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Surfactant transport is central to a diverse range of natural phenomena with numerous
practical applications in physics and engineering. Surprisingly, this process remains
relatively poorly understood at the molecular scale. Here, we use non-equilibrium
molecular dynamics (NEMD) simulations to study the spreading of sodium dodecyl
sulphate on a thin film of liquid water. The molecular form of the control volume
is extended to a coordinate system moving with the liquid—vapour interface to track
surfactant spreading. We use this to compare the NEMD results to the continuum
description of surfactant transport on an interface. By including the molecular details
in the continuum model, we establish that the transport equation preserves substantial
accuracy in capturing the underlying physics. Moreover, the relative importance of the
different mechanisms involved in the transport process is identified. Consequently, we
derive a novel exact molecular equation for surfactant transport along a deforming
surface. Close agreement between the two conceptually different approaches, i.e. NEMD
simulations and the numerical solution of the continuum equation, is found as measured by
the surfactant concentration profiles, and the time dependence of the so-called spreading
length. The current study focuses on a relatively simple specific solvent—surfactant system,
and the observed agreement with the continuum model may not arise for more complicated
industrially relevant surfactants and anti-foaming agents. In such cases, the continuum
approach may fail to predict accompanying phase transitions, which can still be captured
through the NEMD framework.
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1. Introduction

The dynamics of surfactants at the liquid—vapour interface represents a critical area of
study with widespread implications across various disciplines, including engineering and
medicine. This is underscored by a significant body of research highlighting its importance
in processes ranging from respiration (Stetten et al. 2018; Possmayer et al. 2023) to break-
ing waves (Erinin et al. 2023), and to solar energy applications (Morciano et al. 2020).
Surfactants, by virtue of their amphiphilic structure, play a pivotal role in modulating
interfacial dynamics. These molecules align at the interface, orientating their hydrophilic
heads towards, and hydrophobic tails away from, the aqueous phase. The surfactant layer
adsorbed at the interface reduces the net cohesion or surface tension of the surface region.
The spread of surfactants, and their subsequent reorganisation and reorientation, leads to
gradients in concentration, causing differential surface tension within the surface plane.
Such gradients result in the development of Marangoni stresses (Scriven & Sternling
1960). In addition to their crucial role in film thinning, which eventually gives rise to
spontaneous rupture (Neél & Villermaux 2018; Ruckenstein & Jain 1974; Rahman et al.
2024), Marangoni flows are known to have influences on interfacial dynamics in complex
ways; see Basu & Gianchandani (2007), Roché et al. (2014), Liu et al. (2017), Kitahata &
Yoshinaga (2018), Trittel et al. (2019) and Benouaguef et al. (2021).

The migration of surfactant molecules across the liquid—vapour interface involves the
formation of a precursor film that alters surface tension in its path (Afsar-Siddiqui,
Luckham & Matar 2003). The extent of this migration, or spreading, follows a power law
of the form /(z) ~ kt", where /() denotes the length of the spreading region as a function
of time . The temporal variation of the exponent represents a transition between the
dominant spreading mechanisms: for instance, n ~ 1/10 for capillarity-driven spreading,
while for gravity-driven spreading n ~ 1/8 (Afsar-Siddiqui et al. 2003). The implicit role
played by the collective behaviour of the surfactant molecules has led to them being
referred to as the ‘hidden variables’ controlling fluid flows (Manikantan & Squires 2020).
Empirical observations, such as the findings of Benouaguef et al. (2021) using particle
image velocimetry, reveal the complexity of such flows. This underscores the limitations
of analytical approaches in capturing the intricacies of surfactant-driven fluid motion.

Our understanding of surfactant transport has been advanced significantly through the
contributions of several researchers, including Stone (1990), Gaver & Grotberg (1990),
Crowdy (2021), Bickel & Detcheverry (2022) and Crowdy, Curran & Papageorgiou
(2023). In particular, Stone (1990) derived a simple yet versatile convection—diffusion
equation, building on the form of Scriven (1960), to describe the transport of surfactant
molecules along a deforming liquid—vapour interface. Gaver & Grotberg (1990) showed
that the initial distribution of surface tension, which depends directly on the surfactant
concentration, dictates the system dynamics. Later, Crowdy (2021) showed that the
complex Burgers equation can be employed to describe surfactant transport, which was
further developed through exact solutions (Bickel & Detcheverry 2022; Crowdy et al.
2023). However, the case-specific nature of these solutions hinders efforts to establish a
broader understanding of the underlying physical principles (Temprano-Coleto & Stone
2024).

In addition to the inherent complexities that lie in describing the transport process, the
focus of this present study is to investigate the mechanism at the smallest scales where local
fluctuations are crucial. Microscale and nanoscale processes inherently involve complexity
and heterogeneity of molecular-level interactions, with the consequence of highly localised
and dynamic surface properties evolving over space and time. Conventional continuum
models simplify these details into spatio-temporal averaged and static parameters, leading
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to inaccuracies in predicting real-world behaviour at the nanoscale (Ilgen et al. 2024). For
example, continuum models use an average value for the transport coefficients, such as the
diffusion coefficient, which can be obtained independently from equilibrium molecular
dynamics (MD). However on the microscopic length scale, their spatial, temporal and
concentration dependence is of crucial importance which non-equilibrium MD (NEMD)
implicitly includes, and notable advances on these fronts have been made (Rideg et al.
2012; Tomilov et al. 2012).

The question of whether a full three-dimensional hydrodynamic description holds at
the molecular dimension has been explored for several decades (Davidovitch, Moro &
Stone 2005). The continuum framework is known often to fall short in addressing the
increasing importance of spatio-temporal variations and fluctuations of liquid properties
on molecularly small scales (Moseler & Landman 2000). Growing success in employing
MD simulations to describe dynamics below the ‘hydrodynamic’ threshold has been
found. These have validated and extended continuum theories to the nanoscale (Bocquet
& Charlaix 2010; Lohse & Zhang 2015; Koplik & Maldarelli 2017; Maldarelli et al.
2022). For example, the assumption of the continuum no-slip boundary condition for
hydrophobic surfaces has been revisited using MD, which has demonstrated a strong link
between surface atom interactions and water slippage (Huang et al. 2008). The NEMD
simulations in the interfacial region have shown that the Stokes solutions fail to capture
velocity profiles accurately (Bocquet & Barrat 2007). Also, MD simulations have provided
confirmation of the strong dependence of electro-osmotic flow on surface wettability (Joly
et al. 2004, 2006).

For the molecular picture of an interface at the smallest scale, the pioneering work
of Chacén & Tarazona (2003) fitted an intrinsic interface down to the molecular
spacing that was then used in later works to understand the origins of capillary forces
(Delgado-Buscalioni, Chacon & Tarazona 2008), pick apart the interface layer by layer
(Sega, Fabidn & Jedlovszky 2015), or explore the molecular stress holding the interface
together (Braga et al. 2018; Rahman er al. 2022). Furthermore, MD has been very
useful in exploring systems involving chemical agents, such as surfactants or anti-foams,
where continuum descriptions are insufficient. Phenomena like adsorption, micellization
(Marrink, Tieleman & Mark 2000; Kanduc et al. 2024) and gas enrichment (Dammer
& Lohse 2006) are inherently molecular processes, and are beyond the descriptive
capabilities of conventional continuum models.

A number of studies added a stochastic stress contribution to the continuum model
in order to capture the effects of thermal fluctuations on the nanoscale (Moseler &
Landman 2000; Davidovitch et al. 2005; Zhang, Sprittles & Lockerby 2021; Sprittles et al.
2023). Davidovitch et al. (2005), for example, studied the spreading of viscous drops on
solid substrates, and observed significantly different behaviour compared to Tanner’s law
classical theory of spreading. Moseler & Landman (2000) investigated the break-up of
jets of molecular diameters, where continuum assumptions cease to be valid. The authors
showed that just before the break-up event, the dynamics of the system is dominated by
thermal fluctuations. Since the scale in question uniquely suits the strengths of molecular
simulations (Evans 1979), these works compared and validated their stochastic models
against MD results. Perumanath et al. (2023) identified a novel wetting mode in their MD
study of droplet spreading on a solid surface. This observation led to the subsequent devel-
opment of a theoretical model. A slip boundary condition derived from MD simulations
captures nanoscale dynamics typically overlooked by conventional approaches.

Quite surprisingly, the nanoscale processes that govern surfactant transport along
the interface have not been comprehensively understood (Maldarelli et al. 2022), and
the dynamic nature of the surfactant transport process makes NEMD a particularly
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appropriate tool to scrutinise these problems. The MD community has focused largely
on understanding the structural and thermodynamic properties of surfactant systems
(Chanda & Bandyopadhyay 2005; Rideg et al. 2012; Shi et al. 2019; Bui et al. 2021),
surface tension calculations (Sresht et al. 2017; Peng et al. 2021), surface—bulk surfactant
partitions (Kanduc et al. 2024; Yang & Sun 2014), micelle formation, adsorption kinetics
and self-assembly (Marrink er al. 2000; Shinoda, DeVane & Klein 2008; Sangwai &
Sureshkumar 2011; Wang & Larson 2015; Weiand et al. 2023; Kanduc et al. 2024). There
are molecular simulations that have explored transport across the interface (Ahn et al.
2011; Xu et al. 2017), coalescence of surfactant-laden droplets (Arbabi et al. 2023, 2024),
and the spreading mechanism of surfactant-laden droplets on solid substrates (Kim, Qin &
Fichthorn 2006; Theodorakis, Smith & Miiller 2019). Laradji & Mouritsen (2000) showed
that a variation of the surfactant chain length alters the bending rigidity of the interface in
a non-monotonic way. In addition to reducing surface tension, the presence of surfactant
increases the thermal roughness of the surface, and thereby contributes to its instability,
which is a non-intuitive outcome from a recent MD investigation by Zhang & Ding
(2023). Regarding the dynamical behaviour of interfacial surfactant molecules, Johansson,
Galliéro & Legendre (2022) studied a system of two immiscible Lennard-Jones fluids
with surfactants at the interface. Their study highlighted the importance of incorporating
local surfactant concentration and interfacial viscosity variation in modelling these flows
accurately.

