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LOCAL WELL POSEDNESS FOR STRONGLY DAMPED WAVE
EQUATIONS WITH CRITICAL NONLINEARITIES

ALEXANDRE N. CARVALHO AND JAN W. CHOLEWA

In this article the strongly damped wave equation is considered and a local well
posedness result is obtained in the product space HQ(Q) X L2(il). The space of initial
conditions is chosen according to the energy functional, whereas the approach used
in this article is based on the theory of analytic semigroups as well as interpolation
and extrapolation spaces. This functional analytic framework allows local existence
results to be proved in the case of critically growing nonlinearities, which improves
the existing results.

1. INTRODUCTION

For 6 e [1/2,1], Tj > 0, consider the family of problems

utt + v(-&)6ut + ( - A ) u = f{u, ut), t>0, a; e ft,

u(0,x) = uo(ar), ut(0,i) = vo(x), x € ft,

u(t,x) =0, 0 0, xedQ,

where ft is a bounded smooth domain in R", n ^ 3, and A — (—A) with Dirichlet
boundary conditions. It is well known that A is a positive, self-adjoint operator with
domain D{A) = H2(SI)C\HQ (ft) and therefore —A generates a compact analytic semigroup
on X = X° — L2(ft). Denote by Xa the fractional power spaces associated with the
operator A; that is, Xa = D(Aa) endowed with the graph norm.

The problems (1) will be viewed as ordinary differential equations in a product space
Y - Y° = X1'2 x X°:

(2) A{e)

t=o
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444 A.N. Carvalho and J.W. Cholewa [2]

with A{$) and J- denoted in a matrix form by

(3)

where F is the Nemitski! map associated with f(u,ut), and A(e) '• D(A(o)) C Y° -» V0

with

(4)

and

t o r e D(Am).

We note that the abstract results that we obtain for (2) will cover a wide class of
problems that contains, besides (1), some higher order equations. In the applications we
shall however focus on the particular example (1).

The homogeneous problem (2) corresponds to the following second order ordinary
differential equation in the Hilbert space Y°:

(6) u + T)A0U + Au = 0, t > 0, u(0) = u0, «(0) = v0.

This equation has been extensively studied by Chen and Triggiani in a series of papers
[4, 5, 6]. In [4, 5] the authors prove the sectoriality of the operators A$, 0 € [1/2,1]
and discuss some of its spectral properties. In [6], the authors describe fractional power
spaces Ya, a € [0,1], associated with A$, 0 € [1/2,1]. Many of our considerations will
be based on the results proved in these papers.

We choose as a base space for (1) the product space Y° — Xll2 x X°. This choice of
space seems to be the appropriate choice to study the asymptotic behaviour of (1), for in
it we may exhibit an energy functional to (1) (we shall exploit the asymptotic behaviour
of (1) in another publication). This choice also allow us to take advantage of the results
obtained in [4, 5, 6].

As we shall see, the structure of the fractional power scale [Ya, a € R+] as well as the
description of the extrapolated fractional power scale generated by (K°, A($)) (see [1] for a
definition) is more complicated in the case 9 e (1/2,1] than in the case 9 = 1/2. However
for 9 6 (1/2,1], we are still able to describe a part of the extrapolated scale needed to
solve (1) with / growing with respect to u up to the critical exponent (n + 2)/(n — 2).

An important remark, at this point, is that the critical exponent for / with respect
to u does not depend on the exponent 9 of the damping operator.

For the case 9 — 1 we shall see that a map / growing like \u\^n+T>l^n~2^ is subcritical
in the sense of [2]. However it does not seem possible to obtain a local well posedness

https://doi.org/10.1017/S0004972700040296 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040296


[3] Well posedness for wave equations 445

result for maps growing faster than that. This is related to the special smoothing shown
in the characterisation of the fractional power spaces associated with A(i) (see [6]).

It is worth mentioning the admissible growth of the nonlinearity with respect to ut.

Contrary to the case 9 = 1/2, growth like |u ( |
( n + 2 ) / ( n ) becomes subcritical if 6 ± 1/2. We

shall see that even faster growth is possible here. The nonlinearity in (1) will be allowed
to grow as fast as | ut ] (™

+4°)/t"). The criticality of this nonlinearity resembles (it is not
exactly the same) the ultra-critical nonlinearities in the terminology of [2].

