[(x · α).〈μδ.〈y||β〉||x · α〉]||δ〉 →μ〈μ[(x · α).〈y||β〉]||δ〉

The Λμcons-calculus (Nakazawa & Nagai, 2014) provides an interesting alternative

solution to the conflict between functional extensionality and control. The Λμcons-

calculus is an extension of the λμ-calculus (Parigot, 1992) which adds not only an

explicit representation of call stacks as co-terms, similar to μμ̃→η , but also projections

out of these call stacks: car projects out the argument and cdr projects out the

return continuation. This calculus suggests a third interpretation of functions based

on projections, instead of either λ-abstractions or pattern matching. We can transport

this alternative interpretation of functions to the sequent calculus by extending
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Fig. 5. The μμ̃→cons reduction theory.

μμ̃→η with the new term car(e), co-term cdr(e) and co-value cdr(E), giving us the

μμ̃→cons reduction theory in Figure 5. Note that to avoid spurious infinite reduction

sequences, the ς-rules are restricted to only lift out non-co-values. Effectively, the

exp rule implements functions as a μ-abstraction with projections out of the given

call stack. Thus, although μμ̃→cons does not have a direct reduction rule corresponding

to the β-law, function calls are still derivable:

〈μ[(x · α).c]||v · E〉 →exp 〈μβ.c[car(β)/x, cdr(β)/α]||v · E〉
→μ c[car(v · E)/x, cdr(v · E)/α]

→cdr→car c[v/x, E/α]

Moreover, even the η-law becomes derivable as a sequence of reductions:

μ[(x · α).〈v||x · α〉]→exp μβ.〈v||car(β) · cdr(β)〉 →surj μβ.〈v||β〉 →ημ v

Yet even though both μ and η are derivable in μμ̃→cons, the exp rule brings our previous

critical pairs back together (as usual, →→ stands for multiple steps of reduction):

〈y||β〉←←〈μ[(x ·α).〈μδ.〈y||β〉||x ·α〉]||δ〉→μ〈μ[(x ·α).〈y||β〉]||δ〉→exp〈μγ.〈y||β〉||δ〉→μ〈y||β〉

From a logical standpoint, the new forms car(−) and cdr(−) correspond to

elimination rules for implication (Figure 6). Note that the cdr(−) rule is a left

elimination rule.

Before showing that the μμ̃→cons reduction theory is indeed confluent, we need

to demonstrate that its associated equational theory—obtained as the symmetric,

transitive and reflexive closure of its reductions—is equivalent to μμ̃→η .
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Call-by-name extensionality and confluence 9

Fig. 6. Additional typing rules for μμ̃→cons.

Fig. 7. The λμcons calculus.

3.1 Bridging sequent calculus and natural deduction

Since μμ̃→cons is designed as a sequent calculus counterpart to the Λμcons-calculus,

they are predictably related to one another. In particular, the μμ̃→cons-calculus is

equivalent to the λμcons-calculus shown in Figure 7, which syntactically distinguishes

between commands and terms, as did the original λμ-calculus (Parigot, 1992). The

type assignment for λμcons given in Figure 8 differs from the type system given in

Nakazawa & Nagai (2014) due to this syntactic difference, making it closer to a

traditional logic. In particular, λμcons is typed according to the rules of classical

natural deduction extended with left introduction and elimination rules. We can

translate between μμ̃→cons and λμcons based on the standard relationship between the

sequent calculus and λμ-calculus (Curien & Herbelin, 2000), as shown in Figure 9.

The primary complication in translating from μμ̃→cons to λμcons is the usual issue

that comes up when comparing sequent-based and λ-based languages: The sequent

calculus language has additional syntactic categories that must be merged together

in a λ-calculus language. In particular, the commands and terms of the two calculi

are in correspondence, as are the co-values of μμ̃→cons and streams of λμcons (as shown

by the auxiliary translation E−). However, even though co-values and streams

correspond, the syntactic treatment of general co-terms in μμ̃→cons is absent in λμcons.

For example, cdr(μ̃x.c) cannot be represented directly as a stream in λμcons.

To help bridge the gap between the two calculi, we introduce in λμcons the notion

of a context, denoted by the metavariable C , that is simply a command with a

term-shaped hole in it. These contexts in λμcons correspond to co-terms in μμ̃→cons.

For example, the �-translation of the μμ̃→cons call stack x · α becomes the context

[α](� x) in the λμcons-calculus, as opposed to the more direct translation as a stream

(x · α)− = x :: α. Given any such context C , its translation as a μμ̃→cons co-term is
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Fig. 8. Simple type assignment for λμcons.

Fig. 9. Translations from μμ̃→cons to λμcons and vice versa.

defined as a μ̃-abstraction:

C� � μ̃x.(C[x])�

With this additional technical detail for dealing with contexts due to the loss of

co-terms, we form an equational correspondence between λμcons and μμ̃→cons.

Theorem 1

μμ̃→cons and λμcons are in equational correspondence.

Proof

The equational correspondence between λμcons and μμ̃→cons is between the four differ-

ent syntactic categories of the two calculi according to the following translations:

1. λμcons commands correspond to μμ̃→cons commands by c� and c�,

2. λμcons terms correspond to μμ̃→cons terms by v� and v�,
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Call-by-name extensionality and confluence 11

3. λμcons streams correspond to μμ̃→cons co-values by S� and E−, and

4. λμcons contexts correspond to μμ̃→cons co-terms by C� and e�.

To establish the equational correspondence, we must show that all translations

preserve all equalities, and the roundtrip translation of every expression is the same

as the original expression up to the respective equational theory.

To begin the correspondence, we consider that the translations preserve equalities.

Observe that the (−)�, (−)� and (−)− translations, as given in Figure 9, are

compositional. Therefore, it suffices to show that the axioms of λμcons and μμ̃→cons

are preserved by each translation. Besides the fact that substitution commutes

with translation in either direction, the key property needed is that E− is a valid

interpretation of co-values as streams according to �-translation. More specifically,

one can show by induction on E that for all μμ̃→cons co-values E:

λμcons � E� = [E−]�

The case for cdr(E) requires the μ rule and the case for v · E requires the assoc

rule. With this fact, the interderivability of the λμcons and μμ̃→cons axioms follows by

routine calculation.

To finish the correspondence, we consider the roundtrip translations. First, note

that the roundtrip from μμ̃→cons to λμcons and back is a provable equality. In particular,

observe that the following three properties hold by mutual induction on commands,

terms and co-terms:

1. For all μμ̃→cons commands c, μμ̃→cons � (c�)� = c.

2. For all μμ̃→cons terms v, μμ̃→cons � (v�)� = v.

3. For all μμ̃→cons co-terms e and λμcons terms v, μμ̃→cons � (e�[v])� = 〈v�||e〉.

The third property is generalized from the usual form of roundtrip translation,

and additionally expresses the fact that co-terms lost in a context can always be

rediscovered no matter what fills them. From the third property, we get the desired

roundtrip equality of co-terms: 1

for all μμ̃→cons co-terms e, μμ̃→cons � (e�)� = e

This follows from the translation of contexts in the λμcons-calculus into μ̃-abstractions

in the μμ̃→cons-calculus along with the ημ̃ axiom:

μμ̃→cons � (e�)� = μ̃x.(e�[x])� =3 μ̃x.〈x||e〉 =ημ̃ e

We can also derive a tighter roundtrip equality for establishing the correspondence

between co-values and streams:

for all μμ̃→cons co-values E, μμ̃→cons � (E−)� = E

This follows by �-translating the equality λμcons � E�[x] = [E−]x (where x is not

free in E) which can be composed with the instance of co-term roundtrip equality

1 Note that we use the syntax, T � t =r t′ to indicate that T � t = t′ by the rule named r. Similarly,
here we use =3 to indicate that the equality is true for reason of property 3 above.
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for co-values: μμ̃→cons � 〈x||E〉 =3 (E�[x])� = ([E−]x)� � 〈x||(E−)�〉. Thus, by the ημ̃
axiom, we have μμ̃→cons � (E−)� =ημ̃ μ̃x.〈x||(E−)�〉 = μ̃x.〈x||E〉 =ημ̃ E.

Second, we note that the roundtrip from λμcons to μμ̃→cons and back is a provable

equality. In particular, observe that the following three properties hold by mutual

induction on commands, terms and streams:

1. For all λμcons commands c, λμcons � (c�)� = c.

2. For all λμcons terms v, λμcons � (v�)� = v.

3. For all λμcons streams S , λμcons � (S�)− = S .

The third property relies on the auxiliary injection of co-values into streams to

maintain a tighter roundtrip equality which avoids losing the representation of co-

terms into contexts caused by the �-translation. However, as a corollary of the third

property, we also get the fact that � and � are inverses for λμcons streams when they

are considered as contexts, up to equality:

for all λμcons streams S , λμcons � (S�)� = [S]�

which holds by the previously noted fact that λμcons � E� = [E−]�. Additionally, the

first property establishes the fact that μμ̃→cons co-terms are in exact correspondence

to λμcons contexts by their �-translation as μ̃-abstractions. Specifically,

for all λμcons contexts C , λμcons � (C�)� = C

which is provable by the λμcons equational theory of contexts:

λμcons � C�� � (μ̃x.(C[x])�)� � [δ]((λx.μδ.(C[x])�
�

) �) =1 [δ]((λx.μδ.C[x]) �) = C

�

4 Equivalent views of functions: pattern matching and projection

The use of car and cdr in function reduction appear so different from the usual

treatment of functions that it might come as a surprise. The rules are justified by the

previously established call-by-name continuation-passing style transformation using

surjective pairs (Hofmann & Streicher, 2002) as well as a stream model (Nakazawa

& Nagai, 2014). However, they can also be understood as projection operations

defined in terms of pattern matching (Herbelin, 2005; Munch-Maccagnoni, 2013)

according to the macro expansions

car(e) � μα.〈μ[(x · ).〈x||α〉]||e〉 cdr(e) � μ̃x.〈μ[( · α).〈x||α〉]||e〉

similar to the way that the fst and snd projections out of a tuple can be defined

by pattern matching. These definitions give rise to an equational correspondence

between the μμ̃→η calculus and the μμ̃→cons equational theory.