Despite these previous works, the literature still lacks a comprehensive molecular-
level investigation of the transport processes of industrially relevant surfactants along
the deforming surfaces. This study aims to fill this gap by modelling the transport of
a prototypical anionic surfactant, sodium dodecyl sulphate (SDS) on the liquid—vapour
surface of a thin water film by employing NEMD simulations, and simultaneously solving
the transport equation. An objective of this work is to establish the extent to which the
continuum transport equation can model the redistribution of surfactant molecules, and
what aspects of the redistribution process require a molecular description.

In what follows, § 2 provides the necessary details of the modelled system. In § 2.1,
the specifics of the coarse-grained model and the nature of the MD simulations employed
in this work are presented. Section 2.2 describes the continuum framework for surfactant
transport, elaborating on the macroscopic view of the transport dynamics. In §§ 2.3 and
2.4, the molecular and continuum descriptions are connected by deriving a molecular-
level transport equation that provides a physical interpretation of each term relevant to
the transport mechanism. Details of the numerical methods used to solve the continuum
model are given in § 2.5. Section 3 presents the results and discussion. The exact balance
of the proposed molecular-scale transport equation is shown in § 3.1. Particular emphasis
is placed on the time-dependent evolution of the surfactant concentration (§ 3.2), and the
so-called ‘spreading length’ (§ 3.3). A summary of the main conclusions arising from this
work is presented in § 4.

2. System description and methodology

The primary objective of this study is to achieve a molecular-level understanding
of surfactant spreading over thin liquid water films. For illustration of the transport
phenomena, figure 1(a) shows macroscale experimental images of the dispersion of
surfactant molecules across a thin layer of soapy water. The procedure for this thin film
experiment and the visualisation techniques involved are described in an earlier study
by one of the authors, Shen et al. (2020). Initially deposited over a small region on the
left-hand side of the film, the surfactant layer eventually spreads to cover the entire film.
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Figure 1. (a) Illustration of the surfactant spreading over a film of soapy water obtained from experiments. The
colour maps show the thinning and thickening of the film. (») The MD arrangement of a monolayer of model
SDS molecules deposited on the central area of a thin water film of dimensions 100 nm x 20 nm x 10 nm,
where the third dimension denotes film thickness /¢. The top panel illustrates surfactant initially concentrated
over area 20 nm x 20 nm. The bottom panel illustrates the spreading of the monolayer across the surface, and
subsequent deformation of the film. The local curvature of the surfactant—water—air interface is shown in the
zoomed inset; the surface element ds is resolved into normal e, and tangential e;, and e,, components, or in
2D when y is averaged as e;. The solid line shows y-averaged spline fitting ¢ (x, #) to the surface. The mapping
from (x, y, z) space to (x, ¥, w) space through Jacobian J is illustrated schematically. (c) Surfactant transport
along the surface of a (cylindrical) droplet of radius R ~ 17 nm and width w ~ 20 nm. Initially, the surfactant
molecules occupied an area ~ 12 nm x w at both the top and bottom surfaces. In both (b) and (c), only the
upper halves of the film/drop are shown.

As the colour maps show, regions of variable thickness emerge as the transport processes
progresses. Figure 1(b) shows the MD geometry for the present study, where a thin water
film of length 2L = 100 nm, width w =20nm and thickness & = 10 nm is considered.
A soluble surfactant monolayer composed of SDS molecules was placed in the central
region of both the top and bottom surfaces of the film, which spanned area 20 x 20 nm?;
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see the top panel of figure 1(b). A droplet simulation (shown in figure 1(c), R = 17 nm,
w = 20 nm, effective length 2L =27 R ~ 106.8 nm with similar volume to the film) is
carried out with a surfactant monolayer added to a point on the surface. As is well known,
the presence of the surfactant molecules reduces the local surface tension when compared
with the surfactant-free regions, which is responsible for the ensuing evolution of the liquid
film.

2.1. Molecular description of the system

A coarse-grained modelling approach is employed. The MARTINI polarisable water
model (Yesylevskyy et al. 2010) used here is composed of three particles: a charge-neutral
central particle W, accompanied by positively charged W™ and negatively charged W~
particles. The central particle W engages in Lennard-Jones interactions with surrounding
particles, whereas W* and W~ interact via Coulombic forces, with no interaction
occurring within the same water bead. The mass of each coarse-grained bead is set at
72 amu, reflecting the aggregate mass of four actual water molecules. The SDS molecule is
described by a five-bead coarse-grained model (Weiand et al. 2023); see figure 2. Bonded
interactions were described using harmonic potentials, i.e. Vj(rij) =1/ Zkfj (rij — bi j)z,
where, Vj,(r;;) is the potential energy associated with the bond between atoms i and j
at distance r;j, b;; is the equilibrium bond length between atoms i and j (i.e. the natural
length of the bond at which the potential energy is minimised), and kf’j is the force constant
that determines the stiffness of a bond.

To model the energy associated with the bending of angles between three consecutive
bonded atoms, the cosine-squared potential was used. This is generally expressed as
Va0)=1/ 2k% (cos @ — cos 0p)2, where V, is the potential energy as a function of angle
6 formed by three bonded atoms i, j, k, 6y is the equilibrium angle, and kY is the force
constant in terms of the angle. Non-bonded interactions were accounted for through a
combination of Lennard-Jones and Coulombic potential terms, employing a hybrid overlay
approach to capture the interplay of forces on different length scales. This is generally
expressed as Vyion-bonded(r) = Vi j(r) + Veour.(r), where Vi ;(r) is the Lennard-Jones
potential, i.e. Vi (r) =4€[(a/ r)i2 — (a/ r)®]. The Coulombic interactions are given by
Veou.(r) =qiqj/(4mepe, r), where g; is the charge of index i, € is the permittivity of
free space, and ¢, is the relative permittivity.

The initial configurations of film surfactant and drop surfactant were prepared using the
open source codes Packmol (Martinez et al. 2009) and Moltemplate (Jewett et al. 2021). A
velocity-Verlet integrator was used, with time step 5 fs. The long-range electrostatic forces
were calculated using the particle—particle particle-mesh (PPPM) method, which enabled
the electrostatic component of the system interactions to be computed at reasonable cost.
The SHAKE algorithm was used to maintain rigid O-H bonds within water molecules.
The initial states were energy-minimised separately, and equilibrated (figures 2a—c) in the
NVT (canonical) ensemble to equilibrate the system at the target temperature 300 K. The
separate equilibration was to restrict any surfactant transport before the system had time to
stabilise before the production phase was started. Following this, the system underwent an
NVT production phase during which data were collected for analysis. Figures 2(d,e) show,
respectively, the coarse-grain descriptions, as well as the chemical structures, of water and
SDS. All simulations for this study were carried out using the large-scale atomic/molecular
massively parallel simulator (LAMMPS) package (Thompson et al. 2022). All properties
from the MD simulations were averaged over the width of the film (y-axis) to improve the
statistics.
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Figure 2. (a,b) Initial configuration of an SDS layer and water film, with hydrophilic head group of SDS close
to the water surface, and hydrophobic tail groups pointing away from the surface. These were equilibrated
separately: equilibration of (a) SDS, (b) water. (¢) Zoomed-in view of a portion of the surfactant—water interface
after equilibration. Schematic of the chemical structure and the coarse-grained (CG) descriptions of (d) the
MARTINI polarisable water model consisting of three beads, and (e) the SDS molecule.

2.2. Continuum description of surfactant transport

The spreading of the surfactant across the liquid—air interface resulted in a locally dilute
surfactant—water layer that extended over a larger surface area. This behaviour of the
surfactant monolayer is described by the convection—diffusion equation (Gaver & Grotberg
1990; Stone 1990), which is a continuum model that captures the separate underlying
physical mechanisms of the transport phenomena on the surface:

oI +Vs-(Tu)+I(Vs-e)u-e)=D; Vil + j, . (1)
~—~— —— ~—
unsteady advection geometric effect diffusion source term

Here, I" denotes the local surfactant concentration, u represents the velocity vector along
the surface, e, is the surface normal unit vector, Vg, = (I — e, e,) is the surface gradient
operator, and D; characterises the surfactant diffusion rate across the interface. The nature
of the unsteady time derivative in (2.1) had been ambiguous, which led to potential
misinterpretations that several later studies clarified (Wong, Rumschitzki & Maldarelli
1996; Cermelli, Fried & Gurtin 2005; Pereira et al. 2007). Among these studies, Wong
et al. (1996) addressed this ambiguity by deriving the surfactant mass balance equation.
They showed that the time derivative must follow the interface in the surface-normal
direction, which ensures that the time evolution of the surfactant concentration is captured
correctly as the interface deforms. Our procedure aligns with that in Wong et al. (1996),
which will be clarified in § 2.3. The second term in (2.1) describes surfactant advection
along the surface. The third term, which is the product of local curvature (k = —Vj - e;)
and the surface-normal velocity (v =u - e,,), represents the geometric effect of the locally
deforming interface on the transport process. Together, the second and third terms capture
the effects of surface compression and expansion due to the non-uniformity of advective
flows and curvature, accounting for the redistribution of the surfactant molecules driven by
the various dynamical processes, including the Marangoni effect. The subscript s indicates
that the quantities are considered along the tangential direction to the surface. The Dy VEF
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Figure 3. Schematic diagram showing the mapping of a deforming surface from (x, y, z) Cartesian space to
(X, ¥, ») space.

term builds in the diffusive component of the surfactant transport. The local adsorption or
desorption of surfactants is denoted by j,, which acts as a source or sink in the system.
Through this term, surfactant molecules are introduced to or eliminated from the interface,
influencing the overall dynamics of the transport process.

2.3. Derivation of a molecular-scale transport equation

Any attempt to trace the surfactant particles in experimental measurements inevitably
alters their intrinsic properties, thereby affecting the dynamics of the system (Manikantan
& Squires 2020). In contrast, the molecular system under investigation in this study
provides direct access to individual molecules and their instantaneous properties in a non-
intrusive way, providing an ideal platform to verify the efficacy of (2.1) in describing the
transport phenomena.

