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Abstract

We show that the classical interpretation of H\G,A) is equivalent to Taylor's solutions of
compound extensions of groups. It is also equivalent to the exactness to an eight term sequence.
Only halves of the equivalences are fully shown in the paper but the other halves are clear.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 J 05, 20 A 10.

In [10], an invariant proof of the obstruction theorems is given, (see Section 1 for
statements of results). In this note, we will point out that if obstruction theory is
viewed in this way, some old problems can be proved readily. The first problem
we consider is Taylor's compound extension problem [7] which asks for condi-
tions to complete the following diagram

A = A

X X
I 2 i ii
N> »G «• Q

so that rows and columns are exact. He showed that the problem can be reduced
to the case where A is central in E. Taylor's original solution of this reduced
problem was very lengthy. This is probably because he did not recognize that his
problem is exactly the osbstruction problem and had to modify the whole
obstruction theory developed by Eilenberg-Mac Lane. We identify the two
problems once we observe that the square 2 is a pullback.

Another equivalent form of the obstruction theorem can be stated as follows:
Let 1 -*• N -> G -» Q - • 1 be an exact sequence. The center A of N can be
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[2) Some applications of group obstructions 179

endowed with an (g-module structure [5]. The obstruction theorem (actually part
(a) of it (see Theorem 2a)) is equivalent to the exactness of the sequence

0 -» Der(0, A) -» Der(G, A) -> H a m ^ A U A) -> H2(Q, A)

-> H\G, A) -» Sext^(JV, A) -* H\Q, A) -* / / 3 (G, 4 )

where Der(g, ^4) is the group of derivations, N^ the abelianization of TV and
Sextl

G(N, y4) the group of equivalence classes of some short exact sequences, (see
Section 1). This sequence is not new [3, 4, 6, 8] but the available proofs are fairly
lengthy.

Finally, we should point out that results considered in this note are clearly
valid over many other algebraic categories, such as the category of Lie algebras
over a field.

1. Preliminaries

Let G be a group. A G-group £ is a group together with an action a:
G—»Aut(£). Clearly G is a G-group with conjugation as an action and if it:
G ~* Q is a group homomorphism, then Q is a G-group and it is a G-homomor-
phism. If A is a Q-module, we recall that a special one-fold extension [10] of A
by Q is an exact sequence

(1.1) £0->^-»G-^g-> l
of G-groups where the action of G on A is induced by it. Special one-fold
extensions are also called abelian extensions [5].

A special two-fold extension is an exact sequence

of G-groups and G-homomorphisms with the following properties:
(i) The G-action on A is given by the g-action on A via it,
(ii) The £-action on E by conjugation coincides with the ^-action induced by

Special two-fold extensions are also called crossed modules (with prescribed
ends). It is clear that in a special two-fold extension (1.2), A is central in E.

We define equivalence relations on special one-fold and two-fold extensions
analogous to that on module extensions and denote the sets of equivalence clsses
by Sext'(Q, A) and Sext2(£>, A) respectively.

If we fix a free presentation 1—> R-+ F-^> Q-*l, then every equivalence
class in Sext2((?, A) has a canonical representative of the form
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180 Yel-ChiangWu [3]

The equivalence class is zero if and only if the /"-sequence 0—>A-+E—>R->\
has a right F-splitting.

Since every equivalence class of special two-fold extensions comes from an
abstract g-kernel [10], we call the special two-fold extension £ in (1.2) extendable
if and only if there exists an exact sequence of //-groups, 1—* E —> H-* Q—*l
such that the following diagram is commutative

£: 1 >£> ->H »Q >\

0-4> II 1 II
£: o >A »£•> *G H> Q »l

and the G-action on E comes from H. (Note that the kernel of H —* G is
necessarily A and H defines a G-action on E because A is central in E.) If this is
the case, we shall say that £ induces £. The following theorems are proved in [10].

Nat
THEOREM 1. H\A, A) » Sext2(£>, A).

THEOREM 2. a) The special two-fold extension £ is extendable if and only if

ra = o.
b) tf [£] = 0, then the set of equivalence classes £ inducing £ is in one-one

correspondence with H\Q, A).

(Theorem 2 is stated slightly different from that in [10] to suit our purpose but
the proof is exactly the same. The same statement can also be found in [2].)

In this paper we also deal with short exact sequence of G-groups. If Af is a
normal subgroup of G, and A is an iV-module, then Sextg(./V, A) will denote the
group of equivalence classes of extensions of A by N

which are both an ^-sequence as well as a G-sequence. Moreover, the action of
N on E is given by </>(e) • el = eele~l, e, el G E.

2. Compound extensions

In [7], Taylor investigates conditions of filling the following diagram with
exact rows and columns,

(2.1) E > > ? ~ Q

II
— ~ Q

A

I
E >

J
N >

A

I
* ?

i
•> G
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[4 ] Some applications of group obstructions 181

He observed that problem can be reduced to a problem where A is central in E.