The only major complication in establishing the correspondence is that the two

languages do not quite share the same notion of co-value. In particular, cdr(E) is a

co-value in μμ̃→cons but its definition in μμ̃→η is not a co-value because cdr expands

into a non-trivial μ̃-abstraction. However, even though cdr(E) is not a syntactic

co-value in the μμ̃→η -calculus, it is still a semantic co-value since it behaves like one
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Fig. 10. Translation from μμ̃→cons to μμ̃→η .

in the μμ̃→η equational theory. The only axiom of the μμ̃→η equational theory that

mentions co-values is the μ-axiom, which is derivable for the expansion of cdr(α):

μμ̃→η � 〈μβ.c||cdr(α)〉 = c[cdr(α)/β] (3)

This above equality is the lynchpin that lets us bridge the two different notions of

co-value, and build an equational correspondence between μμ̃→η and μμ̃→cons.

Theorem 2

μμ̃→η and μμ̃→cons are in equational correspondence.

Proof

The translation from μμ̃→η into μμ̃→cons is syntactic inclusion, and the translation from

μμ̃→cons to μμ̃→η is the full macro expansion of car and cdr as given in Figure 10.

The only significant obstacle in showing that macro expansion maps equalities

of μμ̃→cons to equalities of μμ̃→η is that the expansion of a μμ̃→cons co-value, E◦, is not

always a μμ̃→η co-value due to the fact that the expansion of cdr is never a co-value.

Thus, the μ-axiom of μμ̃→cons does not map directly to the μ-axiom of μμ̃→η . However,

it turns out that every μμ̃→cons co-value E still behaves like a co-value in μμ̃→η as

justified by the extended μ-rule:

μμ̃→η � 〈μα.c||E◦〉 = c[E◦/α]

which can be shown by induction on E, using Equation 3 in the cdr case. With

this derived equality, and the fact that the translation is compositional, it is

straightforward to check that the equalities of μμ̃→η and μμ̃→cons are interderivable by

checking each axiom of each equational theory under translation. More specifically,

since many of the axioms are the same, and μμ̃→η is a syntactic subset of μμ̃→cons, it

suffices to show that the β- and η- axioms of μμ̃→η are derivable in μμ̃→cons, and that

the car, cdr, surj, exp and ς-family of axioms from μμ̃→cons are derivable in μμ̃→η by

their macro expansions.

The last part of the equational correspondence is to show that all roundtrip

translations are equalities in their respective theories. For the roundtrip from μμ̃→η
to μμ̃→cons and back, this is trivial since μμ̃→η is included as a syntactic subset of

μμ̃→cons which is unchanged on the translation back to μμ̃→η . For the roundtrip from

μμ̃→cons to μμ̃→η and back, it suffices to observe that the macro expansions of car and

cdr are provable equalities in μμ̃→cons, as all other syntactic constructs roundtrip to

themselves exactly. �
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5 Confluence for extensional call-by-name reduction

Now we return to our original question of confluence as it applies to the μμ̃→cons

reduction theory. The main obstacle we must face is the fact that the surjectivity

rule for call stacks, surj, is not left-linear since it requires two projections out of the

same co-value. This is a problem because we might reduce one of the sub co-values

in a surj-redex, as in

car(E) · cdr(E)
surj
−→ E

↓
car(E ′) · cdr(E)

surj
�

The two copies of E have gotten out of synch, so inner reductions can destroy

surrounding surj redexes. As a consequence, many standard rewriting techniques

for establishing confluence—such as parallel reduction, full development and com-

mutation or reordering of reductions—do not directly apply to the μμ̃→cons calculus.

Instead, we look to simplify the calculus, eliminating any extraneous features and

keeping only the essential kernel that is necessary for performing computation, until

the non-left-linearity of surj is no longer problematic. Then, we hoist confluence

of the kernel into confluence of the full μμ̃→cons-calculus. As it turns out, a minor

restriction of the kernel calculus has appeared before as the stack calculus (Carraro

et al., 2012), which is already known to be confluent. In repeating the proof of

confluence for the extended stack calculus, we take the opportunity to emphasize

what we believe to be the single key idea for confluence of both Λμcons and the

stack calculus (Carraro et al., 2012; Nakazawa & Nagai, 2014). The confluence of

μμ̃→cons via its reduction into the extended stack calculus is new.

In order to relate the original reduction theory of μμ̃→cons with the simpler one

of the stack calculus, we will use the directed analog of equational correspondence

for reductions known as a Galois connection or an adjunction (Sabry & Wadler,

1997). The conditions of a Galois connection are essentially the same as the four

conditions of an equational correspondence, except that we need to be careful about

the direction of arrows. More specifically, given a source calculus S and target T ,

the translations � : S → T and � : T → S form a Galois connection from S to T if

and only if the following four conditions hold:

1. (�) For all terms s1, s2 of S , s1→→S s2 implies s
�
1 →→T s

�
2 .

2. (�) For all terms t1, t2 of T , t1→→T t2 implies t
�
1 →→S t

�
1 .

3. (��) For all terms s of S , s→→S (s�)�.

4. (��) For all terms t of T , (t�)�→→T t.

Additionally, if the fourth condition is strengthened so that any term t of T is

syntactically equal to (t�)�, then � and � form a reflection in S of T . Galois

connections are convenient to work with because they compose: Given Galois

connections from S1 to S2 and from S2 to S3, we have one from S1 to S3. This lets

us break a complex translation down into simpler steps and put them back together

in the end. More crucially, for our purposes, a Galois connection allows us to hoist

confluence of the target reduction theory into the source.
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Fig. 11. μμ̃F
cons: the focalized sub-syntax of μμ̃→cons.

Theorem 3

Given a Galois connection from S to T , S is confluent whenever T is. Furthermore,

given a reflection in S of T , S is confluent if and only if T is.

Proof

Let � : S → T and � : T → S be the translations of the Galois connection.

Supposing that s1←←S s→→S s2, the following diagram commutes by confluence of T :

s

s�

s1 s
�
1 s

�
2 s2

s
��
1 t s

��
2

t�

�

S S

(�) (�)

T T

confl.
�

S
� T

(�)

�T

(�)

�

S

(��)

S
�

S

(��)

Additionally, a reflection gives us the fact that for any term t of T , t ≡ (t�)� (where

≡ is syntactic equality), meaning that t→→T (t�)� by reflexivity. Thus, with a reflection,

we can swap S with T and � with � in the above diagram so that it commutes again

by confluence of S . �

Our proof of confluence for the μμ̃→cons-calculus is broken down into two separate

parts:

1. We establish a reflection in the μμ̃→cons-calculus of an extension of the stack

calculus (called the Σx-calculus in Figure 12). This reflection is formed as a

result of normalization in two steps. First, we show that ς-normalization forms

a reflection in μμ̃→cons of its focalized sub-syntax (called μμ̃Fcons in Figure 11).

Second, we show that μ̃exp-normalization forms a reflection in μμ̃Fcons of Σx.

The full reflection comes out from composition of these two steps.

2. We elaborate the confluence proof of the Σx-calculus. First, we show that the

Σx reduction theory is equivalent to one with a restricted surj surjectivity rule.

The restricted rule only applies to co-values with no other possible reductions,

so it avoids the problem where a surj redex is destroyed by getting out of

sync. Second, we finish the proof by showing that the reduction theory with

this restricted surj rule is confluent, meaning that the original Σx-calculus is

also confluent.
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To conclude, since μμ̃→cons contains a reflection of the confluent Σx-calculus, from the

above theorem, μμ̃→cons must be confluent as well.

5.1 A stack calculus and its reflection

We demonstrate a reflection in μμ̃→cons of Σx by a sequence of normal forms with

respect to two well-behaved subsets of the μμ̃→cons reduction theory. On their own,

these sets of reductions are normalizing and confluent, so their normal forms can

be computed all at once ahead of time to eliminate particular features of the source

μμ̃→cons-calculus. Furthermore, their normal forms are closed under reduction, so that

further reduction does not re-introduce those eliminated features, giving a smaller

target calculus. As such, these reductions can be seen as being “administrative”

in nature, since they simplify some feature down to more primitive components,

resulting in a simpler target calculus.

Reflection by normalization is a rather specific form of a general Galois connec-

tion, so we have some extra knowledge about how the source and target calculi are

related to one another. In particular, we begin with the reduction theory for the

source calculus (S) and divide it into two parts: A set of administrative reductions

done upfront during normalization (A), and the remaining non-administrative

reductions that are carried over into the target (T ). The target calculus then becomes

T -reductions over A-normal forms. So long as the A reduction theory is confluent,

a reflection in S of T via A-normalization just tells us that full A-normalization

commutes across T -reduction. In the following diagrams, a dashed arrow stands for

the existence of such a reduction.

Theorem 4

Let S , T and A be reduction theories such that A is confluent and normalizing and

S is equivalent to the (reflexive, transitive) union of T and A. A-normalization forms

a reflection in S of T if and only if A-normalization commutes across T reduction,

i.e. for all s1→→T s2 and their A-normal forms t1 and t2, respectively:

s1 s2

t1 t2

T

A A

T

Proof

First, we note that every term s of S has a unique A-normal form (there is at least

one because A is normalizing and at most one because A is confluent) which we

denote sA, so our translation functions are A-normalization (s� = sA) and inclusion

of A-normal forms inside the original language S (t� = t). To show the right-to-left

implication, given the above commutation, A-normalization and inclusion form a

reflection in S of T :

1. (�): Suppose that s1→→S s2. Because S reduction is equivalent to the reflexive,

transitive closure over both A and T reductions, we equivalently have that

s1→→A→→T→→A→→T. . .→→A→→T s2
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We can therefore show that sA1 →→T sA2 by induction over the reduction over

n in s1(→→A→→T )ns2. If n = 0, then the result is immediate by reflexivity of T .