The main result in this paper concerning local existence is

T H E O R E M 1 . If f satisfies

,7) \f{u,v)-f(u\v')\ $c|u-u'|(l + M«-1 + |u'|''1~1)
+c\v - v'\(l + \v\"2-1 + Iv'l"2-1)

with pi ^ ((n -I- 2)/(ra - 2)) and p2 ^ (n + 40)/n then (1) is locally well posed in HQ(Q)
x L2(Q).

Our aim is to give a functional analytic framework that allow us to exploit the
sectoriality of the operators A($) to obtain sharp local well posedness results for (1).
So far, the existing local well posedness results for (1) do not exploit the sectoriality of
the operators A($), and therefore no sharp result is available. We obtain local existence
results for critically growing nonlinearities, improving considerably the existing results.
This abstract framework is also suitable for the study of the long time behaviour of the
semigroup of global solutions to (1) in Y°. Results concerning the existence of a global
attractor for (1) will be proved in a publication complementary to this.

We remark that we do not assume any kind of sign condition on the map / . These
sign conditions are usually needed when applying a method like Faedo-Galerkin. We also
remark that the ^-regular solutions are more general than the solutions found in [7] in the
sense that they do not need to have a controlled growth at the initial time. We use the
ideas developed in [2], for it provides a clear framework for dealing with perturbations of
linear equations (semilinear equations), extracting the local well posedness results from
the knowledge of the fractional power spaces and the properties of the Nemitskii operators
associated with the nonlinearity acting on them.

2. T H E STRONGLY DAMPED WAVE OPERATOR

In this section we study the abstract properties of the operator

To - / I
(8) .4(0) = . . J : D(AW) C X1'2 x X ->• X1'2 x X

L J

defined by

(9)
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for

x1'2- Al~ei

where A is a self adjoint and positive operator in the Hilbert Space X, and Xa denotes

the fractional power spaces associated to A.

We remark that

(10)
Aip

for € X1 x X\

and that X1 x Xe is a dense subset of D(A(e))- However the operator B : D(B) c
X1'2 x X ->• X1/2 x X denned by D(£) = I ' x l ' and

is not a closed operator unless 9 = 1/2.

The presentation here will follow closely a series of papers published by Chen and
Triggiani in 1988, 1989 and 1990. It was proved in [4, 5] that the A(e) is a sectorial
operator and therefore it generates an analytic semigroup. Shortly after that, in [6],
the authors gave a characterisation of the fractional power spaces associated with A(g),

0€ [1/2,1].
As shown in [2], the knowledge of the scale of fractional power spaces and its em-

beddings into known spaces are the main tool in obtaining local well posedness of a
semilinear sectorial problem (even in the critical growth case). In this sense, this section
will provide the main working tools to obtain a general local well posedness result for

Our aim in this section is thus to discuss the properties of A(e), 0 € [1/2,1], necessary
to consider (2) as a sectorial problem on an extrapolation space Y^)_1 of Y° generated
by Aw, 0 £ [1/2,1].

2.1. GENERALITIES ABOUT THE OPERATOR Ayy In this subsection we establish the
basic properties of the operator A^) that will be used in the main body of the paper.
For the sake of completeness we shall sketch the proof of these results. We also remark
that in Section 2.1 only Lemma 1 and Corollary 1 make use of the fact that A is a
negative Laplacian in L2(fi) with D(A) — H2(Q.) x Ho(Q.). All other results are based
on the assumption that A is a positive definite, self-adjoint operator in a Hilbert space
X° having compact resolvent.

PROPOSITION 1 . For each 6 € [1/2,1] the following conditions hold:

(i) .4(0) is closed,

(ii) A(6) is maximal accretive or, equivalently, —A(e) is maximal dissipative,

https://doi.org/10.1017/S0004972700040296 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040296


[5] Well posedness for wave equations 447

(iii) 0

(iv) A(e) has compact resolvent provided that

(v)
-A rjA6

D{A\e)) =

is the adjoint ofA(g) and

G X( 3 / 2 ) -" x X1'2; -A1-"?

(vi) --4(9) generates on Y° a C°-semigroup of contractions e •4(")t : Y° -> Y°,
t^O. Furthermore, the imaginary powers of A($) are bounded and

(11) \\Afe)\\C{YOXo) $ e ™ l , t € R

(vii) Ay) is sectorial operator in Y° with Rea(A(g)) > 0. Tie semigroup of

contractions {e~Aw\ t^O} is thus analytic. It is also compact except for

0 = 1.

