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Abstract

The complexity of a branched cover of a Riemann surface M to the Riemann sphere S 2 is defined as
its degree times the hyperbolic area of the complement of its branching set in S 2. The complexity of
M is defined as the infimum of the complexities of all branched covers of M to S 2. We prove that
if M is a connected, closed, orientable Riemann surface of genus g ≥ 1, then its complexity equals
2π(mmin + 2g − 2), where mmin is the minimum total length of a branch datum realisable by a branched
cover p : M→ S 2.
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1. Introduction

In this paper we study the simplest way in which a given Riemann surface can cover
the Riemann sphere. The cover is allowed to have branching points and the simplicity
of the branched cover is defined in terms of a complexity function.

Consider a branched cover of a Riemann surface M to the Riemann sphere S 2. Let
B ⊂ S 2 be the branching set of this cover, and let X be the complement of B in S 2.
Then X has a natural Riemann surface structure (as a domain of the Riemann sphere
S 2). We are interested in studying the type of branched covers described above in
which X is a hyperbolic Riemann surface.

The complexity of a branched cover of a Riemann surface M to the Riemann sphere
S 2 is defined as the product of the degree of the cover and the hyperbolic area of the
Riemann surface X. But, in order for this definition to make sense, we require that the
Riemann surface X be hyperbolic, or, equivalently, that the cardinality of B be greater
than or equal to three. (This will be assumed in the paper after Definition 4.3.)

We first learned of the previous definition of complexity of a branched cover in
an unpublished paper (‘The link volume’, by Yo’av Rieck and Yasushi Yamashita),
although these authors define it in the context of branched covers of 3-manifolds.
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We define the complexity of a Riemann surface M as the infimum of the
complexities of all branched covers of M to S 2. The main purpose of this paper is
to study the following problem.

P 1.1. Find the complexity of a given Riemann surface M.

By the Gauss–Bonnet theorem, the complexity of a branched cover of M to S 2 of
degree d ≥ 1 and with branching set of cardinality n ≥ 3 is equal to 2πd(n − 2) (see
Lemma 4.4). Therefore, the set of complexities of all branched covers of M to S 2 is
a subset of Zπ, the set of all integer multiples of π, which is a discrete subset of the
real line. Thus, the complexity of M is actually equal to the complexity of a branched
cover of M to S 2. In other words, Problem 1.1 is equivalent to the following.

P 1.2. Given a Riemann surface M, find a branched cover of M to S 2 with
minimal complexity.

Although the complexity of a branched cover is given by a simple formula,
Problem 1.2 is difficult because, given a Riemann surface M, there are no known
sufficient conditions for the existence of a branched cover of M to S 2. Finding such
conditions amounts to solving the (still open) Hurwitz problem, which we discuss
below.

A branch datum is a 4-tuple (M, n, d, Π) such that:
• M is a Riemann surface;
• n ≥ 0 and d ≥ 1 are integers;
• Π is a collection of n partitions of the integer d.

The total length of a branch datum (M, n, d, Π) is defined as the sum of the lengths
of the partitions in the collection Π.

A branched cover p : M→ S 2 naturally gives rise to a branch datum (M, n, d, Π).
Here, n is the cardinality of the branching set B ⊂ S 2, d is the degree of the cover, and
Π = (Π1, Π2, . . . , Πn) is the collection such that Πi is the partition of d given by the
degrees of the points on the preimage of the ith branch point in B. A branch datum
(M, n, d, Π) is called realisable if it is associated to a branched cover p : M→ S 2.

Let (M, n, d, Π) be a realisable branch datum, with Π = (Π1, Π2, . . . , Πn). Define
mi as the length of the partition Πi and let m =

∑n
i=1 mi. By Theorem 3.2, the Riemann–

Hurwitz formula becomes

χ(M) − m = d(χ(S 2) − n). (1.1)

A branch datum satisfying (1.1) is called compatible. Thus, every realisable branch
datum is compatible, but the converse is not true (see [4, Corollary 6.4]). The classical
Hurwitz problem asks which compatible branch data are actually realisable.