Otherwise, if n = 1 + m, we have s1 →→A s′1 →→T s′2(→→A→→T )ms2, and the result

follows from confluence of A, commutation of T over A-normalization, and

the inductive hypothesis:

s1 s′1 s′2 s2

sA1 s′A1 s′A2 sA2

A

A

confl. A

T

comm. A

(→→A→→T )

IH A

T T

2. (�): For all A-normal forms, t1 and t2, t1 →→T t2 implies t1 →→S t2 because T

reduction is included in S .

3. (��): For all s, s→→S s
A because A reduction is included in S .

4. (��): For all A-normal forms t, tA ≡ t.

To show the left-to-right implication, given that A-normalization forms a reflection

in S of T , the commutation of A-normalization across T reduction is a special case

of the first property (�), since T reduction is included in S . Specifically, if s1→→T s2,

then since T is included in S , s1→→S s2 and so by the property �, t1→→T t2 where t1
and t2 are the A-normal forms of s1 and s2, respectively. �

We now build our reflection in μμ̃→cons of Σx by ςμ̃exp-normalization in two steps.

First, we fully normalize commands, terms and co-terms of the μμ̃→cons by the ς-

rules. Second, we normalize ς-normal forms by the μ̃ and exp rules. We separate

these two steps due to the unnecessary complication of performing full ςμ̃exp-

normalization at once: The normal forms are difficult to identify, and even showing

that reduction is normalizing is not obvious. The complication is due to the fact

that ς-reduction creates new μ̃-abstractions, and thus new μ̃-redexes. However, when

taken separately, ς-normalization produces all the necessary extra μ̃-abstractions

first, so that μ̃-normalization can easily eliminate them all afterward. And since

reflections compose, these two steps can be performed in sequence to build an

overall reflection in μμ̃→cons of ςμ̃exp-normal forms.

The ς-normal forms give the focalized sub-syntax of the μμ̃→cons-calculus, called

μμ̃Fcons in Figure 11, where call stacks are built out of co-values, and stack projections

only apply to co-values. In effect, the focalized sub-syntax limits general co-terms,

so that a μ̃-abstraction can only appear at the top of a co-term, and not arbitrarily

nested inside call stacks. Also notice that the sub-syntax of μμ̃Fcons is closed under

reduction: Once we have fully applied all ς-rules, they never come up again during

reduction. Thus, the reduction theory of the μμ̃Fcons-calculus consists of all non-ς

rules. This gives us a reflection in μμ̃→cons of μμ̃Fcons by ς-normalization.

Lemma 1

ς-normalization forms a reflection in μμ̃→cons of μμ̃Fcons.

Proof

First, we note that ς-reduction is confluent (it is an orthogonal combinatory

reduction system; Klop et al., 1993)) and normalizing (each application of ς-
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reduction decreases the number of non-co-values, e, sitting in a call stack, v · e,
or projection, car(e) or cdr(e)). Therefore, by Theorem 4, we only need to show that

all other reductions of μμ̃→cons, namely those of μμ̃Fcons, commute over ς-normalization,

where we denote the ς-normal form of c as cς (similarly vς, eς, and Eς). In order

to establish commutation, we consider commutation of a single μμ̃Fcons step over

ς-normalization:

c1 c2

cς1 cς2

ς

μμ̃Fcons

ς

μμ̃Fcons

from which the full commutation result is obtained by composition over multiple

μμ̃Fcons steps. The single-step commutation can be shown by mutual induction on

commands, terms and co-terms, considering the possible reductions in each case.

Most of these follow directly by the inductive hypothesis, using the additional

facts that co-values are closed under reduction and ς-normalization commutes with

substitution.

The interesting cases are those in which internal reductions are capable of

destroying surrounding redexes. In particular, a surj redex can be ruined by putting

the co-values out of synch due to asymmetric reduction. Fortunately, because we

are forced to fully reduce to the unique ς-normal form, and because co-values are

closed under reduction, surj reduction commutes:

car(E) · cdr(E) E

car(Eς) · cdr(Eς) Eς

ς

surj

ς

surj

The other case in which an internal reduction may destroy an outer redex is in the

case of ς rules themselves. This is because a non-co-value co-term may be converted

into a co-value by an ημ̃-reduction, which prevents the ς-family of rules from applying

and likewise changes the final shape of the ς-normal form. However, substitution by

μ̃ is capable of undoing such an unnecessary ς-reduction, and additional ημ and ημ̃
reductions clean up the leftover μ- and μ̃-abstractions:

v · e v · E

μ̃x.〈μα.〈x||vς · α〉||eς〉 vς · Eς

ημ̃

ς ς

μμ̃Fcons

Similar diagrams hold for the other ς rules for car(e) and cdr(e) when e is a

non-co-value that reduces to a co-value. �
The second step of our reflection is to normalize the focalized μμ̃Fcons sub-syntax

by μ̃exp-reduction. These normal forms are exactly the stack calculus (Carraro

et al., 2012) extended with free variables, Σx, shown in Figure 12. From the typed

perspective, as in Figure 13, has only elimination rules and left introduction rules.

Together with natural deduction (only right rules) and the pure sequent calculus

we started with (only introduction rules on both sides), it thus represents one of
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Fig. 12. Stack calculus with free variables - Σx.

Fig. 13. Simple type assignment for Σx.

a multitude of choices for a logical inference system. But, as Carraro et al., (2012)

noticed, this choice is interesting computationally. In effect, μ̃exp-normalization

eliminates all variable binders within commands, terms and co-values, replacing

them either by substitution or by a projection out of a co-variable. Therefore,

commands, terms and co-values do not contain any variable binders. The one

technical detail is the presence of general co-terms remaining in the syntax. This is

necessary to form a reflection in μμ̃Fcons because of the fact that a given co-term μ̃x.c

will still reduce to another μ̃-abstraction μ̃x.c′. However, the only μ̃-abstraction in

the resulting co-term will be the one at the top; c′ contains no other μ̃-abstractions.

Thus, besides the possibility of one μ̃-abstraction at the very top of a co-term, the

Σx-calculus has no variable binders. And if general co-terms are not of interest, this

detail may be elided. Furthermore, like the focalized μμ̃Fcons sub-syntax, the syntax

of the Σx-calculus is also closed under reduction, so the reduction theory of the

Σx-calculus only consists of the car, cdr, surj, μ, ημ and ημ̃ (at the top of a co-term

only) rules. This gives us a reflection in μμ̃Fcons of Σx by μ̃exp-normalization.

Lemma 2

μ̃exp-normalization forms a reflection in μμ̃Fcons of Σx.
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Proof

First, we note that μ̃exp-reduction is confluent since it is an orthogonal combinatory

reduction system. Additionally, it is normalizing since, even though μ̃ reduction can

duplicate the number of μ̃exp-redexes, no new redexes are created. Therefore, by

Theorem 4, we only need to show that all other reductions of μμ̃Fcons, namely those

of Σx, commute over μ̃exp-normalization. This follows analogously to the proof of

Lemma 1, where again the non-left-linear nature of surj does not interfere with

commutation because we are forced to perform full μ̃exp-normalization. �

Theorem 5

ςμ̃exp-normalization forms a reflection in μμ̃→cons of Σx.

Proof

By composition of the reflections in μμ̃→cons of μμ̃Fcons (Lemma 1) and in μμ̃Fcons of Σx

(Lemma 2). �

5.2 Confluence of a stack calculus

Now we focus on establishing confluence of the Σx-calculus. The Σx-calculus

is simpler than the full μμ̃→cons-calculus, doing away with several constructs and

reductions. However, the Σx reduction theory still has the complication of the surj

rule, whose non-left linearity defeats many approaches of establishing confluence.

Surprisingly, we can completely side-step the non-left-linearity problem of surjec-

tive call stacks by restricting the surj rule. Instead of matching general co-values,

we will only bring together a certain form of stuck co-values consisting of a chain

of cdr projections out of a co-variable (where cdrn(α) means n applications of cdr

to α):

car(cdrn(α)) · cdr(cdrn(α))→surj′ cdr
n(α)

The restricted surj′ rule is clearly a particular instance of the more general surj

rule, and replacing surj with surj′ gives us the simplified Σ′x reduction theory.

However, surj′ identifies an application of surjectivity that cannot get out of synch,

since cdrn(α) is a normal form that cannot reduce further. Therefore, the only

possible reduct of car(cdrn(α)) ·cdr(cdrn(α)) is cdrn(α), and so surj′ redexes cannot

be destroyed by other reductions. This side-steps the problematic aspect of surj that

we began with. Unfortunately, surj′ brings up a different problem: surj′ redexes

are not closed under substitution, so surrounding μ reductions näıvely destroy inner

surj′ reduction. Miraculously though, the other reduction rules pick up the slack

when surj′ fails, and so Σx and Σ′x end up being equivalent reduction theories.

Lemma 3

The Σx and Σ′x reduction theories are equivalent: c→→Σx c′ if and only if c→→Σ′x c
′, and

likewise for (co-)terms. Furthermore, the carcdrsurj and carcdrsurj′ reduction

theories are equivalent.
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Proof

The only difference between the two reduction theories is the rule for surjectivity

of call stacks, surj in Σx versus the restricted surj′ in Σ′x. The surj′ is clearly a

particular family of instances of the surj rule, car(E) · cdr(E)→ E, where E must

have the form cdrn(α). So Σ′x is simulated by Σx step by step.