The link between the continuum description and a discrete molecular paradigm is
formalised in the seminal work of Irving & Kirkwood (1950). This starts from the
postulate that the continuum concept of density p at a point in a molecular system can be
expressed by

N
p(r.y=> (m;8(r—ri); f), 22)
i=1
where the sum is over all N molecules in the space, and the angular brackets (- - - ; f) de-

note an inner product with the probability distribution function f over the 6 N-dimensional
phase space (3 position and 3 momentum coordinates). Formally, f is the Gibbs ensemble,
a probability drawn from a representative ensemble of similar systems, although in practice
this inner product is replaced by a time average when this can be justified by the ergodic
hypothesis. Key to this approach is the Dirac delta function §(-), which is the manifestation
of the continuum approximation in a discrete system, an infinitely high and thin peak that is
non-zero only when a molecule position r; = [x;, y;, z;] is located at r = [x, y, z]. When
a particle is at point r, its mass m; is counted towards the density at that point, with the
Dirac delta function having units of inverse volume. By analogy with Irving & Kirkwood
(1950), we define the density of surfactant as
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ps(r )= (m; 8(r —ri); f). (2.3)
i=1
Here, the sum is limited to only surfactant molecules, denoted by the sum from i =1
to Ng, which is shorthand for the more formal notation Zi cs summing over the set of
surfactant molecules S with |S| = Ng. This set of surfactant molecules does not change
during the simulation as we simulate an NVE or NVT ensemble.

In a molecular system, all quantities must also be averaged over a region in space, so the
control volume is the most natural form to work in. The integral over a three-dimensional
control volume V;, which follows an interface z = ¢ (x, y, t) with the corners x*, yi and
z* being functions of ¢, is then

Ng
[ etevznav=[ 3 mise - pyav
A V,

Si=1

)C+ y+ Z+ NS
:/ / / Z(mi5(X—Xi)3(y_yi)5(z—zi); f)dzdy dx
x— Jym Jm o
xt pyt pot Ns
S L
x dyr dw
Ny
=Z(m,~z9iji; 1), (2.4)
i=1

where we have used the property that the Dirac delta function at any point in vector
space §(r —r;) is the product of the three orthogonal vectors r = xe, + ye, + ze,
using the three Cartesian coordinates, or equivalently it could be written in terms of
coordinates aligned with the two tangential directions to surface ¢ at every point, denoted
by x and v, and the surface normal w, so r = xe, + ey + we,. The integral over a
curved shape that deforms with the interface in real space is mapped, using a Jacobian
J=J(x, ¥, w,t), to a constant cuboidal control volume of length Ay, width Ay
and height Aw. This is centred on the interface ¢ with half its total volume Aw/2
either side, and constant length/width values A and A4, respectively. The notation
for the cuboid integral limits is x* = x & Ay /2, and similarly for ¥ and . The sifting
property of the Dirac delta function f 8(x —a) f(x) = f(a) then results in a Jacobian
Ji =J(xi, Vi, wi, t) evaluated at the location of each molecule in the sum. The integral
between constant limits is called the control volume function ¥;, i.e. the product of three
boxcar functions with ©%; = A, Ay A, each the difference of two Heaviside functions H,
Ay = (H(x* — xi) — H(x~ — xi)), and similarly for ¥/ and w, so the product is a cuboid
in three-dimensional (x, ¥, w) space. This has the property that the derivative of ¢; in a
given direction is a function that selects molecules crossing a square face of the cuboid
in[x, ¥, o] space,i.e. 3% /dx =[6(x T — xi) —8(x ~ — xi) 1Ay Ay =dSy;, which is the
mass flux over the x face. We introduce the notation dS,;, the flux of molecules in the y;
direction crossing surfaces at x*, and again similarly for v and w.

To express the conservation of surfactants in terms of these fluxes, the control volume
function can be given the same treatment as a cuboidal control volume (Smith et al. 2012),
linking time evolution in a volume to molecular surface flux terms. The Jacobian has all
the time dependence of the moving volume J; = J(x;, Vi, w;, t), so only the molecular
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positions are functions of time, i.e. dH[x — x; (¢)]/dt = —x; [x — xi(¢)], where x has
no time dependence (similarly for ¥ and w). In control volume form, these equations are
valid without ensemble averages (Smith ez al. 2012), simply representing an instantaneous
density in a volume in space, so we no longer need to take the ensemble averages (- - - ; f).
The time evolution of a control volume on the interface is then

d d &
av/vps(x,y,Z,t)dV=a;miJil9i

Ns

=Y mi [Jidy Ay Ay + JiAy Ay Ay + Ji Ay Ay Ay
i=1
+Ji Ay Ay Ay

Ns
= Z m; [—Ji%i dSyi — Jivhi dSyi — Jid; dSwi + Ji%i] . (2.5)
i=1

Here, the flux terms dS,; in mapped space checks if the mapped molecule position ;
crosses a flat surface x* or x~, which in real space represents flow along the tangent
to the surface £&. When transformed back into real space, this indicates that there is a
molecule crossing the control volume face as it moves with the interface, for x and
along the interface, and for w a flux over the interface.

Rearranging the equation, the equivalent of each term in the continuum equation (2.1)
is annotated as follows:

Ns d . Ns
Z d_t (m;v; Ji) +m;J;i$; - dS; — miﬁi-]iTI. :Zmil,-u')i dSu_)l-, (2.6)
i=1 | ————— , — (5] N —

unsteady advection geometric effect source term

where the velocities along the surface are denoted by §; =|[x;, 1[/,~] with dS; =
[dSyi, dSy;]. Equation (2.6) is tested in § 3.1 and shown to be exactly satisfied. This is not
surprising since this simply counts the surfactant molecules as they move between boxes,
with a Jacobian weight due to the surface deformation. More important is how these terms
correspond to the continuum terms in (2.1). The justification for the equivalence of the var-
ious terms to the continuum equation denoted by the underbraces will be shown in § 2.4,
where the limit of zero volume will be taken to give the differential form of the equations.

2.4. Zero-volume limit

The control volume form is the most natural for MD, consistent with binning or chunking
(Thompson et al. 2022) where a grid of cells is overlayed on the MD system to obtain
fields such as density, momentum and energy. However, the continuum equations such
as (2.1) are recovered in the limit that cell volumes tend to zero. In this limit, each side
length (e.g. Ax) tends to zero, and the limits approach each other so the surface flux
term lima, 0 dS,; = (0/9x) 6(x — xi) Aw becomes the derivative of a delta function
(Smith et al. 2012). The similar limit of a boxcar function is simply the delta function,
limay 0 Ay =38 — ;). As we are in this limiting case of zero volume, we reintroduce

the ensemble averaging (- - - ; f) to ensure equivalence of continuum and molecular terms.
Starting with the first term in (2.6), we have
1009 A18-10
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Ng Ns

_ d . d .
Alirgo . <a(mil9i-]i)a f> = Z <ami O —xi) (Y — i) §(w — wi) Ji) ; f>
AY—0 i=1 i=1

Aw—0

Ng
=% (mi 6(F —ri) Jis f)=0,T. 2.7
i=1
Here, ¥ =[x, ¥, w], with x, ¢ and @ the mapped coordinates following, respectively, the
two tangential and normal directions to the interface ¢(x, y, ¢). This expression is non-
zero only on the surface as the Delta functions ensure that we select only molecules with
position w; = w. This can therefore be used as the definition of the surface concentration
I' on the interface,
Ng
(s.0y=> " (m; §(F —F) Ji: f), (2.8)
i=1
which is consistent with Wong et al. (1996) in that 7 is fixed to a coordinate following the
surface, and the surface deformation is included through the J; term.
The second term of (2.6) can be seen to be the advection term in the continuum
equations, as the derivative in the tangential direction of the velocity times mass of
surfactant along the tangent:

Ng Ns

. ) . 0 s e
Ahmo (miJi [%i dSyi + ¥ dSyi]; f) = rr Z (miJis; 6(r —r;); f)=Vy-Tuy,
Ap—0 i=1 § i

Aw—0

(2.9)

where s =[x, ¥], and velocities along the surface are §; = [x;, 1},-]. Equation (2.9) is
analogous to one in Irving & Kirkwood (1950), which defined the gradient of momentum
as V. pu=(d/dr) ZlNzl (m;jr; 6(r —r;); f) for a fixed Eulerian reference frame, which
is extended here to a surface tracking Lagrangian one.

The third term in (2.6), the deformation of the surface in time, denoted as geometric
effect in (2.6), is given by the time derivative of the Jacobian J,

& J al J g
Jim <mif,-z9,-7;;f>=_2<m,-Ji5(f—i,->7§;f>=FZ, (2.10)
Alﬁ—>0':1 i=1

Aw—0

which is simply the definition of I" from (2.8) multiplied by the time-evolving Jacobian
divided by its original value J;/J; at the position of each molecule. Interestingly, this
shows the effect of surface geometry in a molecular system, and is therefore weighted by
the deformation at the location of each molecule.
Finally, for the right-hand side of (2.6), @; dS,;, the limit of zero volume would give a
derivative in the surface-normal direction:
Ny Ny

) . i) e - .
AI;IE() . (m; Jiw; dSyi; f>=8_wz<mijiwi5(r_ri); fY=Jn- (2.11)
AY—0 i=1 i=1
Aw—0

To understand the link to the surfactant source/sink term j,, it is clearer to interpret this
in terms of fluxes. The surfactant flux over w™ given by m; w; dS;“l. can be assumed to be

1009 A18-11


https://doi.org/10.1017/jfm.2025.227

https://doi.org/10.1017/jfm.2025.227 Published online by Cambridge University Press

M.R. Rahman, J.P. Ewen, L. Shen, D.M. Heyes, D. Dini and E.R. Smith

zero, as this surface is above the interface so a non-zero value would mean evaporation
of surfactant. The flow of surfactant over the bottom surface, m;w; dS_;, is therefore the
surfactant movement from bulk to the surface, a source/sink term in the surface equations.

Collecting all these terms, we obtain the equivalent form to the continuum differential
equation:

unsteady advection

Ns Ng

d ad
Z<a[mifi §(F —Fi); f>+ oot D midisi 8(F —Fi); f)

i=1 i=I

Ng 9 Ns
=D midi SF —Fi) )=o) Amidiin 6GF —Fi)i £y (212)

i=l i=1

geometric effect source term

The over/underbraces identify the equivalence between the terms in (2.12) and those
in the continuum equation (2.1). The unsteady term represents the temporal change of
molecules at a point. The advection term corresponds to the flux of molecules along the
tangential direction of the deforming surface. The geometric effect term, characterised
by Ji/J;, accounts for the impact of the deforming volume over time, but expressed as a
weighted sum based on the location of the molecules. The source term in (2.6) describes
the flux of surfactant from the bulk to the surface, under the assumption that no surfactant
molecules evaporate from the surface.