PROOF: Note that (i) is immediate from the closedness of A and Ae. For (ii) we
first note that

A(9)
Y«

-v
Ae{Al~eu ; / Y°

= -{Al'2v, Al'2u)x , A6'2v)x.

Therefore,

Rel
; • ;

Y°
€ Yfo,

which proves accretivity of A($)- To complete part (ii) it suffices to note that the equation

possesses, for each _ 6 Vo, a unique solution

A)~lu + (1+ t)Ae

Part (iii) is an immediate consequence of the form of the inverse operator
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Part (iv) follows from (iii) and compactness of the Sobolev inclusions between Xa spaces
resulting from compactness of the resolvent of A. We remark further that in this paper
we are not going to use explicitly the formulas in part (v) concerning the adjoint oper-
ator. However, the knowledge of the dual scale (Y°,A*,g\) may be of some importance
in describing the whole two-sided fractional power scale generated by (Y°,A(o)) (see [1,
Chapter V]). To prove part (v), note first that by the density of the embedding Y^ C Y°
the adjoint operator A*^ exists, and since

Y1 v Y6 C V1

y\. S\ yv dense 1 (Q\^

e x1 x xe.

u

V
J

' 0 I
-A rjAe

u]k \ t
/ Y°

M
. • •

u
V

for I

(13)

X1'2; -Al-e

Since A[$) : D(A*W) -> Y° and Jw : D(JW) -> Y° are both closed operators in Y° and
X1 x Xe is dense in D(J^), we obtain from (12) that

By (i) and (iii) we next have 0 e p{A*^), which ensures in particular that the operator
A*w is invertible. By this latter property and (13) it is clear that D(A!$^) cannot have
more elements than D{J(e)). Part (v) is thus proved.

Part (vi) follows from the Lumer-Phillips theorem and from the observations con-
cerning powers of accretive operators reported in [1, p. 164] (see also [8, p. 247]).

The sectoriality of A($) and its spectral properties mentioned in (vii) were reported
in [5, Theorem 1.1]. Finally, compactness of {e~Aw\ t ^ 0} for 9 ^ 1 is a consequence
of (iv). Proposition 1 is thus proved. D

REMARK 1. We draw attention to the fact that A(i) does not have compact resolvent.
This fact will assure that the semigroup {e"4'1)'^ ^ 0} is not compact and makes this
case specially interesting in the discussion of the asymptotics of (1).
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2.2. P A R T I A L D E S C R I P T I O N O F T H E F R A C T I O N A L P O W E R S C A L E F O R Ay), 0

G [1/2,1]. Connecting the properties of A($) listed in Proposition 1 with the results

of [5, 6] we obtain a partial description of the fractional power scale associated to A($).

Before we can proceed we need the following general interpolation result:

PROPOSITION 2 . Let X{, yu i = 1,2 be the Banach spaces such that

(14) * i C Xo, tt C 3>o,

topologically and algebraically. Then,

(15) [Xo x y0, * i x yi]e = [Xo, X,]e x [y0, 3 ^ , 6 e (0,1).

PROOF: The proof is an immediate consequence of the definition of complex inter-
polation spaces in [9, Section 1.9.2]). D

Based on Proposition 2 it is now easy to get characterisations of the fractional power
spaces Y^y a G (0,1), 6 — 1/2 without referring to the general considerations of [6].

PROPOSITION 3 . For a € [0,1] we have:

(16) Yfo2) = D(Afim) = D{{A\ll2)T) =

PROOF: Recall that Y*l/2) = X1 x X1?2, Y° = X1'2 x X whereas, from Proposition 1

(vi),

(17) Y^m = [Y°,Y^3)]a, a 6 (0 ,1) .

Combining (17) and (15) we obtain

X% x [X,XW]a, a e (0,1).

Next, by our assumptions on A, we have the equalities:

[Xl'\X% =

which justify the relations for (16) for D(A(i/2))-

Since ^4(i/2) is sectorial and has bounded imaginary powers, the same is true for .4,*, ,2,
(see [1, p. 13, p. 273]). Therefore, (17) holds for the powers of A' as well. Recalling that
D{A{1/2)) = D{A*{l/2)) = Yfl/2) we get finally that

r), ae[0,l).