The Hurwitz problem stated above has a natural generalisation in which we consider
branched covers of an arbitrary Riemann surface, not necessarily the Riemann sphere
(see [11, Section 1] for precise statements). This more general problem was studied
first by Hurwitz [7], and more recently by many authors, such as [1, 4, 6, 8, 10–12]. All
instances of the general Hurwitz problem either have been solved or can be reduced
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to the version of the problem stated above, which is the only one that remains open
(see [12, Section 2]).

A branched cover p : M→ S 2 of degree d is called simple if the cardinality of the
preimage p−1(y) is at least d − 1 for all y ∈ S 2. We define the simple complexity of a
Riemann surface M as the infimum of the complexities of all simple branched covers
of M to S 2. We now state our two main results.

M T 1.3. Let M be a connected, closed, orientable, hyperelliptic Riemann
surface of genus g > 1. Then the simple complexity of M is equal to 8πg.

Main Theorem 1.3 gives an explicit formula for the simple complexity of a Riemann
surface in terms of its genus. On the other hand, Main Theorem 1.4 below is not quite
explicit: it gives a formula for the complexity of a Riemann surface, but this formula
is in terms of an integer that is difficult to find. More precisely, we have the following
result.

M T 1.4. Let M be a connected, closed, orientable Riemann surface of
genus g ≥ 1. Let mmin be the minimum total length of a branch datum realisable by a
branched cover p : M→ S 2. Then the complexity of M is equal to 2π(mmin + 2g − 2).

Given a Riemann surface M, it is very difficult to find an explicit formula for the
integer mmin from the statement of Main Theorem 1.4. The reason for this is that we
do not know which branch data are realisable (by a branched cover of M to S 2), which
amounts to the fact that the Hurwitz problem is still open.

2. Preliminaries

D 2.1. A Riemann surface is a complex manifold of complex dimension one.

Throughout this paper, M will denote a Riemann surface and S 2 will denote the
Riemann sphere. All Riemann surfaces in this paper will be connected, closed and
orientable. We denote the Euler characteristic of a Riemann surface M by χ(M).

D 2.2. A branched cover is a nonconstant holomorphic map between
Riemann surfaces.

The following proposition is well known (see [3, Propositions 5 and 6 in Ch. 4]).

P 2.3 [3]. Let p : M→ N be a branched cover between Riemann surfaces.

(1) Then for each x ∈ M there is a unique integer k = kx ≥ 1 such that we can find
charts around x in M and p(x) in N in which the map p is represented by the
map z 7→ zk.

(2) Let R be the set of all points x in M such that kx > 1. Then the set R is finite.
(3) For each y ∈ N, the preimage p−1(y) is a finite subset of M.

D 2.4. We use the notation of Proposition 2.3.
• The set R is called the ramification set of the branched cover p. A point in R is

called a ramification point of p.
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• The set B = p(R) is called the branching set of the branched cover p. This set is
always finite by Proposition 2.3(2). A point in B is called a branch point of p.

• For each x ∈ M, the integer kx ≥ 1 is called the ramification index of x.
• The total ramification index of the branched cover p is defined to be

Rp =
∑
x∈M

(kx − 1).

(This is a finite sum by Proposition 2.3(2).)

Given a branched cover p : M→ N, there is an integer d ≥ 1 such that every point
in N has exactly d preimages, if we count preimages with appropriate multiplicities.
More precisely, we have the following lemma.

L 2.5 [3]. Let p : M→ N be a branched cover between Riemann surfaces. For
each y ∈ N, we define the integer

d(y) =
∑

x∈p−1(y)

kx.

Then the integer d(y) does not depend on y. This integer will be called the degree of
the branched cover p.