We will discuss this problem assuming A is central in E. W e will say that (2.1)

is weakly extendable* if there is a group H such that the diagram

(2.2) I 2 19 ||

is commutative with exact rows. Note that the diagram 2 is necessarily a

pullback diagram and the kernel of 0 is A. We also note that if the diagram (2.1)

is weakly extendable, then we can define a G-action on E via 9, that is

9{h)e = heh'1. This is a well-defined action because A is central in E. With such

a (7-action on E, we can easily see that the sequence

£ w : 0 - » . y 4 - > £ - > G - > e - > l

is a special two-fold extension. Therefore we may discuss Taylor's problem of
(2.1) with the additional assumption that 0—>A-*E-+G —»£?—»1 is a special
extension. Thus we make the following definitions.

A special two-fold extension

(2.3) £: 0^>A^>E-*G-+Q-+\

is extendable if the associated compound extension problem (2.1) is weakly
extendable and if the (7-action on E is obtained from the extension as described
in the paragraph following (2.2). The special two-fold extension (2.3) is weakly
extendable if the associated compound extension (2.1) is weakly extendable.
From Section 1, it is therefore clear that Taylor extension problem follows from
the obstruction theorem (Theorem 2a).

The weak extension problem of (2.1), that is, we just ask when we can fill in
the diagram without insisting on the special structure constraint on E, is more
interesting. To solve the weak extension problem, we first have to investigate
relations among various special extension structures on a given sequence

£: O-*A^>E-*G^>Q^>1

of groups. This is given in the next lemma.

LEMMA 4. Let 1—»Af—»G—»Q-»1 be an exact sequence. Let 0 -» A —> E —>

N -» 1 be an exact sequence where A is a Q-module. Let a,r: G -» A u t ( £ ) be two

actions of G on E so that

extendability is really not a very good choice but in order not to cause confusion with the
extendability of special extensions, we probably cannot call it "extendable," see Definition (2.3).
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182 Yel-ChiangWu [s]

is a special two-fold extension with either action. Then there is a homomorphism f:
Q -* Hom(N, A) so that any two of a, r,f uniquely determine the third.

PROOF. Let g G G, e G is. Then since <j> is a G-map,

o{g){e) = T(g)(e) + /(g)(e), /(g)(e) G A.

Clearly since the G-module structure of A is fixed, o(g)(a) = T(gXfl)- Thus
f(gXa) = 0 and we may regard/: G -H> Hom(A ,̂ A). If g G N, then g = <J>(e'). By
definition of special extensions, e' • e = a(g)(e) = r(g)(e). Hence/(g) = 0 and
/ : Q

Recall that Hom(Af, y4) can be made into a g-module with action given by
(ir(g) • a)(n) = g • (a(g~l • n)) for g G G, a G HomCW, .4) and n e J V . Also if
we interpret H\N, A) to be the sete of equivalence classes of central extensions
of A by N, we have an obvious map u: Sext^Af, A) —> H\N, A).

THEOREM 5. Let [£] G H\N, A). Then there is a bijective map ¥£ :

PROOF. Let 0^>A^>E^>N—>l with action T: G-»Aut(i?) represent an
element of u~\[£\). If a: G—» Aut(E) is another action, Lemma 4 says that a is
obtained from T by adding/. Let dy. Q^> Hom(Ar, A) be defined by

d/j?(gj){n) = /("•(#))(g~ ' n)-

Simple calculation shows that df is a derivation. It is also clear that there is a
bijective correspondence between such fs and df's. Thus we have a surjective
homomorphism from Der(g, Hom(A?, A)) to M " 1 ^ ] ) . If the two actions a, T of G
on £ give equivalent extensions in SextJ^A7, v4), then there is a G-isomorphism
d: E -* E making the diagram

0 > A > » E •* Â  > 1

II i» II

commutative. Thus 9(e) = e — a(</>(e)) for some a G Hom(Ar, ^4). If o{g\e) =
T(g)(e) + /(g)(<Ke)), then /(g)(<K<0) = «(g • <K<0) - g • «(*(«))• Therefore
d/.g)(n) = «(") ~ (g"«)(") or t^ is a principal derivation. This shows that we
have a bijection map ^ f : H\Q, Hom(Ar, ,4)) -^ M"'([|]).

COROLLARY 5 (Ratcliffe [6]). The sequence

0 -» #'(£?> Hom(Ar, A))-lSex\x
G(N, A) -+ H\N, A)

is exact.
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PROOF. We only have to verify ¥ 0 is a homomorphism. Suppose that a, T:

G —> Aat(E) are two actions on E = A X N (as groups) which give two repre-
sentatives of elements of u~\0).

By Lemma 4, a{g\a, ri) = (g- a + Mg)(n), g- n) and r(g)(a, n) = (g- a +
MgX.«),g-n) for some/1(/2: Q^>Hom(N,A). The class [£,] + [£] is repre-
sented by the extension |O+T of the following diagram

where A is the diagonal map, V the codiagonal map, E' — {(a1; a2, n)\au a2 G
A) with G-action g*(at, a2, n) = (a, + //gXn), a2 + /2(«X"). "X 0(a,, a2, n) =
((a,, «), (a2. "))> y(d\, «2> ") = (ai + a2> n)> ^ a pullback diagram and 2' a
"pushout" diagram. It is clear from this construction that the G-action on £ in
£,+T is given by/, + f2. Hence ^ 0 is a homomorphism.