Proposition 3 is thus proved.

More generally we have:
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PROPOSITION 4 . For 8 e [1/2,1] the following equality holds:

(18)
•w-a fvO V 1 1
r(9) — l r ' r(0)}<*

e [i

P R O O F : The first equality in (18) follows from Proposition 1 (vi) and [9, Section
1.15.3]. The second equality in (18) results from [6, Theorem 1.1]. D

Recall that the extrapolation space Y(B)-i of Y° generated by A($) is the completion
of the normed space (Y°, \\A7g\ • ||yo). We may infer that:

PROPOSITION 5 . Let 8 € [1/2,1] and Ay)^ denotes the closure of A{6) in

Yp)^. Then,

1- -4(fl)-i is sectorial and positive operator in the space Y(g)_1 with D(A^)-i)

2. imaginary powers of A(6)_1 are bounded,

3. if 9 ^ 1, then A(g)_i has compact resolvent.

P R O O F : By [1, p. 262] we know that p(A(g)_1) = p(A(g)) whereas the required
estimate for the quantity |A|||(A — A(g)_1)~

1\\c(Y(e) ,Ym x) is a consequence of the estimate
for the resolvent of A(g) in Y°. Indeed, since Y^ is dense in Y°, A(g)_l is a continuous
extension of A($) onto Y° such that A(g)_1 is an isometric isomorphism from Y° onto
V^).,. In particular, A(g)_1 = A(g) on D{A(g)) and (A - A^)^)'1 — (A - A(g))~l on Y°.
Therefore, by the sectoriality of A{g) in Y° we obtain the estimate

\ - l

Y°

- 1

- 1 A - l(A - A{e))-
lA{

The latter can be extended next to the elements of

This justifies sectoriality of -4(*)-i ' n ^(*)-i-

_l by the density of Y° in
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The remaining assertions are the direct consequences of the results reported in [1,

p. 266, p. 264]. The proof is complete. U

We shall next study (1) as a sectorial problem in Y(B)_X, 0 e [1/2,1]; that is

(19)
d
Jt :

\,t > 0,

I t=0
\Vo

Our concern will be the solutions to (19) originating at the elements of Y° = D(A($)_1)
= Y(l)_1 and therefore we shall be working in the critical case. To that end we shall need
to know sharp embeddings of the fractional power spaces into known spaces.

The embeddings below relate the spaces in the interpolated-extrapolated fractional
power scale and known spaces. They are crucial in obtaining the e-regular properties for
the nonlinearities in (19).

LEMMA 1 . Let [{Xa,Aa), a e K] (Aa being the realisation of A in X°) be

generated by (L2(fi), ( -A D ) ) . Then the following embeddings hold:

(20)

y(£° C

for 1 ^ n — 2 — 4 a ( l — 6)

x H28a(Q) C L«l(
n

, 1 ^ q2

2n
—»,

n — 4a8a 6 [0,1/2], 6 e [1/2,1], n ^ 3, and a(l - 0) < i if n = 3,

(21)

PROOF: TO obtain (20) we use interpolation and the results from (18)

[ 1

Therefore,

whenever
2n

:, 1 ^ 92
2n

^ n - 2 - 4 c r ( l - 0 ) '
where a <E [0,1/2], 9 € [1/2,1], n ^ 3.

To prove (21) we first note that, based on [1, p. 267, Corollary 1.3.9],

(22)

so that in particular
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We now focus on the case a £ [0,1/2].

From (22) and [1, p. 266, Theorem 1.3.8] we obtain

* * / A \

rW-(i-=)

,1

\ 1 - 1

'(6)

\\Aea<p\\xo

a e [0,1/2], 6 6 [1/2,1].
Consequently, since

| - (1 - for ae[0,i], ^ 6 ^ , l],

we obtain

+

= c

By the density of Y° in x^1/2)-^-0^1-8) x ^-(i^+ofi-*), this proves the first inclusion
in (21).

The second inclusion in (21) is a consequence of a duality argument and the inclusions

for 1 ̂  p ^ ((2n)/n - 2 + 4a(l - 0)). The proof is now completed. D
In the case 9 = 1/2 we can describe more completely the fractional power scale.