Unlike the form introduced by Stone (1990), there is no obvious diffusion contribution
obtained in the molecular system. This is consistent with the work of Scriven (1960), who
presented a surface transport equation without diffusion. It might be possible to justify
a diffusion-like effect through (i) consideration of Fick’s law style flux, (ii) interactions
with the non-surfactant molecules, or (iii) fluctuations, which remain when the molecular
equations are averaged over time; formally, D; Vfl” =V,- Zf\fl (m; J; (8; —ug) 8(F —
F;); ). The presented equation (2.6) is formally exact, and simply counts the number of
molecules moving into and out of a surface tracking (Lagrangian) volume, with a term
Ji/J; for the deformation of the volume in time. It is worth noting that the absence of
an explicit diffusion term in (2.6) is analogous to kinetic theory, where balance equations
derived from the Boltzmann equation lack diffusivity until small perturbations around a
local equilibrium are introduced (Chapman & Cowling 1990).

Similarly, an MD framework provides an exact account of the molecular trajectories and
does not explicitly include diffusion as an additional term. Diffusional behaviour becomes
apparent only through analysis of these trajectories . Small-scale fluctuations have been
proven to play a critical role in emergent macroscopic behaviour (Pototsky & Suslov 2024;
Yang et al. 2024). Averaging over small-scale fluctuations near local equilibrium could
also provide a means to recover diffusive-like contributions.

2.5. Numerical methods

In this subsection, it is shown how the control volume equations can be collected directly
in an MD simulation to validate the equations in the previous section. Then the method to
solve the continuum equation (2.1) using a simple finite differences scheme is discussed,
with boundary, initial and other coupled values obtained from the MD.
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2.5.1. Control volume fluxes

The control volume form can be used directly in a molecular simulation, having the
advantage of exact conservation because it simply counts how many molecules are in each
box and how many cross surfaces, with the Jacobian term scaling by the volume change.
Taking the time integral of both sides of (2.6) over one time step of a molecular simulation
At, a form of equation is obtained that is usable directly in MD:

NS N (rUAAlné
m; Ui (t + At) Ji(t + At) —m; 0;(¢) J;i ()
Z i Vi i o i Vi i +Z Z m; Jis; - dSip
i=1 i=1
Ng J (t + AI) . J ([) Ncrossing
= mi % (1) N Z Z m;Jyb; dS,,,

(2.13)

where the k subscript on dSy;x denotes all crossings in the time step Az, formally obtained
by expressing the delta function of molecular position in terms of the sum of its roots in
time §(r — ri(t)) = >, 8(t — tx)/I7;|, and taking the time integral.

This complex-looking equation (2.13) has a simple algorithmic interpretation. (i) Sum
the surfactant molecules in a volume at time step ¢ and at ¢ + At. The difference gives
the first term, the unsteady change in surfactant concentration. (ii) Count any surfactant
molecules crossing the left or right surfaces of the box; these give the second term for
the advection along the interface. (iii) Calculate the Jacobian at times ¢ and # + A¢, which
can be done assuming a simple linear finite element in the volume (see SM), and then
evaluating J at the location of all molecules in the volume. The sum of the time-evolving
Jacobian, the geometric effect, is the third term of (2.13). (iv) Finally, any molecules
crossing the bottom or top surface give the fourth term for evaporation/absorption,
typically zero below the Critical Micelle Concentration (CMC) for a volume wide enough
to encompass the interface.

Equation (2.13) is tested directly in molecular simulations, and is shown to give an
exact balance in § 3.1. It is demonstrated that (2.13) includes all relevant terms, including
the geometric effect due to surface deformation, and the source term due to surfactant
absorption/de-absorption into/from the bulk. Note that the surface is obtained by a fitting
process to the molecular positions or average density field, so it is decoupled from the
time evolution of the molecules themselves. The evolution of the molecular system is not
changed by this fitting, and the surface is purely defined. Therefore, the flux along this
surface can be obtained, with fluxes over the next time step obtained on a surface assumed
to be constant for that time in (2.13). The surface evolution itself is calculated from the
simple forward Euler approximation to J;. In this way, it corresponds to the assumption
of a system with fixed surface coordinates (Wong et al. 1996), and so is consistent with
Scriven (1960).

2.5.2. Volume average forms

The surface fluxes in (2.13) are exact, directly counting molecular crossings using a
mapped version of the velocity method of planes (Todd, Evans & Daivis 1995). However,
the statistics are known to be poor for surface flux measurements (Smith, Heyes & Dini
2017), especially when compared to averages of quantities inside a volume, the so-called
volume average forms. Since surface fluxes are equivalent to the volume measurements in
the limit that the volumes are small (Heyes et al. 2011), it is often preferable to work with

these. Here, the volume V is a cuboidal control volume in mapped (x, ¥, ) space:
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Ns
/:F(s, HAV =" miviJ;. (2.14)
v i=1
The volume average forms make the assumption that there is a single constant
continuum value in this control volume, i.e. f v I'dV = I" AV, so that the MD surfactant

concentration at location s and time step ¢ is
Ns
MD 1
I(s,t)=—=Y_ miJityls. 1], (2.15)
AV 3

Molecules are assigned to bins of width As =s™ — s~ centred on s by the control volume
(CV) function o;[s, t] = [H(sT —s;(t)) — H(s~ — 5;(t))] A, giving the average surfac-
tant concentration in that volume, assuming an average over the y or i direction. Similarly,
the momentum along the surface can be obtained from the volume integral form of (2.9),

Ng
MD 1
Tug,=—— E m; J;i$;v;[s, t], (2.16)
AV i=1

so the volume averaged velocity is (2.16) divided by (2.15):

Ns

MD 1 .

uy (s, 1) = —— > miJigivyls. t]. (2.17)
AV I i=l

These equations are used to give boundary and initial conditions for the surfactant

concentration equations, as well as to define the surface velocity.

2.5.3. Finite difference continuum solver

To evaluate the applicability of the continuum model in describing transport phenomena
at the nanoscale, (2.1) is solved numerically using direct inputs from the MD simulations.
Specifically, the concentration data at the left-hand boundary of the domain are taken
directly from MD and used as input for the numerical model. Additionally, the
velocity field (decomposed into its normal and tangential components) and the surface
deformations are provided by the MD data. This formulation results in a closed system
of equations, which we solve to assess how closely the convection—diffusion model (2.1)
agrees with the MD system, without requiring a continuum equation to approximate the
surface evolution and momentum balance.

The evolution of I" in time is discretised using a simple backwards Euler scheme,

n n—1
or 17 -1
ot At
where superscripts denote time steps, and subscripts denote spatial cells. The advection

term is one-dimensional in s, hence V - (I'u;) = 91 u/ds with the subscript s dropped
for notational simplicity:

ol'u or ou 'y —1I7 U4 — U]
j— ~ I" .
as as + as ! As il As
Forward difference is used to include upwinding (Hirsch 2007) as u > 0 with surfactant
moving from left to right, and I" > 0. The sum of (2.19) over all N..;;s gives the total advec-

tion 744,. at each time. For the diffusion term, a second-order discretisation is applied:
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’r Iy =21+ I
~ D,

9s2 (As)?

The sum of (2.20) over all N5 gives the total diffusion ngy: at each time. Together, the
discretised form of the transport equation is

Dy (2.20)

n n—1 n __rn
F]_F] +un I+1 I

u L —u" rr. —-2rr4+rr
N : I 4 I+1A 1 + I = D, I+1 I I—1
s

(As)?

(2.21)
Assuming a zero source term (i.e. j, = 0), the discretised form of the transport equation,
with like terms grouped together in the form of a matrix a I" = b, is given by

aj a4
Atu”? DAt ul, —2ul 2D
rr I l1+ Ar I+1 1 n.,.n
’+‘[ AS (AS)21|+ ’[ + ( As KV R
aj—
I1-1
n D At n—1
FI*] —W == FI . (222)

The system of equations is solved using the inbuilt linear algebra solver in Numpy
(v.1.26.0). In solving the transport model, the domain assumes symmetry about x =0, and
hence is discretised from x = 0 to x =/ along the positive x-axis. Note that the continuum
equation is solved in s coordinates following the surface; x and s are equivalent, and the
only difference arises in quantifying the length travelled by the molecules, i.e. As # Ax.
As such, the distance along the surface is worked out from (As)? = (Ax)? + (Az)?. The
following set of initial and boundary conditions and the surface fit provides a closed set
of equations to solve (2.22):

MD

[(s,t=0)= I (s,1=0), (2.23)
Is=0,1)=ae Y +a, (2.24)
I(s=1,1)=0, (2.25)

Vsi(s, t)
D5 ) = — o 2.26
D=9 6l (2:20)
Uy (s, 1) = (s, 1), 2.27)
Dy = Dye Pl (2.28)

The initial concentration field is set to the MD data at t =0 in (2.23) obtained using
(2.15); the left-hand boundary condition (2.24) is modelled based on a fit to the data
from MD at s =0. As surfactant molecules do not reach the right-hand end of the film
during the simulation time, zero concentration is assumed at the far right (2.25). A careful
tracking of the spatially and temporarily evolving surface to get the local properties is
necessary to obtain an accurate molecular description of the transport process.

To obtain the local curvature of the surface, as used in (2.26), the deforming liquid—
vapour surface is identified from the MD simulation. This uses the fluid density field
p of water molecules, with a threshold to identify the higher-density part as liquid
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before implementing edge detection. The surface is then fitted to a spline using the
UnivariateSpline function from the scipy library to obtain a functional ¢ (s, t); see § S1
in the supplementary material. Using the derivatives of the spline, the distance ds as well
as the normal and tangential vectors are obtained at each time step. These derivatives of
the surface at each point are used to get K} from the definition « (x) =¢”/[1+ 732,
where ¢’ and ¢” represent the first and second derivatives of the spline fit with respect
to x, respectively. The local velocities obtained from MD simulations are resolved along
the surface, as in (2.27). Traditionally, the mass transport equation is solved alongside
a thin film equation to capture surface deformations and their effect on the transport
dynamics. In this study, this is bypassed by directly extracting the evolving surface shape
and surfactant velocities from MD simulations, which inherently captures this deformation
at the molecular scale without the need for continuum approximations.