3. The Riemann–Hurwitz formula and the Gauss–Bonnet theorem

We now state the classical Riemann–Hurwitz formula.

T 3.1 [9, Theorem 2.5.2]. Let p : M→ N be a branched cover of degree d
between Riemann surfaces. Suppose that the genera of M and N are gM and gN ,
respectively. Let Rp be the total ramification index of the branched cover p. Then

2 − 2gM = d(2 − 2gN) − Rp.

We will also use the following alternative way of stating the Riemann–Hurwitz
formula for branched covers of the Riemann sphere.

T 3.2. Let M be a Riemann surface and let p : M→ S 2 be a branched cover of
degree d. Suppose that branching set B ⊂ S 2 has cardinality n and that the cardinality
of the set p−1(B) ⊂ M is m. Then

χ(M) − m = d(χ(S 2) − n).

P. Removing all the n branch points from S 2 and all their m preimages from M,
we obtain that p restricts to a genuine cover p : M \ p−1(B)→ S 2 \ B of degree d.
Therefore, χ(M \ p−1(B)) = d(χ(S 2 \ B)), that is, χ(M) − m = d(χ(S 2) − n). �

We now define a special type of branched covers of the Riemann sphere.

D 3.3. A branched cover p : M→ S 2 of degree d is simple if the cardinality
of the preimage p−1(y) is at least d − 1 for all y ∈ S 2.
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For simple branched covers of the Riemann sphere, the Riemann–Hurwitz formula
simplifies to the following theorem.

T 3.4. Let p : M→ S 2 be a simple branched cover of degree d and with
branching set of cardinality n. Let g be the genus of M. Then

2 − 2g = 2d − n.

P. By Theorem 3.1, it suffices to prove that Rp = n. Combining the definition of
a simple branched cover with Lemma 2.5, we obtain that:
• a point x ∈ M is a ramification point of p if and only if kx = 2;
• given a branch point y ∈ S 2, there exists a unique ramification point x ∈ p−1(y).
Thus, the cardinality of the ramification set R equals the cardinality of the branching
set B, which is n by assumption. Therefore,

Rp =
∑
x∈M

(kx − 1) =
∑
x∈R

(kx − 1) =
∑
x∈R

(2 − 1) = n. �

We recall the classical Gauss–Bonnet theorem.

T 3.5 [2, Theorem V.2.7]. For M orientable with compact closure and smooth
boundary, ∫

∂M
κg ds +

∫
M

K dA = 2πχ(M).

(Here K is the Gaussian curvature of M, κg is the geodesic curvature of the boundary
∂M of M, and χ(M) is the Euler characteristic of M.)

4. (d, n)-branched covers of the Riemann sphere

D 4.1. A branched cover p : M→ S 2 is said to be a (d, n)-branched cover (of
the Riemann sphere) if the following properties are satisfied.
• The degree of p is equal to d.
• The cardinality of the branching set of p is equal to n.

Let p : M→ S 2 be a (d, n)-branched cover with branching set B ⊂ S 2. Then the
surface S 2 \ B has a natural Riemann surface structure (induced by the Riemann
surface structure of S 2). This Riemann surface is hyperbolic if and only if n ≥ 3 (see
[5, Theorem 27.12]).

Definition 4.3 below requires that the complement of the branching set in the
Riemann sphere admit a hyperbolic structure. This will be assumed for the rest of
the paper:

N 4.2. From now on, given a (d, n)-branched cover, we will always assume
that n ≥ 3.

We now define the complexity of (d, n)-branched covers.
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D 4.3. The complexity of a (d, n)-branched cover is defined as d times the
hyperbolic area of the complement of its branching set in S 2.

Using the Gauss–Bonnet theorem, we can easily find a formula for the complexity
of a (d, n)-branched cover.

L 4.4.

(1) The hyperbolic area of the complement of n ≥ 3 points in the Riemann sphere
equals 2π(n − 2).