THEOREM 6. Let

i,:0->A->E-*G^>A^>\

be a special two-fold extension with a G-action a on E. Then £, is weakly
extendable if and only if there is a derivation d such that the action r: G -» Aut(£)
given by r(g)(e) = a(g)(e) + rf(g)(g • o(e)) makes 0^>A ^> E^> G--> Q-±l a
representative of the zero element in Sext2(g, 4).

/ / /'/ is extendable, then the equivalence classes \^>E—>H-*G^>\ in the
solutions are in one-one correspondence with H\Q, A).

3. An exact sequence

Let 1 -* N -^ G -U Q -»• 1 be an exact sequence of groups. Then
N/[N, N] is a g-module. Let A be a Q-module.

THEOREM 7. The following sequence is exact,

0 -» Der(g, A) -> Der(G, A) -> Hom^AU, A) -+ H2(Q, A)

C H2(G, A) ̂  Sext{;(iV, A)^H\Q, A) C H\G, A)
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The sequence is natural in the sequence 1 -» N -> G -» G -> 1. Exactness of

0 -> Der(0, >4) -» Der(G, ^ ) -» Home(A^, A) -» H2(Q, A) -> //2(G, y|)

was proved by Hochschild and Serre (see [5]). A conceptual proof was first given
by Barr and Rinehart [1]. Since our approach has no cocycles, we state this
theorem as in [1]. The exactness of the remaining terms were proved by Rinehart
[8], Huesbchmann [3], Loday [4], and Ratcliffe [6].

PROOF. We only prove the exactness of the last five terms. The naturality
becomes clear once we describe the maps.

We will regard H\G, A) = Sext'(G, A), H\G, A) = Sext2(G, A), and so on.
Then the maps /*, j * are just pulling back along / and j . The connecting
homomorphism c is the splicing map.

Exactness at H2(G, A). Let &. 0 -»A -» EG -* G -> 1 represent an element in
H\G, A). Suppose [ i * O = 0,

0 * A >—> EG w G * 1

ii n v
0 > A >—> EN

 m" >> iV > 1

that is, there is a splitting homomorphism sN: N -» £^ such that TT^J^ = 1 ,̂.
Then isN(N) is normal in 2sG. Let £g = Cok isN.

II 124
! _ » # > _ > G -+> Q -* 1

Then the square 2 is a pullback diagram since EG-* E and G —» Q have the
same kernels. Thus 0—*A —» EQ^> Q-* 1 is an exact sequence. Indeed ^ :
0 ^ / 4 - ^ ^ g ^ g ^ l represents an element in H\G, A) andy*(£g) = ^ j . This
shows Imy* D Ker /*. It is trivial to see that i*j* = 0; hence Imj* = Ker /*.

Exactness at Sext^TV, A). Let [£N] e Sextl
G(N, A),

£N:0^A^EN^N^l

Then c[£N] = [c^],

c({ A r ) :0->yf-»£ A r ->G->e- . l

is zero if and only if there is EG such that
A = A
I I
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[8] Some applications of group obstructions 185

is commutative and (ii) the G-action on EN (hence A) comes from EG. Condition
(i) says that 2 is a pullback. This coupled with (ii) implies that 0 -» A -» EN -» N
-»1 = /*(0 —> A -» EG -» G -* 1). This proves the exactness at SextJ^A7, A).

Exactness at H\Q, A). Let [£„] e SextG(Ar, A).

Then

II II it "2 V

where j(n, g) = g. Since

0 >A > • EN > N XSG w G * 1

II t II

commutes, [j*(c£N)] = 0 by Theorem 2.
Conversely, let 1 -» / ^ -^ F —> G -» 1 be a free presentation of G. Then

l - » ^ g ^ F - » 2 - ^ l i s a free presentation of Q for some RQ. Let [|F] be an
element of H\Q, A),

Construct the following diagram.

lF\ 0 * A> >EQ * F «- Q » 1

/ll V

EG

RG

where EG -> F = £G -> £ e -> F is a pullback diagram. It is very easy to see that
[£G!

 =
 [U*£F)]- Suppose [^j] = 0. This means that there is a F-splitting map

RQ-* EG such that RG -> EG -+ R^ = 1^. We also note that since

| 2 1 ||

commutes, 2 is necessarily a pullback diagram. Thus

Ker(#e -> AT) = Ker(F->. G) = RG.
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186 Yel-ChiangWu [9]

Thus Re is normal in RQ. It follows from this that Im(/?c -• EG -> EQ) is normal
in EQ. Let EN be the Cok(/?G -> EQ). We have a commutative diagram with
exact rows,

I 2' i
RQ ~ TV > 1

Again, since 2 ' is a pullback, 0^>A -» EN-* N -> 1 is exact. It is easy to check
that [0-*A^>EN-*G-*Q^>\] = [£F], This completes the proof.
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