Surfactant molecules on a curved surface can occupy a larger area compared to
a flat surface, potentially slowing down the evolution of the concentration gradient.
Additionally, the paths available for diffusion are geometrically constrained by curvature,
leading to anisotropic diffusion (Shu & Gong 2001; Ramirez-Garza et al. 2021). In
a dedicated series of simulations focusing on uniformly distributed surfactants on a
water film, the surface diffusion of SDS molecules was estimated. To distinguish surface
diffusion from bulk diffusion, only the surfactant molecules that remained on the film’s
surface were tracked. The trajectories of these molecules were analysed to calculate the
mean squared displacement (MSD) over the simulation period, i.e. MSD = (|s(to — t) —
s(f0)|?), where s(¢) is the position of a molecule at time ¢, and s (%) is its initial position.
Subsequently, we employed Einstein’s equation for surface diffusion, Dy = MSD/¢ (Rideg
et al. 2012); the methodology employed here to obtain the diffusion coefficient from
molecular simulations has been detailed in § S2 in the supplementary material. The
diffusion coefficient obtained shows a concentration dependence as in (2.28), i.e. Dy =
Doe Pl where Dy =3.22nm?ns~', I' is the local number of surfactant molecules per
unit area, and § = 4/3. For dimensional consistency, 8 should have units of area.

The reduced mobility of the surface molecules at higher concentration leads to a lower
rate of diffusion. Similar reduction in diffusion rate due to particle crowding was observed
in previous studies. A longer tail length to achieve the diffusive limit was also observed
(Rideg et al. 2012; Tomilov et al. 2012). This functional relation employed in solving
(2.1), which originally considered a constant diffusion coefficient, accounts for variations
in local diffusivity caused by the inhomogeneous local surfactant concentration. The
effective diffusion coefficient, which updates ‘on the fly’ based on the local concentration,
reflects an inherent nonlinearity in the governing transport equations. The inclusion
of these features is crucial to model accurate transport in systems with spatial- and
time-dependent ‘driving’ properties. This concentration-dependent diffusion coefficient
suggests that the diffusive term in (2.1) is essentially Vg « (Dg(I") VI7). Note that the
diffusion coefficients obtained in our simulations are higher than the experimentally
measured bulk diffusion of SDS in aqueous solutions (Ribeiro et al. 2003), by a factor
of 2-3. This can be attributed to the speed-up process of the kinetics in coarse-grained
models that contributes to the over-estimation of diffusion (Vogele et al. 2015; Schmitt
et al. 2023). In Martini models, the best estimated kinetic speed-up factor is approximately
4; however, the polarised water model has been reported to show approximately a 2.5 times
speed-up (Marrink & Tieleman 2013). To overcome any potential mass imbalance arising
from numerical diffusion or discretisation errors, a conservation correction mechanism is
integrated to ensure that the total quantity of the transported scalar is preserved throughout

the simulation, i.e. fol I" ds = constant.
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Since any derivative property on the molecular scale is noisy, the data were smoothed
without significantly distorting the higher moments of the signal. This was achieved
by utilising a Savitzky & Golay (1964) filter, which smooths input signals by fitting a
polynomial using least squares techniques. These facilitate accurate calculation of the
spatio-temporal surface vectors, i.e. e; and e,, which are instrumental in resolving the
velocities of surfactant molecules parallel and normal to the interface. Note that all
properties are averaged along the y direction.

3. Results and discussions
3.1. Control volume conservation

The equations derived in § 2.3 track exactly the molecules in a control volume on the
surface. In this subsection, the control volume (2.6), as discretised in (2.13), was tested for
a moving interface, showing exact mass conservation. Figure 4(a) illustrates the process
of establishing the system of control volumes by fitting a second-order spline to the
outermost surfactant head group in each volume. This is shown in figure 4(a) at a single
arbitrary time, with the corresponding mapping from (x, z) space to (x, w) space shown in
figure 4(b). Figure 4(c) shows the control volume balance for volume 14 (which is second
from the right) as it contains only a single molecule and clearly highlights the various
terms in (2.13). Once the molecular positions in (), w) space are obtained, the flux terms
are calculated by simply counting if a molecule leaves one volume and joins another. These
fluxes are shown in figure 4(c) as circles. These are almost equal to the corresponding
change in the number of molecules in a volume over time, as shown by the black line. Any
difference between the fluxes and change in time is due to the stretching of the volume as
the surface moves. This change due to surface movement is shown as a dashed red line
in figure 4(c), while the inset shows a period of time when there are no surface fluxes,
highlighting the effect on measured surface concentration of the deforming volume. The
contour in figure 4(b) shows the Jacobian at each point in a given volume, due to the shape
of the surface. With the convex shape of the surface seen in figure 4(a), the result is a
stretching at the top of the volumes, and a squeezing at the bottom (it would be reversed for
a concave surface), where these values are normalised by the ratio of unmapped to mapped
volumes Ax Ay/(Ax Aw), to highlight the small effects of the surface curvature.

One final noteworthy point is that at time r=21, when a molecule is seen to
simultaneously leave and enter, the net change is zero except for the difference due to
the Jacobians of the leaving and entering molecules. For all volumes, including those
containing a single molecule, the control volume equations derived in § 2.3 are seen to
be satisfied exactly. The horizontal black line in figure 4(c) shows the sum of all terms,
which is observed to be zero to near machine precision. This approach was tested for all
15 control volumes over all 50 time units shown, and (2.13) is respected for all cases.
In some volumes, reabsorption j, to the bulk is observed; for example, near cell 10 in
figure 4(a), a few molecules can be seen below the bottom surface of the control volumes.
Given that surfactant molecules tend to stay at the surface, these events were followed
by an absorption event at a later time. Nevertheless, the framework would be able to
capture those events in cases where significant absorption would be expected (e.g. past the
CMC when micelles would form). The size of the control volume Ay could be chosen to
ensure that these events do not occur unless they represent a systematic concerted process.
The full procedural details for obtaining the spline and defining these mappings from a
system of bilinear finite elements determined using the spline fit have been elaborated in
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Figure 4. (a) Surfactant head groups at the liquid—vapour interface corresponding to (non-dimensional) time
t =17, fitted by a spline (dashed black line) that is shifted vertically by Ay =25 to define the top and
bottom surfaces of the control volumes, to represent the surface along which the surfactant molecules move.
The surface is divided into 15 control volumes, each of width Ax =25, separated by the line normal to the
middle spline at intervals of Ax. The surfactant molecules are colour-coded according to the Jacobian used
for mapping, except cell 8, which is highlighted in green. (b) The mapped coordinate system in terms of x, w,
with the Jacobian as a contour in the background. Each volume has the same width and height Ax = Aw =2,
so the Jacobian contour is shown normalised by the ratio of unmapped to mapped volume for the flat surface
case, (Ax Ay)/(Ax Aw), so shows squeezing at the volume top J < 1 and stretching at the bottom J > 1.
(c) The control volume balance equation (2.6) is shown for volume 14. The grey circles are surface fluxes
> {V:I m; J;$; - dS;, the black lines are the control volume time evolution d/dt ZlN:] m; J; ¥, and the red dashed
line is the sum of the molecular Jacobian terms Z,N:] m; J',~ ;. The sum of these three terms is zero at all times
and is shown as the thin black line, which serves as the abscissa. No absorption j, is observed for this volume,
but may occasionally occur in other volumes.
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Figure 5. Spatio-temporal variation of the normalised surfactant concentration along the length of the film
at distinct times, where x =0 denotes the centre of the film. The solid line represents surfactant evolution
predicted by the continuum transport equation (2.1), while the symbols denote data from the molecular
simulations. The dotted line corresponds to spline fitting to the evolving surface. The arrows show the local
tangential (e;) and normal (e, ) surface vectors (not to scale), and / denotes the spreading length.

§ S4 in the supplementary material, with the link to open-source code provided in ‘Code
availability’.

3.2. Surfactant transport

Figure 5 examines the time evolution of the local surfactant concentration I” (normalised
by the initial concentration at x = 0, i.e. ) at different times during the spreading process.
This considers the case when there are 0.35 nanogram of surfactant molecules deposited
on a planar film. The finite difference solution of (2.1) is depicted by the solid line, and the
symbols denote corresponding data obtained directly by MD using (2.15) to average. The
close agreement between these two quite different procedural routes affirms the validity
of the continuum model in capturing the nanoscale transport mechanism, at least for the
simple SDS surfactant case. The dotted lines represent the spline fit ¢ to the instantaneous
liquid—vapour surface obtained from the MD systen. Section S3 of the supplementary
material includes similar plots for different amounts of deposited surfactants, illustrating
the robust effectiveness of the transport equation employed. It is observed that results of
MD simulations with an initially denser monolayer align more closely with the numerical
solution of the transport equation. The reasons for this are not obvious, but could be
due in part to uncertainties associated with estimating the diffusion coefficient in these
surfactant-deficient systems, and a greater role of fluctuation-related cooperative effects.
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Figure 6. Temporal variation of the surfactant concentration on a droplet. Data from MD simulations are
represented by symbols, while the solid lines indicate the numerical solutions to the transport equation.

For less dense monolayers, local surfactant concentration fluctuations are likely, which
would not be captured by the mean-field continuum model.

In addition to the spreading of surfactant across a planar film, the analysis was extended
to an initial globally curved geometry, i.e. a droplet as in figure 1(b). Although a droplet
has a higher global curvature than the planar films, figure 6 shows that the transport
mechanism remains largely unaffected. For planar films, the furthest right end of the
film remained devoid of surfactant, resulting in a persistent surface tension gradient that
favoured continuous transport throughout the MD simulation. In contrast, in the droplet
case, surfactant molecules from both the upper and lower regions of the droplet readily
redistributed, reducing the fractional area of surfactant-poor regions. Consequently, the
transport process quickly approached a state where surfactants from both halves of the
droplet came into close proximity, which significantly diminished the driving force for
further transport, and nearly halted any directional flow of the surfactants. Note that
the solid lines in the figure, representing the solution of the transport model, show
some noticeable non-smoothness, which can be attributed to the inherent fluctuations in
the MD simulations, injected into the finite difference solver through the MD derived
boundary conditions, surface curvature and velocity field. Fluctuations in the MD data
are a natural feature of liquids when viewed on molecular dimensions, particularly in
the velocity fields and surface deformations. Additionally, the evolving surface curvature
introduces fluctuations in the transport process. While the above results demonstrate that
the advection—diffusion model provides an effective description of surfactant transport
within molecularly thin films for the considered initial conditions and geometries, a
more comprehensive investigation would be necessary to assess the robustness of the
continuum model under a broader range of surfactant systems of differing chemistry.
In some cases, the chemistry of the surfactant molecules may induce changes in their
distribution during spreading (such as phase or ordering changes) that are beyond the scope
of the continuum description to capture (at least as currently formulated). Future studies
could explore the transport dynamics of, for example, insoluble surfactants, employing
different coarse-grained representations of water, and investigate a variety of solvent—
surfactant hydrophobic—hydrophilic interactions. Nevertheless, the present work is still
a necessary and useful starting point for future research to facilitate theoretical advances
in this field.