2.3. COMPLETE DESCRIPTION OF THE FRACTIONAL POWER SCALE FOR .4(1/2)•
Based on [1, Chapter V] we shall describe here the extrapolated fractional power scale
of order 1 corresponding to a pair (y°,-4(i/2))-

LEMMA 2 . LetY^/2)_1 denote the extrapolation space of Y° generated by .4(1/2).
The following equality holds:

(23) -t =XX X-1'2.
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PROOF: Recall first that K(i/2)_1 is the completion of the normed space (Y°, |

|yo). Since

-4(1/2)

Y°

1-1

Y°
;

the completions of (Y°, ||Aj/2) ' \W°) an<^ {Y°> II ' llxxx-'/2) coincide. Recalling that
Y° = X1'2 x X, we obtain (23). The proof is complete. D

THEOREM 2 . Tie following characterisation holds:

C)A\ yk+a _ y(k+a)/2 v y'(fc-l+Q)/2 ft c fn 1] h a N
(11) ^(l/2)_i ~ X A v , Ct fc [U, 1J, K fc IN,

P R O O F : By Proposition 5 the usual interpolation arguments may be used so that
for k = 1, 2 , . . . , we get

•yk+a \V^ yk+\ l r-yA:—1 -yk l

i\rk/2 ^. vlk—1)/2 v"C=+l)/2 w vfc/2l— [A X A , A V X A Ja

X A , A Lv = A X

For k = 0 instead of the standard arguments above we also need the properties of the
Hilbert scale [Xa, a € R] (see [1, p. 274]) as well as the duality theory for the complex
interpolation method (see [9, Theorem 1.11.3]). Identifying X with its dual X* we then
have:

= [Xx X-l'\X1'2 x X]a = [X,Xll\ x [X-l'2,X}a

= Xa'2 x [((X*)1/2)*,X*] = Xa'2 x \X1'2,X]*a = Xa'2 x [X, Xxl\_a

= Xa'2 x (Xl1-^2)' = Xa'2 x X^-W.

The proof is complete. D

Using Theorem 2 it is easy to enlarge the admissible range of a in the inclusions

(20), (21). Also, in the case a = 1/2 the proof of the embeddings is much simpler.

COROLLARY 1. (Embedding of spaces Y^)^)- Let P ° , 4 ) , a € R] be the
sca7e generated by (L2(fi), (-AD)). Then the following embeddings hold:

(25)

a(Q) x Ha(Q) c

(26)
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P R O O F : The proof of (25) follows from the interpolation result for the spaces of
Bessel potentials (see [9, Theorem 2, Section 4.3.1]) and Sobolev Embedding Theorem
(see [9, Theorem 4.6.1]). Condition (26) is a consequence of the duality argument and
the inclusions

l)/2)* = X(l-a)/2 Q ffl-a^ Q LP(ty fa l^p^ ( 2 n / n + 2 a - 2), Or € [0, 1],

where X was identified with its dual X*. The proof is complete. D

REMARK 2. Following the terminology of [1, p. 258, p. 266],

[(X°l2 x XW2, (.4(1/2)-,).)' a € [0,+oo)]

is a compactly injected one-sided fractional power scale generated by (K(i/2)_!>
Simultaneously

is the extrapolated fractional power scale of first order generated by (V0, .4(1/2)).

3. SOLVABILITY OF (1) IN Y°

Here we employ the results of [2] to obtain local well posedness and regularity results
for (2) with initial conditions in Y° and the nonlinearities / growing critically. We begin
with the concept of e-regular maps and prove that under certain growth conditions the
map T can be decomposed as a sum of e-regular maps. Next we use this fact to obtain
a local existence result for e-regular solutions to (1).

Following the results of Section 2 we are going to study (1) as the sectorial problem
(19) in a Hilbert space Y^)_x, and look for the solutions to (19) originating at the elements
of K°.

For this we need first recall the notions of the e-regular maps and e-regular solutions
to (19) (see [2], [3]).

3.1. e-REGULAR MAPS AND e-REGULAR SOLUTIONS. Let P be a sectorial, positive
operator acting in a Banach space Z = Z° and e be a nonnegative number.

DEFINITION 1: G : D(G) ->• Z is said to be an e-regular map relatively to (Zl, Z°)

(or, equivalently, G is said to belong to a subclass T{e, p, j{e), C) of nonlinearities acting
in Z°) if and only if there are constants p > 1, 7(e) ^ 0, C > 0 such that

1. pe ^ 7(e) < 1,

2. G takes Z1+e into Z^e\

3. G satisfies the estimate
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(27)

Consider next the abstract Cauchy problem

(28) z + Pz = G{z), t > 0, z(0) = z0.