To go the other way, we only need to show that the unrestricted surj rule is

simulated by carcdrsurj′ reduction. To demonstrate the simulation, we consider

what happens when we substitute an arbitrary co-value E in for the co-variable of

a surj′ redex. In particular, we demonstrate the following reduction holds:

car(cdrn(E)) · cdr(cdrn(E))→→carcdrsurj′ cdr
n(E)

Crucially, this reduction holds because E can only be some form of call stack and

nothing else, so that the general extensionality reduction is simulated by the car

and cdr computational rules for call stacks. This can be seen by induction on n and

considering cases on the possible co-values for E, where we take any cdr projections

at the top of E to be included in the chain of projections mentioned by the rule:

• If E = α, then we can directly apply the surj′ rule:

car(cdrn(α)) · cdr(cdrn(α))→surj′ cdr
n(α)

• If E = v ·E ′ and n = 0, then the simulation follows by car and cdr reductions:

car(cdr0(v · E ′)) · cdr(cdr0(v · E ′))
= car(v · E ′) · cdr(v · E ′)→car v · cdr(v · E ′)→cdr v · E ′ = cdr0(v · E ′)

• If E = v ·E ′ and n = n′+ 1, then the simulation follows by two cdr reductions

and the inductive hypothesis:

car(cdrn+1(v · E ′)) · cdr(cdrn+1(v · E ′))
→cdr→cdr car(cdr

n(E ′)) · cdr(cdrn(E ′))→→IH cdrn(E ′)

• Otherwise, we cannot have E = cdr(E ′), because this cdr surrounding E ′ is

joined with the chain of cdr projections in the rule:

car(cdrn(cdr(E ′))) · cdr(cdrn(cdr(E ′))) = car(cdrn+1(E ′)) · cdr(cdrn+1(E ′))

The surj rule is the instance of the above reduction where n = 0. Thus, carcdrsurj

is simulated by carcdrsurj′, so the two are equivalent. Furthermore, Σx is simulated

by Σ′x, so the two are equivalent reduction theories. �

Now that we have isolated and defeated the non-left-linearity problem of surjective

call stacks within the Σ′x reduction theory, we can show that it is confluent. From

this point, the proof of confluence for the simplified Σ′x theory is entirely routine,

where the only technical detail that needs to be addressed is the fact that reduction

is closed under substitution, which we already saw in Lemma 3 when equating the

Σx and Σ′x reduction theories.

Lemma 4

The Σ′x reduction theory is confluent.
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Proof

We demonstrate confluence by a divide and conquer method, separating the

reductions dealing with call stacks (car, cdr and surj′) from the reductions dealing

with variable binding (μ, ημ and ημ̃). Observe that the carcdrsurj′ reduction theory

is confluent since it is subcommutative.2 Additionally, the μημημ̃ reduction theory is

confluent since it is an orthogonal combinatory reduction system. We also observe

that these two sub theories commute

c1 c′1

c2 c′2

μημημ̃

carcdrsurj′

μημημ̃

carcdrsurj′

and similarly for terms and co-terms, which follows by induction from the simpler

one-step diagram (where →= denotes zero or one steps):

c1 c′1

c2 c′2

μημημ̃

carcdrsurj′

μημημ̃

=
carcdrsurj′

Confluence of the whole Σ′x reduction theory follows from the Hindley–Rosen

lemma.3 The only challenge is to show that the carcdrsurj′ reduction theory is

closed under substitution: that c→→carcdrsurj′ c
′ implies c[E/α]→→carcdrsurj′ c

′[E/α],

and so on. This is not a trivial property because of the restricted form of the

surj′ rule, whose redexes are destroyed by substitution of co-values for their

free co-variable: For example, car(α) · cdr(α) →surj′ α but (car(α) · cdr(α))[x ·
β/α] = car(x · β) · cdr(x · β) �→surj′ . However, the carcdrsurj′ reduction theory is

equivalent to the carcdrsurj reduction theory (Lemma 3) which is closed under

substitution, so carcdrsurj′ is closed under substitution as well. As a result, we

find that carcdrsurj′ and μημημ̃ reductions commute as shown above, and so Σ′x is

confluent. �

Theorem 6

The Σx and μμ̃→cons reduction theories are confluent.

Proof

Because Σ′x is confluent (Lemma 4) and Σ′x and Σx are equivalent reduction

theories (Lemma 3), then Σx is also confluent. Furthermore, because there is a

Galois connection from μμ̃→cons to Σx (Theorem 5) then μμ̃→cons is also confluent

(Theorem 3). �

2 By which we mean that critical pairs come together in zero or one step: Whenever t1 ← t→ t2, there
exists some t′ such that t1 →= t′ ←= t2.

3 If →→A and →→B are two confluent rewriting systems that commute, then →→A∪B is confluent.
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6 Extensionality with other structures and strategies

Extending the treatment of functions discussed here to other structures in program-

ming languages also presents challenges. Consider the negative form of product

(&). Since negative products share the same polarity as functions, they also share

the same construction/deconstruction bias: Co-terms of products are constructed

whereas terms pattern match on their context. This gives us two new co-terms of the

form π1(e) and π2(e), which can be interpreted as building a context that requests

either the first or second component of a product and sends the reply to the context

e. On the other side, we have the term μ[π1(α1).c1|π2(α2).c2] which expresses the

fact that the product is an object waiting for a request. If the first component

is requested, then c1 is executed with α1 bound to the context inside the request

message, as described by the following reduction rule:

〈μ[π1(α1).c1|π2(α2).c2]||π1(e)〉 →β& 〈μα1.c1||e〉

We have a similar rule to handle the case if the second component is requested. The

η rule captures the fact that request-forwarding terms can be simplified:

μ[π1(α1).〈v||π1(α1)〉|π2(α2).〈v||π2(α2)〉]→η& v

Predictably, we see the same conflict between extensionality and control that we

had with functions, as expressed by the critical pair:

v0 = μ[π1(α).〈μβ.c||π1(α)〉
|π2(α).〈μβ.c||π2(α)〉]

μβ.c←η& v0→→μ μ[π1(α).c[π1(α)/β]|π2(α).c[π2(α)/β]]

However, it is far from obvious how to adapt the solution used for functions to work

for products as well. The exp rule converts a function—a value that decomposes

a call stack—into a μ-abstraction. Unfortunately, a product contains two branches

instead of one, and it is not clear how to merge two arbitrary branches into a single

μ-abstraction. We might be inclined to add the following reduction:

μ[π1(α).c[π1(α)/β]|π2(α).c[π2(α)/β]]→ μβ.c

for α not occurring in c. However, this rule is suspicious since the pattern πi(α) can

easily be destroyed. In fact, a similar rule for functions (which corresponds to the

backward ν-rule):

μ[(x · α).c[x · α/β]→ μβ.c

gives rise to a simple counterexample:

v0 = μ[x · α].〈μ[ · ].〈μ[ · ].〈z||δ〉
||x · α〉

||δ〉
μβ.〈μ[ · ].〈μ[ · ].〈z||δ〉

||β〉
||δ〉

← v0→→μ [x · α].〈μ[ · ].〈z||δ〉||δ〉

Adding a positive notion of product, the tensor ⊗, is also problematic. On the

term side, a positive product is constructed by putting together two terms in the
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pair (v, v′) and deconstructed via the co-term μ̃[(x, y).c] which pattern matches on

its input term. The β and η rules are

〈(v, v′)||μ̃[(x, y).c]〉 →β⊗ 〈v||μ̃x.〈v′||μ̃y.c〉〉 μ̃[(x, y).〈(x, y)||E〉]→η⊗ E

(Since μ̃[(x, y).c] is a value in call-by-name, the restriction on the η rule guarantees

that a value is not turned into a non-value, similar to the restriction on η for

call-by-value functions.) Unfortunately, our proof of confluence relies on co-values

always being reducible to simple, normalized structures, containing no reducible

sub-commands. However, decomposition of tuples, μ̃[(x, y).c], is a co-value which

contains arbitrary sub-commands and therefore our proof of confluence does not

apply. We conjecture that confluence is lost because in the surj redex

car(μ̃[(x, y).c]) · cdr(μ̃[(x, y).c])

the two occurrences of command c can get out of synch, destroying the surj redex,

similar to what is happening in Klop’s counterexample of confluence for λ-calculus

extended with surjective pairing (Klop & de Vrijer, 1989).

Since call-by-value is dual to call-by-name, similar problems and solutions arise

in call-by-value calculi along with similar limitations. Consider the tensor product,

which has a stronger η-rule (since any co-term is a co-value in call-by-value):

μ̃[(x, y).〈(x, y)||e〉]→η⊗ e

whereas the β-rule remains the same. As pairs have dual properties to functions,

the dual of the counterexample shown in Equation (2) unsurprisingly arises in

call-by-value:

μ̃z.〈y||β〉 ←η⊗ μ̃[(x, y).〈(x, y)||μ̃z.〈y||β〉〉]→μ̃ μ̃[(x, y).〈y||β〉]

It might help to consider this example in a more natural style from functional

programming, where we have the following β- and η-rules for decomposing pairs4:

case (v1, v2) of (x1, x2)⇒ v →β⊗ let x1 = v1 in let x2 = v2 in v

case v of (x, y)⇒ E[(x, y)]→η⊗ E[v]

In this notation, the above critical pair appears as

let z = v in w ←η⊗ case v of (x, y)⇒ letz = (x, y) in w

→let case v of (x, y)⇒ w

We can adopt the same solution for call-by-value pairs as we did for call-by-name

functions, by converting patterns to projections and adding a surjectivity reduction:

μ̃[(x, y).c]→ μ̃z.c[fst(z)/x, snd(z)/y]

fst(V1, V2)→ V1 snd(V1, V2)→ V2 (fst(V ), snd(V ))→ V

4 Note that the stronger reduction case v of (x, y) ⇒ v′[(x, y)/z] → v′[v/z] is not valid in an untyped
call-by-value calculus including non-termination. For example, case Ω of(x, y) ⇒ λd.(x, y) loops
forever, whereas the reduct λd.Ω does not under call-by-value evaluation. Thus, we restrict the η-rule
for pairs to only apply when the decomposed pair appears in the eye of an evaluation context.
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However, this solution does not scale in similar ways. It is not obvious how to apply

this solution to a disjunctive type. Consider the additive sum type ⊕ which comes

with two new ways of forming terms, ι1(v) and ι2(v), and a pattern matching co-term

μ̃[ι1(x).c1|ι2(y).c2] with the reduction rules

〈ιi(v)||μ̃[ι1(x1).c1 | ι2(x2).c2]〉 →β⊕ ci[v/xi]

μ̃[ι1(x).〈ι1(x)||e〉 | ι2(x).〈ι2(x)||e〉]→η⊕ e

We witness the same counterexample of confluence we had for & in call-by-name.