The diffusion coefficients of the surfactant molecules are higher for low initial
concentrations. At higher concentrations, the diffusion rate of the surfactant molecules
diminishes and becomes a highly collective process resulting from the coupled interactions
between surfactant molecules in close proximity. This suggests that for initially dilute
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Figure 7. (a) Relative contributions of advection, diffusion and geometrically induced transport. (b) Spreading
of the monolayer. Symbols denote MD data, with empty and solid symbols denoting independent simulations.
Solid lines show [ ~ ¢!/2 fitting to the data. The shaded region shows the 90 % confidence interval of the fitting.
(¢) Zoomed-in view of the initial rapid transient period (boxed in (b)) showing the early time (linear) spreading.

surfactant layers, the self-diffusional contribution to the spreading event, ng; (¢), might
have a relatively greater impact on the overall spreading event. The remaining component,
i.e. contributions from a ‘geometric’ term, ngeom, (t) might be consistently insignificant in
all cases, possibly because both «; and vy fluctuate around zero, and are small numbers,
rendering their product an order of magnitude smaller than the advective and diffusive
terms. They might gain more importance for surfaces with higher local curvatures, or
when the surface is on a growing/shrinking droplet, film or bubble. These contribution
terms are plotted in figure 7(a).

3.3. Spreading length

A useful parameter that characterises the surfactant transport across the film is the
‘spreading rate’, which denotes the rate at which the front of the initial surfactant layer
covers the liquid—vapour interface. The surfactant monolayer manifests a spatial difference
in the surface tension across the interface, the magnitude at every point in space being a
function of the local surfactant concentration. This gradient in tension along the surface is
a contributing factor in driving the spreading of the monolayer. For spreading, surfactants
must overcome the viscous drag from the water sub-phase and other surfactant molecules.
By balancing these two forces, Ahmad & Hansen (1972) derived a scaling law for the
spreading length /, which was found to have the simple analytic form / ~ /2. Despite
such simplicity, the authors found that this expression represented the experimental data
very well. Borgas & Grotberg (1988) derived a similar power-law dependency between
[ and ¢, using a more formal analysis route that involved solving the Navier—Stokes
equations, including the lubrication approximations, taking into account the surface
tension gradients, and the viscous dissipation within the thin liquid film underlying the
monolayer.

Figure 7(b) shows that the spreading of the surfactant monolayer in the present
simulations follows the characteristic square root dependency on time for a range
of initial concentrations. This observation agrees with past experimental studies; for
example, Hanyak, Sinz & Darhuber (2012) studied the spreading of SDS on deformable
liquid surfaces, and obtained an average exponent 0.48 for a range of concentrations.
Similar power-law dependency was observed in several other studies (Borgas & Grotberg
1988; Hamraoui et al. 2004; Howell & Stone 2005; Hernidndez-Sanchez et al. 2015).
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The scaling exponent may assume a range of values, depending on the geometry of the
problem, and the physicochemical properties of the liquids involved, such as viscosity,
surface tension, miscibility and surface contamination (Jensen 1995; Santiago-Rosanne,
Vignes-Adler & Velarde 2001; Rafa1 & Bonn 2005; Lee & Starov 2007). While the
1172 rate dependence persists over the whole simulation time window in the present
study, the initial spreading (for approximately ¢ < 0.5 ns) appears to be faster with the
exponent n — 1; see figure 7(c) for a zoomed-in view of the initial spreading period.
Similar accelerated initial spreading was also observed in several previous experimental
studies of monolayer spreading (Lee & Starov 2007; Mitra & Mitra 2016; Motaghian
et al. 2022). This relatively rapid spreading, or more generally diffusion at short times,
is also observed for simple bulk liquids, where it is usually attributed to initial ‘ballistic’
molecule trajectories. It is an intrinsic feature at molecules on the molecular scale (Alder
& Wainwright 1967), although whether the origin is still the same for these molecular
systems is not entirely clear, and would be worthy of further investigation. The initial rapid
spreading may, for example, be linked to the development of shear flow, where starting
from a quiescent field, the surfactant might spread quickly in the beginning, driven by
advection. As the shear flow starts to develop, spreading slows down. It has been found that
a ballistic to diffusive crossover is expected as interactions and scattering of the particles
attain greater importance (Huang et al. 2011).

4. Conclusions

This study uses empirical data from NEMD simulations to parametrise a continuum
model of surfactant transport, confirming its efficacy at the molecular scale. Spreading
is influenced not only by the boundary conditions, but also by the chemical nature, and
the molecular structure and solubility of the surfactant. The inherently molecular nature
of the surfactant spreading process on a deforming liquid—vapour surface makes NEMD
simulations with molecular resolution an ideal choice for investigating these phenomena.
This can compliment continuum methods, where approximations such as diffusion,
surface tension and viscosity have to be made to ‘incorporate’ surfactant chemistry.

An NEMD methodology for modelling surfactant spreading on a thin liquid film was
developed in this work. The NEMD simulations were carried out for an SDS monolayer
patch deposited on a thin film of liquid water. The spreading of the monolayer across the
surface and subsequent curved deformation of the film were followed. Local surfactant
concentration profiles as a function of time were computed. The spreading length of the
surfactant patch was followed and interpreted in terms of a power law. The MD results
of the surfactant transport process were compared with the coupled convection—diffusion
transport equation. This transport equation describes the dynamical processes that arise
naturally during the spreading event. The comparison was facilitated by developing a
novel coarse-graining of the surfactant molecules using a Jacobian transform of the control
volume formulation. The continuum-level calculations were started from the initial coarse-
grained density profile of the NEMD system, sharing the NEMD boundary conditions
and velocity field to test the evolution of surfactant density with diffusion coefficients
calculated by separate equilibrium bulk water—surfactant MD simulations.

The NEMD-informed continuum model accurately describes the nanoscale transport
process for the particular surfactant modelled here. Although the continuum transport
equation is reasonably accurate for this prototypical SDS surfactant on thin water films, it
may require further modifications for other surfactant—solvent systems. Using the proposed
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control volume framework, NEMD can now be employed as a valuable tool to complement
continuum methods by capturing the molecular details of important transport processes.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.227.

Acknowledgements. Authors thank E. Weiand for help in assigning the MARTINI parameters, and
C. Corral-Casas, C. Braga and S. Ntioudis for fruitful discussions.

Funding. M.R.R. was supported by Shell, and the Beit Fellowship for Scientific Research. J.P.E. was
supported by the Royal Academy of Engineering (RAEng). L.S. thanks EPSRC for a Postdoctoral Fellowship
(EP/V005073/1). D.D. acknowledges a Shell/RAEng Research Chair in Complex Engineering Interfaces
and EPSRC Established Career Fellowship (EP/N025954/1). The authors are grateful to UK Materials and
Molecular Modelling Hub for computational resources funded by EPSRC (EP/T022213/1, EP/W032260/1 and
EP/P020194/1).

Declaration of interests. The authors report no conflict of interest.

Author contributions. D.D., E.R.S. and M.R.R. conceptualised the problem, D.D. and L.S. acquired
funding, and M.R.R. developed the methodology, with contributions from J.P.E. and E.R.S. M.R.R. carried out
the MD and finite difference simulations, and analysed the results. E.R.S. derived the molecular-scale transport
equation. M.R.R. and E.R.S. drafted the manuscript. D.D., E.R.S., J.P.E., L.S. and D.M.H. supervised the
project. All authors discussed the results, and edited the manuscript.

Data availability. Codes to reproduce the data, and the force field parameters are available in:
https://github.com/MuhammadRRahman/Nanoscale-Surfactant-Transport.git

REFERENCES

AFSAR-SIDDIQUI, A.B., LUCKHAM, P.F. & MATAR, O.K. 2003 The spreading of surfactant solutions on
thin liquid films. Adv. Colloid Interface Sci. 106 (1-3), 183-236.

AHMAD, J. & HANSEN, R.S. 1972 A simple quantitative treatment of the spreading of monolayers on thin
liquid films. J. Colloid Interface Sci. 38 (3), 601-604.

AHN, Y.N., GUPTA, A., CHAUHAN, A. & KOPELEVICH, D.I. 2011 Molecular transport through surfactant-
covered oil-water interfaces. Langmuir 27 (6), 2420-2436.

ALDER, B.J. & WAINWRIGHT, T.E. 1967 Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18 (23),
988-990.

ARBABI, S., DEUAR, P., BENNACER, R., CHE, Z. & THEODORAKIS, P.E. 2024 Coalescence of sessile
aqueous droplets laden with surfactant. Phys. Fluids 36 (2), 023340.

ARBABI S., DEUAR, P., DENYS, M., BENNACER, R., CHE, Z. & THEODORAKIS, P.E. 2023 Coalescence of
surfactant-laden droplets. Phys. Fluids 35 (6), 063329.

BASU, A.S. & GIANCHANDANI, Y.B. 2007 Shaping high-speed Marangoni flow in liquid films by microscale
perturbations in surface temperature. Appl. Phys. Lett. 90 (3), 034102.

BENOUAGUEF, I., MUSUNURI, N., AMAH, E.C., BLACKMORE, D., FISCHER, I.S. & SINGH, P. 2021
Solutocapillary Marangoni flow induced in a waterbody by a solute source. J. Fluid Mech. 922, A23.

BICKEL, T. & DETCHEVERRY, F. 2022 Exact solutions for viscous Marangoni spreading. Phys. Rev. E 106
(4), 045107.

BOCQUET, L. & BARRAT, J.-L. 2007 Flow boundary conditions from nano- to micro-scales. Soft Matt. 3 (6),
685-693.

BOCQUET, L. & CHARLAIX, E. 2010 Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39 (3),
1073-1095.

BORGAS, M.S. & GROTBERG, J.B. 1988 Monolayer flow on a thin film. J. Fluid Mech. 193, 151-170.

BRAGA, C., SMITH, E.R., NOLD, A., SIBLEY, D.N. & KALLIADASIS, S. 2018 The pressure tensor across a
liquid—vapour interface. J. Chem. Phys. 149 (4), 044705.