(2) The complexity of a (d, n)-branched cover equals 2πd(n − 2).

P. (1) Let Mn be the complement of n ≥ 3 points in the Riemann sphere, and let A
be its hyperbolic area. By the Gauss–Bonnet theorem (Theorem 3.5), A = −2πχ(Mn) =

−2π(χ(S 2) − n) = 2π(n − 2). (2) This follows from the definition of complexity. �

5. The main theorems

We will need the following nonexistence result to prove one of our main theorems.

L 5.1. There is no (1, n)-branched cover with n ≥ 3.

P. Suppose that p : M→ S 2 is a (1, n)-branched cover with n ≥ 3. Fix a point
y ∈ S 2. By Lemma 2.5, ∑

x∈p−1(y)

kx = 1.

Since kx ≥ 1 for all x ∈ M, the last equality implies that the set p−1(y) consists of a
unique point x whose ramification index equals 1. In other words, for each y ∈ S 2, the
set p−1(y) contains no ramification points. This means that the branching set of p is
empty, contrary to our supposition that p is a (1, n)-branched cover with n ≥ 3. �

D 5.2. A compact Riemann surface M of genus g > 1 is said to be
hyperelliptic if there exists a double branched cover p : M→ S 2.

We now state one of our main theorems.

T 5.3. The simple complexity of a connected, closed, orientable, hyperelliptic
Riemann surface of genus g > 1 is equal to 8πg.

P. Let M be a Riemann surface of genus g > 1 and let p : M→ S 2 be a
simple (d, n)-branched cover. By Theorem 3.4, 2 − 2g = 2d − n, so n = 2(d + g − 1).
Combining this with Lemma 4.4(2), we get that the complexity of p : M→ S 2 is equal
to 2πd(n − 2) = 4πd(d + g − 2).

For a fixed g > 1, consider the function f (d) = 4πd(d + g − 2), defined for
d ≥ 1. Observe that, by definition, f (d) is the complexity of a simple (d, n)-branched
cover. The function f (d) is increasing for d ≥ 1 because f ′(d) = 4π(d + g − 2) + 4πd =

4π(2d + g − 2) ≥ 4π. (The last inequality holds because d ≥ 1 and g > 1.)
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Let dmin be the minimal value of d ≥ 1 such that there exists a simple (d, n)-branched
cover M→ S 2 with n ≥ 3. The previous paragraph shows that the simple complexity
of M is equal to f (dmin).

By Lemma 5.1, then there is no (1, n)-branched cover M→ S 2. This means
that dmin > 1. On the other hand, since M is hyperelliptic, then dmin = 2, and so
f (dmin) = f (2) = 8πg. �

We would like to have a result similar to Theorem 5.3 for computing the complexity
of a Riemann surface. We did not succeed in finding such a result, which is a difficult
problem that is related to the Hurwitz problem (see Section 1). However, we have
made some progress in this direction.

T 5.4. Let M be a connected, closed, orientable Riemann surface of genus
g ≥ 1. Let mmin be the minimum total length of a branch datum realisable by a
branched cover p : M→ S 2. Then the complexity of M is equal to 2π(mmin + 2g − 2).

P. Let p : M→ S 2 be a (d, n)-branched cover and let m be the total length of
the branch datum associated to p. By Lemma 4.4, the complexity of p is equal to
2πd(n − 2). On the other hand, by Theorem 3.2,

χ(M) − m = d(χ(S 2) − n).

Therefore,
m = χ(M) − d(2 − n) = 2 − 2g + d(n − 2),

and so
m + 2g − 2 = d(n − 2).

Hence, the complexity of p is equal to 2π(m + 2g − 2). As the genus g ≥ 1 is fixed, the
minimal complexity of a branched cover p : M→ S 2 is equal to 2π(mmin + 2g − 2).
The conclusion now follows from the definition of complexity of a Riemann
surface. �
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