Second, adding functions (which are a co-data type) to the calculus breaks confluence

of the surjectivity rule for pairs—a previously known and well-studied problem (Klop

& de Vrijer, 1989)—because values can contain arbitrary reducible sub-terms that

can get out of synch:

(fst(λx.v), snd(λx.v))

7 Conclusion

We have seen how the interpretation of functional objects through projections out of

their call stack resolves the problems with confluence in a lazy λ-calculus with both

control and extensionality. Further, we have shown how that interpretation arises

naturally from the standpoint that functions are a co-data type, so the observations

of functions deserve just as much attention as the functions themselves. Indeed, as

our equational correspondence result makes clear, defining functions by projection

adds nothing that wasn’t already there in the theory from the beginning. The only

trick is noticing that λ-abstractions are not the only way to describe functions, and

that η-contraction and -expansion are not the only operational interpretations of

the η-law.

The projection-based interpretation of functions can be traced back to the call-

by-name continuation-passing style transformation of the λ-calculus that validates η

(Hofmann & Streicher, 2002). In continuation-passing style, programs are inverted

so that function types are explained in terms of a different type of surjective

products. Here, we use the sequent calculus as a vehicle for studying the surjective

nature of functions in a more direct style, enabled by the equal consideration

given to both producers and consumers. Indeed, the sequent calculus explanation

of surjective call stacks does not need to introduce other types to explain functions.

As presented here, functions are defined independently in their own right without

referencing products or negation, following an orthogonal approach to studying

logical connectives (Pfenning, 2002). Furthermore, even though λμcons (Nakazawa

& Nagai, 2014) is based on the λ-calculus, its streams are logically interpreted as

left rules that come from sequent calculus instead of natural deduction. Therefore,

we find that in the same way, a symmetric treatment for assuming and concluding

facts is important in logic, a symmetric treatment for producing and consuming

information is important in programming languages as well.

The effectiveness of the projection-based approach for solving the problems with

lazy functions makes it enticing to try to extend it to other systems. However, we see
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that this technique does not extend easily. An interesting question for future work is

to see if there are other computational interpretations of extensional axioms which

can be used to address the challenge of extensional rewriting for other systems,

such as the call-by-value lambda calculus or languages with additional types besides

functions.

Extensional reasoning principles like the η-law are fundamentally important for

equational reasoning about programs. It is a significant loss if we must give up

these principles for reasoning about programs because of the implementation details

of program execution. We hope the present work provides a good framework for

building up more feature-ful systems while ensuring that we are not forced to make

such a harsh tradeoff.
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diriger les reserches, Université Paris 11.
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Appendix A. Correspondence between natural deduction and sequent calculus

Here, we give the details of Theorem 1, proving auxiliary lemmas as needed.

The equational correspondence between λμcons and μμ̃→cons involves the syntactic

category of λμcons contexts (that is, commands with a term-shaped hole), which

means that we need to know when contexts are equated. We say that any two such

contexts are equal if and only if they are equal commands for every possible filling.

More formally, given any two contexts C and C ′, λμcons � C = C ′ if and only if

for all λμcons terms v, λμcons � C[v] = C ′[v]. As a lighter notation for equating two

contexts, we will denote the universally quantified term of the equality by �, which

is just another metavariable for terms when used for this particular purpose, and

write C as shorthand for C[�].

First, we turn to the direct translation for co-values, showing it to be compatible

with the � translation given for general co-terms.

Lemma 5
For all co-values E, λμcons � E� = [E−]�.

Proof
By induction on E.

•

α� � [α]�

� [α−]�
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•

(v · E)� � E�[� v�]

= [E−](� v�) Inductive hypothesis

= [v� :: E−]� assoc

� [(v · E)−]�

•

cdr(E)� = E�[μα.[cdr α]�]

= [E−](μα.[cdr α]�) Inductive hypothesis

= [cdr E−]� μ

� [cdr(E)−]�

�

The next property we show is that the translations are compatible with substitu-

tion.

Lemma 6 (Substitution property for �)

For any command, term or co-term t of λμcons, we have that (t[v/x])� � t�[v�/x]

and (t[S/α])� � t�[S�/α].

Proof

(−)� is compositional and so these follow by induction on t. �

Lemma 7 (Substitution property for �)

For t being any command, term or stack of μμ̃→cons, then

1. (t[v/x])� � t�[v�/x] and

2. λμcons � (t[E/α])� = t�[E−/α].

Proof

The first point follows because � is compositional. The second point follows by

induction on t, with the non-immediate case being the base case of the variable α

where

(α[E/α])� � E�

= [E−]� Lemma 5

� ([α]�)[E−/α]

� α�[E−/α]

�

Lemma 8 (β derivable for λμcons)

The following holds for all terms v1 and v2

λμcons � (λx.v1) v2 = v1[v2/x]
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Proof

By calculation,

(λx.v1) v2 =ημ μα.[α]((λx.v1) v2)

=assoc μα.[v2 :: α](λx.v1)

=exp μα.[v2 :: α](μβ.[cdr β]v1[(car β)/x]

=μ μα.[cdr (v1 :: α)]v1[(car (v2 :: α)/x]

=cdr μα.[α]v1[(car (v2 :: α)/x]

=car μα.[α]v1[v2/x]

=ημ v1[v2/x]

�

Now we can show that the two translations preserve equality.

Lemma 9

If t1 and t2 are both terms, co-terms or commands in μμ̃→cons and μμ̃→cons � t1 = t2,

then λμcons � t
�
1 = t

�
2 .

Proof

The translation is compositional, so we only need to check each axiom of μμ̃→cons.

The ημ-axiom of μμ̃→cons is precisely given by the ημ axiom of λμcons. The remaining

axioms each involve some computation.

• μ:

〈μα.c||E〉� � E�[μα.c�]

= [E−]μα.c� Lemma 5

=μ c�[E−/α]

= c[E/α]� Lemma 7

• μ̃:

〈v||μ̃x.c〉� � [δ]((λx.μδ.c�)v�)

= [δ]μδ.c�[v�/x] Lemma 8

=μ c�[v�/x]

= c[v/x]� Lemma 7

• ημ̃ :

(μ̃x.〈x||e〉)� � [δ]((λx.μδ.e�[x]) �)

= [δ](μδ.e�[�]) Lemma 8

=μ e�[�]

https://doi.org/10.1017/S095679681700003X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681700003X


30 P. Johnson-Freyd et al.

• surj :

(car(E) · cdr(E))� = [(car(E) · cdr(E))−]� Lemma 5

� [car E− :: cdr E−]�

=η::
[E−]�

= E� Lemma 5

• car :

(car(v · E))� � μα.(v · E)�[μβ.[α]car β]

= μα.[v� :: E−]μβ.[α]car β Lemma 5

=μ μα.[α]car (v� :: E−)

=ημ car (v� :: E−)

=car v
�

• cdr :

(cdr(v · E))� = [cdr(v · E)]−� Lemma 5

� [cdr (v� :: E−)]�

=cdr [E−]�

= E� Lemma 5

• exp :

(μ[(x · α).c])� � λx.μα.c�

=exp μβ.[cdr β]μα.c�[(car β)/x]

=μ μβ.c�[(car β)/x, (cdr β)/α]

� μβ.c�[(car(β))�/x, (cdr(β))−/α]

= μβ.(c[car(β)/x, cdr(β)/α])� Lemma 7

� (μβ.c[car(β)/x, cdr(β)/α])�

• ς·

(v · e)� � e�[� v�]

=ημ e
�[μα.[α](� v�)]

=μ [δ]μδ.e�[μα.[α](� v�)]

= [δ]((λx.μδ.e�[μα.[α](x v�)])�) Lemma 8

� (μ̃x.〈μα.〈x||v · α〉||e〉)�

• ςcdr

cdr(e)� � e�[(μβ.[cdr β]�)]

=ημ e
�[μα.[α](μβ.[cdr β]�)]

=μ [δ](μδ.e�[μα.[α](μβ.[cdr β]�)])

= [δ]((λx.μδ.e�[μα.[α](μβ.[cdr β]x)])�) Lemma 8

� (μ̃x.〈μα.〈x||cdr(α)〉||e〉)�
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• ςcar

car(e)� � μα.e�[μβ.[α]car β]

=μ μα.e�[μβ.[β](μδ.[α]car δ)]

=μ μα.e�[μβ.[α]μγ.[β](μδ.[γ]car δ)]

� (μα.〈μβ.〈car(β)||α〉||e〉)�

�

Lemma 10

If μμ̃→cons � E1 = E2, then λμcons � E−1 = E−2 .

Proof

We first show the general property that for any streams S, S ′ and (possibly empty)

sequence of terms v1, v2, . . . , vn−1, vn, we have

(λμcons � [S](x v1 v2 . . . vn−1 vn) = [S ′]x)

⇒ (λμcons � (vn :: vn−1 :: . . . :: v2 :: v1 :: S) = S ′).