Bui, T., FRAMPTON, H., HUANG, S., COLLINS, I.R., STRIOLO, A. & MICHAELIDES, A. 2021 Water/oil
interfacial tension reduction — an interfacial entropy driven process. Phys. Chem. Chem. Phys. 23 (44),
25075-25085.

CERMELLI, P., FRIED, E. & GURTIN, M.E. 2005 Transport relations for surface integrals arising in the
formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339-351.

1009 A18-23


https://doi.org/10.1017/jfm.2025.227
https://github.com/MuhammadRRahman/Nanoscale-Surfactant-Transport.git
https://doi.org/10.1017/jfm.2025.227

https://doi.org/10.1017/jfm.2025.227 Published online by Cambridge University Press

M.R. Rahman, J.P. Ewen, L. Shen, D.M. Heyes, D. Dini and E.R. Smith

CHACON, E. & TARAZONA, P. 2003 Intrinsic profiles beyond the capillary wave theory: a Monte Carlo study.
Phys. Rev. Lett. 91 (16), 166103.

CHANDA, J. & BANDYOPADHYAY, S. 2005 Molecular dynamics study of a surfactant monolayer adsorbed at
the air/water interface. J. Chem. Theory Comput. 1 (5), 963-971.

CHAPMAN, S. & COWLING, T.G. 1990 The Mathematical Theory of Non-uniform Gases: An Account of the
Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.
CROWDY, D.G. 2021 Viscous Marangoni flow driven by insoluble surfactant and the complex Burgers

equation. SIAM J. Appl. Maths 81 (6), 2526-2546.

CrROWDY, D.G., CURRAN, A.E. & PAPAGEORGIOU, D.T. 2023 Fast reaction of soluble surfactant can
remobilize a stagnant cap. J. Fluid Mech. 969, AS8.

DAMMER, S.M. & LOHSE, D. 2006 Gas enrichment at liquid—wall interfaces. Phys. Rev. Lett. 96 (20), 206101.

DAVIDOVITCH, B., MORO, E. & STONE, H.A. 2005 Spreading of viscous fluid drops on a solid substrate
assisted by thermal fluctuations. Phys. Rev. Lett. 95 (24), 244505.

DELGADO-BUSCALIONI, R., CHACON, E. & TARAZONA, P. 2008 Hydrodynamics of nanoscopic capillary
waves. Phys. Rev. Lett. 101 (10), 106102.

ERININ, M.A., L1U, C., L1U, X., MOSTERT, W., DEIKE, L. & DUNCAN, J.H. 2023 The effects of surfactants
on plunging breakers. J. Fluid Mech. 972, RS.

EVANS, R. 1979 The nature of the liquid—vapour interface and other topics in the statistical mechanics of
non-uniform, classical fluids. Adv. Phys. 28 (2), 143-200.

GAVER, D.P. & GROTBERG, J.B. 1990 The dynamics of a localized surfactant on a thin film. J. Fluid Mech.
213, 127-148.

HAMRAOUI, A., CACHILE, M., POULARD, C. & CAZABAT, A.M. 2004 Fingering phenomena during
spreading of surfactant solutions. Colloids Surf. A: Physicochem. Engng Aspects 250 (1-3), 215-221.

HANYAK, M., SINZ, D.K.N. & DARHUBER, A.A. 2012 Soluble surfactant spreading on spatially confined
thin liquid films. Soft Matt. 8 (29), 7660-7671.

HERNANDEZ-SANCHEZ, J.F., EDDI, A. & SNOEIER, J.H. 2015 Marangoni spreading due to a localized
alcohol supply on a thin water film. Phys. Fluids 27 (3), 032003.

HEYES, D.M., SMITH, E.R., DINI, D. & ZAKI, T.A. 2011 The equivalence between volume averaging and
method of planes definitions of the pressure tensor at a plane. J. Chem. Phys. 135 (2), 024512.

HIrscH, C. 2007 Numerical Computation of Internal and External Flows: The Fundamentals of
Computational Fluid Dynamics. Elsevier Science.

HOWELL, P.D. & STONE, H.A. 2005 On the absence of marginal pinching in thin free films. Eur. J. Appl.
Maths 16 (5), 569-582.

HUANG, D.M., SENDNER, C., HORINEK, D., NETZ, R.R. & BOCQUET, L. 2008 Water slippage versus
contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101 (22), 226101.

HUANG, R., CHAVEZ, 1., TAUTE, K.M., LUKIC, B., JENEY, S., RAIZEN, M.G. & FLORIN, E.-L. 2011 Direct
observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7 (7),
576-580.

ILGEN, A.G., BORGUET, E., GEIGER, F.M., GIBBS, J.M., GRASSIAN, V.H., JUN, Y.-S., KABENGI, N.
& KUBICKI, J.D. 2024 Bridging molecular-scale interfacial science with continuum-scale models. Nat.
Commun. 15 (1), 5326.

IRVING, J.H. & KIRKWOOD, J.G. 1950 The statistical mechanical theory of transport processes. IV. The
equations of hydrodynamics. J. Chem. Phys. 18 (6), 817-829.

JENSEN, O.E. 1995 The spreading of insoluble surfactant at the free surface of a deep fluid layer. J. Fluid
Mech. 293, 349-378.

JEWETT, A.L et al. 2021 Moltemplate: a tool for coarse-grained modeling of complex biological matter and
soft condensed matter physics. J. Mol. Biol. 433 (11), 166841.

JOHANSSON, P., GALLIERO, G. & LEGENDRE, D. 2022 How molecular effects affect solutal Marangoni
flows. Phys. Rev. Fluids 7 (6), 064202.

JoLy, L., YBERT, C., TRIZAC, E. & BOCQUET, L. 2004 Hydrodynamics within the electric double layer on
slipping surfaces. Phys. Rev. Lett. 93 (25), 257805.

JoLy, L., YBERT, C., TRIZAC, E. & BOCQUET, L. 2006 Liquid friction on charged surfaces: from
hydrodynamic slippage to electrokinetics. J. Chem. Phys. 125 (20), 257805.

KANDUC, M., STUBENRAUCH, C., MILLER, R. & SCHNECK, E. 2024 Interface adsorption versus bulk
micellization of surfactants: insights from molecular simulations. J. Chem. Theory Comput. 20 (4),
1568-1578.

KiMm, H.-Y., QIN, Y. & FICHTHORN, K.A. 2006 Molecular dynamics simulation of nanodroplet spreading
enhanced by linear surfactants. J. Chem. Phys. 125 (17), 174708.

KITAHATA, H. & YOSHINAGA, N. 2018 Effective diffusion coefficient including the Marangoni effect.
J. Chem. Phys. 148 (13), 134906.

1009 A18-24


https://doi.org/10.1017/jfm.2025.227

https://doi.org/10.1017/jfm.2025.227 Published online by Cambridge University Press

Journal of Fluid Mechanics

KoPLIK, J. & MALDARELLI, C. 2017 Diffusivity and hydrodynamic drag of nanoparticles at a vapor-liquid
interface. Phys. Rev. Fluids 2 (2), 024303.

LARADJI, M. & MOURITSEN, O.G. 2000 Elastic properties of surfactant monolayers at liquid-liquid
interfaces: a molecular dynamics study. J. Chem. Phys. 112 (19), 8621-8630.

LEE, K.S. & STAROV, V.M. 2007 Spreading of surfactant solutions over thin aqueous layers: influence of
solubility and micelles disintegration. J. Colloid Interface Sci. 314 (2), 631-642.

Liu, Y., GANTI, R., BURTON, H.G. A., ZHANG, X., WANG, W. & FRENKEL, D. 2017 Microscopic
Marangoni flows cannot be predicted on the basis of pressure gradients. Phys. Rev. Lett. 119 (22), 224502.

LOHSE, D. & ZHANG, X. 2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87 (3), 981-1035.

MALDARELLI, C., DONOVAN, N.T., GANESH, S.C., DAS, S. & KOPLIK, J. 2022 Continuum and molecular
dynamics studies of the hydrodynamics of colloids straddling a fluid interface. Annu. Rev. Fluid Mech.
54 (1), 495-523.

MANIKANTAN, H. & SQUIRES, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows.
J. Fluid Mech. 892, P1.

MARRINK, S.J., TIELEMAN, D.P. & MARK, A.E. 2000 Molecular dynamics simulation of the kinetics of
spontaneous micelle formation. J. Phys. Chem. B 104 (51), 12165-12173.

MARRINK, S.J. & TIELEMAN, D.P. 2013 Perspective on the Martini model. Chem. Soc. Rev. 42 (16),
6801-6822.

MARTINEZ, L., ANDRADE, R., BIRGIN, E.G. & MARTINEZ, J.M. 2009 Packmol: a package for building
initial configurations for molecular dynamics simulations. J. Comput. Chem. 30 (13), 2157-2164.

MITRA, S. & MITRA, S.K. 2016 Understanding the early regime of drop spreading. Langmuir 32 (35),
8843-8848.

MORCIANO, M., FASANO, M., BORISKINA, S.V., CHIAVAZZO, E. & ASINARI, P. 2020 Solar passive distiller
with high productivity and Marangoni effect-driven salt rejection. Energ. Environ. Sci. 13 (10), 3646-3655.

MOSELER, M. & LANDMAN, U. 2000 Formation, stability, and breakup of nanojets. Science 289 (5482),
1165-1169.

MOTAGHIAN, M., VAN DER LINDEN, E. & HABIBI, M. 2022 Surfactant—surfactant interactions govern
unusual Marangoni spreading on a soap film. Colloids Surf. A: Physicochem. Engng Aspects 653, 129747.

NEEL, B. & VILLERMAUX, E. 2018 The spontaneous puncture of thick liquid films. J. Fluid Mech. 838,
192-221.

PENG, M., DUIGNAN, T.T., NGUYEN, C.V. & NGUYEN, A.V. 2021 Modeling surfactant adsorption at the
air—water interface. Langmuir 37 (7), 2237-2255.

PEREIRA, A., TREVELYAN, P.M.J., THIELE, U. & KALLIADASIS, S. 2007 Dynamics of a horizontal thin
liquid film in the presence of reactive surfactants. Phys. Fluids 19 (11), 112102.

PERUMANATH, S., CHUBYNSKY, M.V., PILLAI, R., BORG, M.K. & SPRITTLES, J.E. 2023 Rolling and
sliding modes of nanodroplet spreading: molecular simulations and a continuum approach. Phys. Rev. Lett.
131 (16), 164001.

POSSMAYER, F., ZU0, Y.Y., VELDHUIZEN, R.A.W. & PETERSEN, N.O. 2023 Pulmonary surfactant: a
mighty thin film. Chem. Rev. 123 (23), 13209-13290.

POTOTSKY, A. & SUSLOV, S.A. 2024 Electromagnetically driven flow in unsupported electrolyte layers:
lubrication theory and linear stability of annular flow. J. Fluid Mech. 984, A75.

RAFAL S. & BONN, D. 2005 Spreading of non-Newtonian fluids and surfactant solutions on solid surfaces.
Physica A: Stat. Mech. Applics. 358 (1), 58-67.

RAHMAN, M.R., SHEN, L., EWEN, J.P., DINI, D. & SMITH, E.R. 2022 The intrinsic fragility of the liquid—
vapor interface: a stress network perspective. Langmuir 38 (15), 4669-4679.

RAHMAN, M.R., SHEN, L., EWEN, J.P., HEYES, D.M., DINI, D. & SMITH, E.R. 2024 Life and death of a
thin liquid film. Commun. Phys. 7 (1), 242.

RAMIREZ-GARZA, O.A., MENDEZ-ALCARAZ, J.M. & GONZALEZ-MOZUELOS, P. 2021 Effects of the
curvature gradient on the distribution and diffusion of colloids confined to surfaces. Phys. Chem. Chem.
Phys. 23 (14), 8661-8672.

RIBEIRO, A.C.F., LOBO, V.M.M., AZEVEDO, E.F.G., MIGUEL, M.D.G. & BURROWS, H.D. 2003 Diffusion
coefficients of sodium dodecylsulfate in aqueous solutions and in aqueous solutions of B-cyclodextrin.
J. Mol. Lig. 102 (1-3), 285-292.

RIDEG, N.A., DARVAS, M., VARGA, I. & JEDLOVSZKY, P. 2012 Lateral dynamics of surfactants at the free
water surface: a computer simulation study. Langmuir 28 (42), 14944-14953.

ROCHE, M., L1, Z., GRIFFITHS, .M., LE ROUX, S., CANTAT, 1., SAINT-JALMES, A. & STONE, H.A. 2014
Marangoni flow of soluble amphiphiles. Phys. Rev. Lett. 112 (20), 208302.

RUCKENSTEIN, E. & JAIN, R.K. 1974 Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans.
270, 132-147. CRC Press.

1009 A18-25


https://doi.org/10.1017/jfm.2025.227

https://doi.org/10.1017/jfm.2025.227 Published online by Cambridge University Press

M.R. Rahman, J.P. Ewen, L. Shen, D.M. Heyes, D. Dini and E.R. Smith

SANGWAI, A.V. & SURESHKUMAR, R. 2011 Coarse-grained molecular dynamics simulations of the sphere to
rod transition in surfactant micelles. Langmuir 27 (11), 6628—-6638.

SANTIAGO-ROSANNE, M., VIGNES-ADLER, M. & VELARDE, M.G. 2001 On the spreading of partially
miscible liquids. J. Colloid Interface Sci. 234 (2), 375-383.

SAVITZKY, A. & GOLAY, M.J.E. 1964 Smoothing and differentiation of data by simplified least squares
procedures. Anal. Chem. 36 (8), 1627-1639.

SCHMITT, S., FLECKENSTEIN, F., HASSE, H. & STEPHAN, S. 2023 Comparison of force fields for the
prediction of thermophysical properties of long linear and branched alkanes. J. Phys. Chem. B 127 (8),
1789-1802.

SCRIVEN, L.E. 1960 Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem.
Engng Sci. 12 (2), 98-108.

SCRIVEN, L.E. & STERNLING, C.V. 1960 The Marangoni effects. Nature 187 (4733), 186-188.

SEGA, M., FABIAN, B. & JEDLOVSZKY, P. 2015 Layer-by-layer and intrinsic analysis of molecular and
thermodynamic properties across soft interfaces. J. Chem. Phys. 143 (11), 114709.

SHEN, L., DENNER, F., MORGAN, N., VAN WACHEM, B. & DINI, D. 2020 Transient structures in rupturing
thin films: Marangoni-induced symmetry-breaking pattern formation in viscous fluids. Sci. Adv. 6 (28),
eabb0597.

SHI, P, ZHANG, H., LIN, L., SONG, C., CHEN, Q. & LI, Z. 2019 Molecular dynamics simulation of four
typical surfactants in aqueous solution. RSC Adv. 9 (6), 3224-3231.

SHINODA, W., DEVANE, R. & KLEIN, M.L. 2008 Coarse-grained molecular modeling of non-ionic surfactant
self-assembly. Soft Matt. 4 (12), 2454-2462.

SHU, D.J. & GONG, X.G. 2001 Curvature effect on surface diffusion: the nanotube. J. Chem. Phys. 114 (24),
10922-10926.

SMmiITH, E.R., HEYES, D.M. & DinI, D. 2017 Towards the Irving—Kirkwood limit of the mechanical stress
tensor. J. Chem. Phys. 146 (22), 224109.

SMmiTH, E.R., HEYES, D.M., DINI, D. & ZAKI, T.A. 2012 Control-volume representation of molecular
dynamics. Phys. Rev. E 85 (5), 056705.

SPRITTLES, J.E., L1U, J., LOCKERBY, D.A. & GRAFKE, T. 2023 Rogue nanowaves: a route to film rupture.
Phys. Rev. Fluids 8 (9), L092001.

SRESHT, V., LEWANDOWSKI, E.P., BLANKSCHTEIN, D. & JUSUFI, A. 2017 Combined molecular dynamics
simulation—molecular-thermodynamic theory framework for predicting surface tensions. Langmuir 33 (33),
8319-8329.

STETTEN, A.Z., IASELLA, S.V., CORCORAN, T.E., GAROFF, S., PRZYBYCIEN, T.M. & TILTON, R.D. 2018
Surfactant-induced Marangoni transport of lipids and therapeutics within the lung. Curr. Opin. Colloid
Interface Sci. 36, 58-69.

STONE, H.A. 1990 A simple derivation of the time-dependent convective—diffusion equation for surfactant
transport along a deforming interface. Phys. Fluids A: Fluid Dyn. 2 (1), 111-112.

TEMPRANO-COLETO, F. & STONE, H.A. 2024 On the self-similarity of unbounded viscous Marangoni flows.
J. Fluid Mech. 997, A45.

THEODORAKIS, P.E., SMITH, E.R. & MULLER, E.A. 2019 Spreading of aqueous droplets with common and
superspreading surfactants. Colloids Surf. A: Physicochem. Engng Aspects 581, 123810.

THOMPSON, A.P. et al. 2022 LAMMPS - a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171.

TopD, B.D., EVANS, D.J. & DAIVIS, P.J. 1995 Pressure tensor for inhomogeneous fluids. Phys. Rev. E 52 (2),
1627-1638.

ToMILOV, A., VIDECOQ, A., CHARTIER, T., ALA-NISSILA, T. & VATTULAINEN, 1. 2012 Tracer diffusion in
colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions. J. Chem. Phys.
137 (1), 014503.

TRITTEL, T., HARTH, K., KLOPP, C. & STANNARIUS, R. 2019 Marangoni flow in freely suspended liquid
films. Phys. Rev. Lett. 122 (23), 234501.

VOGELE, M., HOLM, C. & SMIATEK, J. 2015 Properties of the polarizable Martini water model: a comparative
study for aqueous electrolyte solutions. J. Mol. Lig. 212, 103-110.

WANG, S. & LARSON, R.G. 2015 Coarse-grained molecular dynamics simulation of self-assembly and surface
adsorption of ionic surfactants using an implicit water model. Langmuir 31 (4), 1262-1271.

WEIAND, E., RODRIGUEZ-ROPERO, F., ROITER, Y., KOENIG, P.H., ANGIOLETTI-UBERTI, S., DINI, D. &
EWEN, J.P. 2023 Effects of surfactant adsorption on the wettability and friction of biomimetic surfaces.
Phys. Chem. Chem. Phys. 25 (33), 21916-21934.

WONG, H., RUMSCHITZKI, D. & MALDARELLI, C. 1996 On the surfactant mass balance at a deforming fluid
interface. Phys. Fluids 8 (11), 3203-3204.

1009 A18-26


https://doi.org/10.1017/jfm.2025.227

https://doi.org/10.1017/jfm.2025.227 Published online by Cambridge University Press

Journal of Fluid Mechanics

Xu, Y., DENG, L., REN, H., ZHANG, X., HUANG, F. & YUE, T. 2017 Transport of nanoparticles
across pulmonary surfactant monolayer: a molecular dynamics study. Phys. Chem. Chem. Phys. 19 (27),
17568-17576.

YANG, C. & SUN, H. 2014 Surface-bulk partition of surfactants predicted by molecular dynamics simulations.
J. Phys. Chem. B 118 (36), 10695-10703.

YANGJ.,DU S, XIAO Y., WANG S., ZHAO M. & XIONG Q.R. 2024 Instability of odd viscosity falling liquid
films with insoluble surfactants. Phys. Fluids 36 (8), 084118.

YESYLEVSKYY, S.O., SCHAFER, L.V., SENGUPTA, D., MARRINK, S.J. & LEVITT, M. 2010 Polarizable
water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6 (6), e1000810.

ZHANG, Y. & DING, Z. 2023 Capillary nanowaves on surfactant-laden liquid films with surface viscosity and
elasticity. Phys. Rev. Fluids 8 (6), 064001.

ZHANG, Y., SPRITTLES, J.E. & LOCKERBY, D.A. 2021 Thermal capillary wave growth and surface
roughening of nanoscale liquid films. J. Fluid Mech. 915, A135.

1009 A18-27


https://doi.org/10.1017/jfm.2025.227

	1. Introduction
	2. System description and methodology
	2.1. Molecular description of the system
	2.2. Continuum description of surfactant transport
	2.3. Derivation of a molecular-scale transport equation
	2.4. Zero-volume limit
	2.5. Numerical methods
	2.5.1. Control volume fluxes
	2.5.2. Volume average forms
	2.5.3. Finite difference continuum solver


	3. Results and discussions
	3.1. Control volume conservation
	3.2. Surfactant transport
	3.3. Spreading length

	4. Conclusions
	References