This follows by induction on the length of the derivation of [S](xv1v2 . . . vn−1vn) =

[S ′]x. Specifically, the only axioms which can equate a command to

[S](xv1v2 . . . vn−1vn) would be

• an equality internal to S or one of the vi which carries over to vn :: vn−1 :: . . . ::

v2 :: v1 :: S or

• the assoc axiom (in either direction)

[v :: S](x v1 v2 . . . vn−1 vn) = [S](x v1 v2 . . . vn−1 vn v)

which directly corresponds to the inductive hypothesis.

Now, Suppose μμ̃→cons � E1 = E2, by Lemma 9, we know that λμcons � E
�
1 = E

�
2 . By

Lemma 5, we further know that λμcons � E
�
1 = [E−1 ]� and that λμcons � E

�
2 = [E−2 ]�.

Thus, λμcons � [E−1 ]� = [E−2 ]� and so for any term v, λμcons � [E−1 ]v = [E−2 ]v.

Specifically, λμcons � [E−1 ]x = [E−2 ]x which by the general property above means

that λμcons � E−1 = E−2 . �

Lemma 11

If t1 and t2 are terms, streams or commands in λμcons and λμcons � t1 = t2, then

μμ̃→cons � t
�
1 = t

�
2 .

Proof

The translation is compositional so we only need to check each axiom of λμcons. The

μ-axiom of λμcons translates to the μ-axiom of μμ̃→cons after Lemma 6. The βT and

assoc axioms each also correspond to single uses of the μ-axiom of μμ̃→cons. The car,

cdr and ημ of λμcons correspond exactly to the axioms of the same names in μμ̃→cons

and the η:: axiom is implemented by surj. That leaves two axioms which require

some computation:
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• exp:

(λx.v)� � μ[(x · β).〈v�||β〉]
=exp μα.〈v�[car(α)/x||cdr(α)〉
� μα.〈v�[(car α)�/x||cdr(α)〉
= μα.〈v[(car α)/x]�||cdr(α)〉 Lemma 6

� (μα.[cdr α]v[(car α)/x])�

• η′::

([cdr S](v (car S)))� � 〈μα.〈v�||car(S�) · α〉||cdrS�〉
=μ 〈v�||car(S�) · cdr(S�)〉
=surj 〈v�||S�〉
� ([S]v)�

�

The axioms of μμ̃→cons were selected based on the needs of a reduction theory:

We wanted to avoid spurious loops. However, it is useful to establish some general

equations of μμ̃→cons.

Lemma 12

The three lifting rules of μμ̃→cons can be generalized as equations to apply to all

co-terms and not just co-values.

1. μμ̃→cons � car(e) = μα.〈μβ.〈car(β)||α〉||e〉,
2. μμ̃→cons � cdr(e) = μ̃x.〈μα.〈x||cdr(α)〉||e〉 and

3. μμ̃→cons � v · e = μ̃x.〈μα.〈x||v · α〉||e〉

Proof

In each case, either e is a co-value or it is not. If it is not a co-value then this is just

the ς rule. If it is then the property follows from the μ, μ̃, ημ̃ and ημ rules. �

Finally, we give the two main lemmas demonstrating that translation functions

compose to form an equivalence.

Lemma 13

1. For all μμ̃→cons commands c, μμ̃→cons � (c�)� = c.

2. For all μμ̃→cons terms v, μμ̃→cons � (v�)� = v.

3. For all μμ̃→cons co-terms e and λμcons terms v, μμ̃→cons � (e�[v])� = 〈v�||e〉.

Proof

By mutual induction.

•

((〈v||e〉)�)� � (e�[v�])�

= 〈(v�)�||e〉 Induction hypothesis

= 〈v||e〉 Induction hypothesis
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•

((x)�)� � x�

� x

•

((μα.c)�)� � (μα.(c�))�

� μα.((c�)�)

= μα.c Induction hypothesis

•

((μ[(x · α).c])�)� � (λx.μα.c�)�

� μ[(x · β).〈μα.(c�)�||β〉]
= μ[(x · β).〈μα.c||β〉] Induction hypothesis

=μ μ[(x · α).c]

•

((car(e))�)� � (μα.e�[μβ.[α]car β])�

� μα.(e�[μβ.[α]car β])�

= μα.〈(μβ.[α]car β])�||e〉 Induction hypothesis

� μα.〈μβ.〈car(β)||α〉||e〉
= car(e) Lemma 12.1

•

((v′ · e)�[v])� � (e�[� (v′)�])[v]�

� e�[v (v′)�]�

= 〈(v (v′)�)�||e〉 Induction hypothesis

� 〈μα.〈v�||(v′)� · α〉||e〉
= 〈μα.〈v�||v′ · α〉||e〉 Induction hypothesis

=μ̃ 〈v�||μ̃x.〈μα.〈x||v′ · α〉||e〉〉
= 〈v�||v′ · e〉 Lemma 12.3

•

((α)�[v])� � ([α]v)�

= 〈v�||α〉 Induction hypothesis

https://doi.org/10.1017/S095679681700003X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681700003X


34 P. Johnson-Freyd et al.

•

((cdr(e))�[v])� � (e�[μα.[cdr α]�])[v]�

� (e�[μα.[cdr α]v])�

= 〈μα.〈v�||cdr(α)〉||e〉 Induction hypothesis

=μ̃ 〈v�||μ̃x.〈μα.〈x||cdr(α)〉||e〉〉
= 〈v�||cdr(e)〉 Lemma 12.2

•

((μ̃x.c)�[v])� � ([γ]((λx.μγ.c�) v))�

� 〈μβ.〈μ[(x · α).〈μγ.(c�)�)||α〉]||v� · β〉||γ〉
= 〈μβ.〈μ[(x · α).〈μγ.c)||α〉]||v� · β〉||γ〉 Induction hypothesis

=μ 〈μ[(x · α).〈μγ.c||α〉]||v� · γ〉
=μ 〈μγ.c[v�/x]||γ〉 Lemma 8

=μ c[v�/x]

=μ̃ 〈v�||μ̃x.c〉

�

Lemma 14

1. For all λμcons commands c, λμcons � (c�)� = c.

2. For all λμcons terms v, λμcons � (v�)� = v.

3. For all λμcons streams S , λμcons � (S�)− = S .

Proof

By mutual induction,

•

(x�)� � x�

� x

•

((λx.v)�)� � (μ[(x · α).〈v�||α〉)�

� λx.μα.[α](v�)�

= λx.μα.[α]v Inductive hypothesis

=ημ λx.v
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•

((v1 v2)
�)� � (μα.〈v�1 ||v

�
2 · α〉)�

� μα.(v�2 · α)
�[(v�1 )

�]

= μα.(v�2 · α)�[v1] Inductive hypothesis

= μα.[(v�2 )
� :: α]v1 Lemma 5

= μα.[v2 · α]v1 Inductive hypothesis

=assoc μα.[α](v1 v2)

=ημ v1 v2

•

((μα.c)�)� � (μα.c�)�

� μα.(c�)�

= μα.c Inductive hypothesis

•

((car S)�)� � car(S�)�

� μα.(S�)�[μβ.[α]car β]

= μα.[(S�)−]μβ.[α]car β Lemma 5

= μα.[S]μβ.[α]car β Inductive hypothesis

=μ μα.[α]car S

=ημ car S

•

(([S]v)�)� � (〈v�||S�〉)�

� (S�)�[(v�)�]

= [(S�)−](v�)� Lemma 5

= [S]v Inductive hypothesis

•

((α)�)− � α−

� α

•

((v :: S)�)− � (v� · S�)−

� (v�)� :: (S�)−

= v :: S Inductive hypothesis
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•

((cdr S)�)− � cdr(S�)−

� cdr (S�)−

= cdr S Inductive hypothesis

�

Appendix B. Equational correspondence between μμ̃→η and μμ̃→cons

We now give details of the proof of the equational correspondence between μμ̃→η
and μμ̃→cons. We first prove some useful properties about the translations.

The following fact about the macro definitions of cdr and car is useful and is a

consequence of simple substitutions:

Fact 7

• μμ̃→η � cdr(v · E) = E and

• μμ̃→η � car(v · E) = v.

Proof

By calculation,

•

cdr(v · E) � μ̃x.〈μ[( · α).〈x||α〉]||v · E〉
= μ̃x.〈v||μ̃ .〈μα.〈x||α〉||E〉〉 β

= 〈μα.〈x||α〉||E〉 μ̃

= μ̃x.〈x||E〉 μ

= E ημ̃

•

car(v · E) � μα.〈μ[(x · ).〈x||α〉]||v·〉
= μα.〈v||μ̃x.〈E||μ .〈x||α〉〉〉 β

= μα.〈E||μ .〈v||α〉〉 μ̃

= μα.〈v||α〉 μ

= v ημ

�

We can now show the main lemma: cdr(E) is a semantic co-value in μμ̃→η .

Lemma 15

For all μμ̃→η co-values E, μμ̃→η � 〈μβ.c||cdr(E)〉 = c[cdr(E)/β]
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Proof

It is enough to show that μμ̃→η � 〈μβ.c||cdr(α)〉 = c[cdr(α)/β] since then

μμ̃→η �〈μβ.c||cdr(E)〉=μ〈μα.〈μβ.c||cdr(α)〉||E〉=〈μα.c[cdr(α)/β]||E〉=μ c[cdr(E)/β]

〈μβ.c||cdr(α)〉 = 〈μβ.c||μ̃z.〈μ[(x · γ).〈z||γ〉]||α〉〉
= 〈μ[(x · γ).〈μβ.c||γ〉]||α〉 μ̃

= 〈μ[(x · γ).c[γ/β]||α〉 μ

= 〈μ[(x · γ).c[cdr(x · γ)/β]||α〉 Fact 7

= 〈μ[(x · γ).〈με.c[cdr(ε)/β]||x · γ〉||α〉 μ

= 〈με.[cdr(ε)/β]||α〉 η

= c[cdr(α)/β] μ

�
Lemma 16 (Co-values remain substitutable)

For any co-value E of μμ̃→cons, we have μμ̃→η � 〈μβ.c||E◦〉 = c[E◦/β].

Proof

By induction on E. The case of α is trivial; that leaves

•

〈μβ.c||(v · E)◦〉 � 〈μβ.c||v◦ · E◦〉
= 〈μα.〈μβ.c||v◦ · α〉||E◦〉 Inductive hypothesis

= 〈μα.c[(v◦ · α)/β||E◦〉 μ

= c[(v◦ · E◦)/β] Inductive hypothesis

•

〈μβ.c||cdr(E)◦〉 � 〈μβ.c||cdr(E◦)〉
= 〈μα.〈μβ.c||cdr(α)〉||E◦〉 Inductive hypothesis

= 〈μα.c[cdr(α)/β]||E◦〉 Lemma 15

= c[cdr(E◦)/β] Inductive hypothesis

�
We now turn to the main result, fleshing out the proof sketched of Theorem 2

that μμ̃→η and μμ̃→cons are in equational correspondence.

Proof

1. If μμ̃→η � t = t′, then μμ̃→cons � t = t′, where t and t′ range over commands,

terms and contexts. We only need to check the η- and β-axioms since all other

μμ̃→η axioms are μμ̃→cons axioms. For η, we have

μ[(x · α).〈v||x · α〉] =exp μβ.〈v||car(β) · cdr(β)〉
=surj μβ.〈v||β〉
=ημ v
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The derivability of β follows from the exp rule together with projection

operations, the underlying substitution calculus and the derivability of the

unrestricted version of the lifting rules.

〈μ[(x · α).c]||v · e〉 = 〈μβ.c[car(β)/x, cdr(β)/α]||v · e〉 exp

= 〈μβ.c[car(β)/x, cdr(β)/α]||μ̃y.〈μγ.〈y||v · γ〉||e〉〉 ς·

= 〈μγ.〈μβ.c[car(β)/x, cdr(β)/α]||v · γ〉||e〉 μ̃

= 〈μγ.c[car(v · γ)/x, cdr(v · γ)/α]||e〉 μ

= 〈μγ.c[v/x, γ/α]||e〉 car/cdr

= 〈μα.c[v/x]||e〉 α

= 〈v||μ̃x.〈μα.c||e〉〉 μ̃

2. If μμ̃→cons � t = t′, then μμ̃→η � t◦ = (t′)◦. This follows by checking the axioms.

The ημ- and ημ̃-axioms come directly from the equivalent axioms of μμ̃→η . The

μ̃-axiom works using the μ̃-axiom of μμ̃→η and the compositionality of the ◦

translation that gives c◦[v◦/x] � c[v/x]◦. The μ-axiom works since by Lemma

16 〈μα.c◦||E◦〉 = c◦[E◦/α] and because the translation is compositional that

further equals c[E/α]◦.

• μμ̃→η � (car(E) · cdr(E))◦ = E◦

(car(E) · cdr(E))◦

� car(E◦) · cdr(E◦)
= μ̃f.〈f||car(E◦) · cdr(E◦)〉 ημ̃

= μ̃f.〈μα.〈f||car(α) · cdr(α)〉||E◦〉 Lemma 16

= μ̃f.〈μ[(x · β).〈μα.〈f||car(α) · cdr(α)〉||x · β〉]||E◦〉 η

= μ̃f.〈μ[(x · β).〈f||car(x · β) · cdr(x · β)〉]||E◦〉 μ

= μ̃f.〈μ[(x · β).〈f||x · cdr(x · β)〉]||E◦〉 Fact 7

= μ̃f.〈μ[(x · β).〈f||x · β〉]||E◦〉 Fact 7

= μ̃f.〈f||E◦〉 η

= E◦ ημ̃

• μμ̃→η � (μ[(x · α).c])◦ = (μβ.c[car(β)/x, cdr(β)/α])◦

μ[(x · α).c]◦ � μ[(x · α).c◦]
= μβ.〈μ[(x · α).c◦]||β〉 ημ

= μβ.〈μ[(x · α).c◦]||car(β) · cdr(β)〉 surj Shown above

= μβ.〈car(β)||μ̃x.〈μα.c◦||cdr(β)〉〉 β

= μβ.〈μα.c◦[car(β)/x]||cdr(β)〉 μ̃

= μβ.c[car(β)/x, cdr(β)/α] Lemma 15

� (μβ.c[car(β)/x, cdr(β)/α])◦
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• μμ̃→η � car(v · E)◦ = v◦

car(v · E)◦ � μα.〈μ[(x · ).〈x||α〉]||v◦ · E◦〉
= μα.〈v◦||μ̃x.〈E◦||μ .〈x||α〉〉〉 β

= μα.〈E◦||μ .〈v◦||α〉〉 μ̃

= μα.〈v◦||α〉 Lemma 16

= v◦ ημ

• μμ̃→η � cdr(v · E)◦ = E◦

cdr(v · E)◦ � μ̃x.〈μ[( · α).〈x||α〉]||v◦ · E◦〉
= μ̃x.〈v◦||μ̃ .〈μα.〈x||α〉||E◦〉〉 β

= 〈μα.〈x||α〉||E◦〉 μ̃

= μ̃x.〈x||E◦〉 Lemma 16

= E◦ ημ̃

• μμ̃→η � car(e)◦ = (μα.〈μβ.〈car(β)||α〉||e〉)◦

car(e) � μα.〈μ[(x · ).〈x||α〉]||e◦〉
= μα.〈μβ.〈μ[(x · ).〈x||α〉]||β〉||e◦〉 ημ

= μα.〈μβ.〈μγ.〈μ[(x · ).〈x||γ〉]||β〉||α〉||e◦〉 μ

� (μα.〈μβ.〈car(β)||α〉||e〉)◦

• μμ̃→η � (cdr(e))◦ = (μ̃x.〈μα.〈x||cdr(α)〉||e〉)◦

(cdr(e))◦ � μ̃x.〈μ[( · β).〈x||β〉]||e◦〉
= μ̃x.〈μα.〈μ[( · β).〈x||β〉]||α〉||e◦〉 ημ

= μ̃x.〈μα.〈x||μ̃y.〈μ[( · β).〈y||β〉]||α〉〉||e◦〉 μ̃

� (μ̃x.〈μα.〈x||cdr(α)〉||e〉)◦

• μμ̃→η � (v · e)◦ = (μ̃x.〈μα.〈x||v · α〉||e〉)◦

(v · e)◦ � v◦ · e◦

= μ̃x.〈x||v◦ · e◦〉 ημ̃

= μ̃x.〈μ[(y · α).〈x||y · α〉||v◦ · e◦〉 η

= μ̃x.〈v◦||μ̃y.〈μα.〈x||y · α〉||e◦〉〉 β

= μ̃x.〈μα.〈x||v◦ · α〉||e◦〉 μ̃

= (μ̃x.〈μα.〈x||v · α〉||e〉)◦

3. If t is in μμ̃→η , then t◦ � t. That is, the ◦ translation is the identity on

everything except car(e) and cdr(e) as constants which do not appear in the

μμ̃→η sub-syntax.
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4. If t is in μμ̃→cons, then μμ̃→cons � t◦ = t. By induction on t. The only non-trivial

cases to handle are car(e) and cdr(e). If e is a co-value, we have

car(E)◦ � μα.〈μ[(x · ).〈x||α〉]||E◦〉
= μα.〈μ[(x · ).〈x||α〉]||E〉 Inductive hypothesis

= μα.〈μβ.〈car(β)||α〉||E〉 exp

= μα.〈car(E)||α〉 μ

= car(E) ημ

cdr(E)◦ � μ̃x.〈μ[( · α).〈x||α〉]||E◦〉
= μ̃x.〈μ[( · α).〈x||α〉]||E〉 Inductive hypothesis

= μ̃x.〈μβ.〈x||cdr(β)〉||E〉 exp

= μ̃x.〈x||cdr(E)〉 μ

= cdr(E) ημ̃

In the case where e is not a co-value:

car(e)◦ � μα.〈μ[(x · ).〈x||α〉]||e◦〉
= μα.〈μ[(x · ).〈x||α〉]||e〉 Inductive hypothesis

= μα.〈μβ.〈car(β)||α〉||e〉 exp

= car(e) ςcar

cdr(e)◦ � μ̃x.〈μ[( · α).〈x||α〉]||e◦〉
= μ̃x.〈μ[( · α).〈x||α〉]||e〉 Inductive hypothesis

= μ̃x.〈μβ.〈x||cdr(β)〉||e〉 exp

= cdr(e) ςcdr

�

Appendix C. A stack calculus and its reflection

In this section, we further explicate the details of the reflection of the stack calculus

in μμ̃→cons, showing first the details of the reflection of the focalized syntax in the

full system, and then the reflection of the stack calculus into the smaller focalized

intermediate language.

Each reflection arises from normalization with respect to a subset of the rules. As

such, in this appendix, we present evaluation functions for computing ς and μ̃exp-

normal forms. Such evaluation functions greatly simplify the proofs of commutation

between normalization and the rest of the reduction theory.

Lemma 17 (Closure of μμ̃Fcons)

1. Closure under substitution: If t, v, E are in the focalized sub-syntax, then

t[v/x, E/α] is in the same syntactic category as t in μμ̃Fcons.

2. Closure under reduction: If t is in the focalized sub-syntax and t→ t′ according

to the rules of μμ̃→cons, then t′ is in the focalized sub-syntax (and in the same

syntactic category as t).
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Fig. C1. The (−)ς : μμ̃→cons → μμ̃F
cons translation for computing focalized programs.

Proof

The first point follows by induction on t. For the second point, we proceed by

cases. The μ, μ̃ and exp rules hold by the closure under substitution. The η, car

and cdr rules are all immediate. Finally, the various ς-rules are simply syntactically

prohibited as there left-hand sides are not focalized because of the requirement that

the lifted e is not a co-value. �

The procedure to compute a terms ς-normal form is given in Figure C1.

Lemma 18

(−)ς computes the unique ς-normal form of any command, term or co-term in

μμ̃→cons.

Proof

Observe that Eς is always a co-value. Therefore, by cases, we know that tς is in

μμ̃Fcons and that it is a ς-normal form.

By induction, we see that t→→ς t
ς. xς and ας work in zero steps, (μα.c)ς, μ[(x · α).c]ς,

(μ̃x.c)ς, car(E)ς, cdr(E)ς, (v · E)ς and 〈v||e〉ς work by the inductive hypothesis, the

remaining cases of car(e)ς, cdr(e)ς, (v · e)ς each correspond to a single application

of a ς rule followed by additional ς reductions given by the inductive hypothesis.

Since ς is a (linear) term rewriting system without any critical pairs, it is confluent

and so must have unique normal forms. Thus, tς is the unique ς-normal form

of t. �

Lemma 19

For any t, v, E, x and α, tς[vς/x] � (t[v/x])ς and tς[Eς/α] � (t[E/α])ς.

Proof

Induction on t. The only trick is that substitution will never change what is a

co-value. �

https://doi.org/10.1017/S095679681700003X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681700003X


42 P. Johnson-Freyd et al.

Lemma 20

ς-normalization commutes across the non-ς reductions of μμ̃→cons.

Proof
By Lemma 18, it is enough to show that if t→→ t′, then tς→→ (t′)ς. By inducting over

the reduction t→→ t′, it is sufficient to show that t → t′ implies tς→→ (t′)ς. Examining

the cases, the main issue comes when we have an internal reduction into a (co-)term

subject to lifting as reduction might turn a non-co-value co-term into a co-value

and thus change the translation. The main idea then is to prove the special case that

if e→ E, then eς→→Eς. This follows by induction on the derivation of the reduction

e→ E, with only a small number of cases to consider:

• If μ̃x.〈x||E〉 → E

(μ̃x.〈x||E〉)ς � μ̃x.〈x||Eς〉
→ Eς ημ̃

• If v · e→ v · E

(v · e)ς � μ̃x.〈μα.〈x||vς · α〉||eς〉
→→ μ̃x.〈μα.〈x||vς · α〉||Eς〉 Inductive hypothesis

→ μ̃x.〈x||vς · Eς〉 μ

→ vς · Eς ημ̃

� (v · E)ς

• If cdr(e)→ cdr(E)

cdr(e)ς � μ̃x.〈μα.〈x||cdr(α)〉||eς〉
→→ μ̃x.〈μα.〈x||cdr(α)〉||Eς〉 Inductive hypothesis

→ μ̃x.〈x||cdr(Eς)〉 μ

→ cdr(Eς) ημ̃

� cdr(E)ς

• If car(e)→ car(E)

car(e)ς � μα.〈μβ.〈car(β)||α〉||eς〉
→→ μα.〈μβ.〈car(β)||α〉||Eς〉 Inductive hypothesis

→ μα.〈car(Eς)||α〉 μ

→ car(Eς) ημ

� car(E)ς

Otherwise, the translation is completely compositional and so the cases are direct:

• If 〈μα.c||E〉 →μ c[E/α], we have

〈μα.c||E〉ς � 〈μα.cς||Eς〉
→μ cς[Eς/α]

=α c[E/α]
ς Lemma 19.
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Fig. C2. Translation from μμ̃F
cons to Σx.

• If 〈v||μ̃x.c〉 →μ̃ c[v/x], we have

〈v||μ̃x.c〉ς � 〈vς||μ̃x.cς〉
→μ cς[vς/x]

=α c[v/x]ς Lemma 19.

• If μα.〈v||α〉 →ημ v, we have (μα.〈v||α〉)ς � μα.〈vς||α〉 →ημ v
ς.

• If μ̃x.〈x||e〉 →ημ̃ e, we have (μ̃x.〈x||e〉)ς � μ̃x.〈x||eς〉 →ημ̃ e
ς.

• If μ[(x · α).c]→exp μβ.c[car(β)/x, cdr(β)/α], we have

μ[(x · α).c]ς � μ[(x · α).cς]
→exp μβ.cς[car(β)/x, cdr(β)/α]

� μβ.c[car(β)/x, cdr(β)/α]ς Lemma 19.

• If car(v · E)→car v, we have car(vς · Eς)→car v
ς.

• If cdr(v · E)→cdr E, we have cdr(vς · Eς)→cdr E
ς.

• In the case of car(E) · cdr(E)→surj E, we have (car(E) · cdr(E))ς � car(Eς) ·
cdr(Eς)→surj E

ς, since Eς is still a co-value.

�

Lemma 1 follows as the composition of Lemma 20 and Theorem 4.

The function (−)μ̃ translates commands and terms in the focalized sub-syntax

(μμ̃Fcons, Figure 11) into Σx and is given in Figure C2.

Lemma 21 (Closure of Σx)

1. Closure under substitution: If t, v, E are in Σx, then t[v/x, E/α] is in the same

syntactic category as t in Σx.

2. Closure under reduction: If t is in Σx and t → t′ according to the rules of

μμ̃→cons, then t′ is in Σx (in the same syntactic category as t).

Proof

The first point follows by induction on t. The second point by cases. �

Lemma 22

For every t, v, E in the focalized sub-syntax, t[v/x, E/α]μ̃ � tμ̃[vμ̃/x, Eμ̃/α].
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Proof

By induction on t. �

Lemma 23

−μ̃ computes unique normal forms of μμ̃Fcons with respect to the μ̃- and exp-rules.

Proof

For every t in μμ̃Fcons, t→→ tμ̃. This holds by induction on t. In each case, we need

only to perform at most one μ̃- or exp-reduction and then utilize the inductive

hypothesis. tμ̃ does not contains any μ̃- or exp-redexes and is thus a normal form.

μ̃exp-reduction is confluent because it lacks critical pairs. �

Intermezzo 8

Note that the above Lemma implies that μ̃exp-reduction is normalizing as the (−)μ̃

function computes a normal form with respect to it. However, it is interesting to think

about why μ̃-reduction is normalizing (the exp-rule is clearly strongly normalizing

on its own as the number of μ[(x · α).c] forms is strictly decreasing). The basic

idea for how we could go about showing μ̃-normalization is that μ̃-reduction never

introduces any new redexes. In particular, if v is μ̃-normal, then c[v/x] has one fewer

μ̃-redex then 〈v||μ̃x.c〉. Thus, there is clearly a reduction order which is normalizing.

Further, strong normalization could be additionally shown by interpreting each

(co-)term or command as a polynomial with positive integer coefficients.

�〈v||E〉� = �v� + �E�

�〈v||μ̃x.c〉� = 1 + �v� + �c�[�v�/x]

�x� = x

�α� = 0

�v · E� = �v� + �E�

�cdr(E)� = �E�

�car(E)� = �E�

�μα.c� = �c�

�μ[(x · α).c]� = �c�[0/x]

�μ̃x.c� = �c�[0/x]

Then, the general property we would show is that �t[v/x]� = �t�[�v�/x], and then

given any assignment φ of free variables in the polynomial to integers if t →μ̃ t′,

then �t�(φ) > �t′�(φ) and so μ̃ is strongly normalizing.

That μ̃ and μ are each strongly normalizing on their own is an interesting property

of the two-sided sequent calculus, however, as we have given a translation function

we do not actually need it here.

Lemma 24

μ̃exp-normalization commutes across μμ̃Fcons.
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Proof

Equivalently, t → t′ by a rule other than ημ̃ implies tμ̃ →→ (t′)μ̃. We can prove this

by induction on the reduction t → t′. Reductions not at the top of t are nearly all

automatic since −μ̃ is compositional except for the cases of 〈v||μx.c〉 and μ[(x · α).c]
which are handled by Lemma 22. That leaves only the cases where the reduction

happens at the top of t:

• In the case of 〈μα.c||E〉 →μ c[E/α], we have 〈μα.c||E〉μ̃ � 〈μα.cμ̃||Eμ̃〉→ cμ̃[Eμ̃/α]

and by Lemma 22 cμ̃[Eμ̃/α] =α c[E/α]
μ̃.

• In the case of 〈v||μ̃x.c〉 →μ̃ c[v/x], we have 〈v||μ̃x.c〉μ̃ � cμ̃[vμ̃/x] which by

Lemma 22 is c[v/x]μ̃.

• In the case of μα.〈v||α〉 →ημ v, we have (μα.〈v||α〉)μ̃ � μα.〈vμ̃||α〉 →ημ v
μ̃.

• In the case of 〈v||μ̃x.〈x||μ̃y.c〉〉 →ημ̃ 〈v||μ̃y.c〉, we have 〈v||μ̃x.〈x||μ̃y.c〉〉μ̃ � cμ̃[v/y]

and 〈v||μ̃y.c〉μ̃ � cμ̃[v/y].

• In the case of μ[(x · α).c]→exp μβ.c[car(β)/x, cdr(β)/α], we have μ[(x · α).c]μ̃ �
μβ.cμ̃[car(β)/x, cdr(β)/α] which is (μβ.c[car(β)/x, cdr(β)/α])μ̃ by Lemma 22.

• In the case of car(v · E)→car v, we have car(v · E)μ̃ � car(vμ̃ · Eμ̃)→car v
μ̃.

• In the case of cdr(v · E)→cdr E, we have cdr(v · E)μ̃ � cdr(vμ̃ · Eμ̃)→cdr E
μ̃.

• In the case of car(E) · cdr(E)→surj E, we have (car(E) · cdr(E))μ̃ � car(Eμ̃) ·
cdr(Eμ̃)→surj E

μ̃.

�
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