DEFINITION 2: Let e ^ 0, r > 0, z0 € Z\ and z - z(-,z0) : [0,T] -> Z1. We say

that 2 is an e-regular solution to (28) if and only if

1. 2 6C( [0 , r ] ,Z 1 )nC( (0 ,T ] ,Z '+ E ) ,

2. z satisfies the Cauchy integral formula:

e-ptz [z(t) = e-ptz0 + [ e-p^-^G(z{s))ds, z e [0,r].
Jo

The existence of an e-regular solutions was proved in [2]. The result below comes
from [3] and is an extension of the original theorem reported in [2].

PROPOSITION 6 . Let z0 € Zl and Bzi(z0,r) denote a ball in Zl with radius

r > 0 centred at z0.
k

Assume that G = Y^Gi and, for 1 < i ^ k, Gt belongs to the class T{ei, pit ii(£i), Ci)
i=i

with certain Ei > 0. Suppose also that

(29) min{7j(£j); 1 ̂  i ^ n) =: 7 > e := max{eij 1 ̂  i < n).

Then, there are r > 0 and TQ > 0 such that for each ZQ € Bzi(io,r) there exists a unique
I-regular solution z = z(-, ZQ) to (28). In addition,

(i) *\\z{t, zb)||2i+< -> 0 as t -> 0+, 0 < C < 7,

(ii) #\\z{t,z{) -z(t,z2)\\zl+< ^ C'\\zx - z2\\zl, t e [O.TO], 0 ^ C ^ Co < 1,

zuz2 € Bzi(z0,r),

(iii) z e C((0, r o ] ,Z1 + ? ) n ^ ( ( O . T Q ] , Z 1 ^ ) , 0 ^ C < 7> and, in particuiar, z
satisfies both relations in (28).

We are now fully prepared to prove the solvability of (19) in Y°.

3.2. LOCAL WELL POSEDNESS FOR (19). To make the presentation easier let us
assume that / in (1) is such that

(30) f(u,v) = h{u) + f2(v), U : R -» R, i = 1,2.

We shall require ft, i=l,2, fulfill the estimate:

(31) | / i (s i ) - / i (s 2 ) |^c |s i -s2 | ( | s 1 | " ' - 1 + |s2|'''-1 + l), sus2€R,
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with certain pt 6 ( l ,+oo) , i = 1,2. Of course, condition (31) is much stronger than the
assumption of local Lipschitz continuity of / . As we shall see that once we have proved
local well posedness results for (1) with / satisfying (30) and (31), we can easily extend
them to functions / satisfying (7).

REMARK 3. Of course the assumption p{ ^ 1 is merely technical. If (31) is satisfied
with pi = 1, it is obvious that (31) holds also with arbitrary pi > 1.

The next two results, Lemmas 3 and 4, are fundamental to proving the e-regular
properties of the nonlinearities in (19).

LEMMA 3 . Let 6 € [1/2,1] and

(32) |/i(«i) - fi(a2)\ < c\Sl - s2|(l + H " - 1 + \s2r~1), sus2 € R,

where

(33) K P l < I L ± ! = Pl(n).

Then, for each e € [o, (l/(2p!))j there is a certain -y{e) € [pie, (1/2)] such that

\\fl{Wl) ~ /l(w2)||L(2n)/(n+2-47(e)(1-*))

(34) < c\\Wl -

Furthermore;

1. ifO e [1/2,1) and p\ = p\{n) we necessarily have *y(e) = p\e and

2. if 0 =1 we can take e = 0 and 7(0) = 1/2.

P R O O F : From (32), the Holder inequality and the Sobolev embedding we obtain:

[J{l
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Since

we only need to guarantee that

Well posedness for wave equations 457

This will be true provided that

2n(pi -
^

which implies the inequality

Because 7(e) ^ pxe, we have

P\

n-2-4e( l -0 ) '

n + 2-47(e)(l-fl)
n - 2 - 4e(l - 8)

.71 + 2 -
n - 2 - 4e(l - 0)

The above condition ensures that px ^ (n + 2)/(n — 2) = pi(n).

It also shows that, if 8 ̂  1, then /9i(n) cannot be attained for J(E) > p\t. The proof
is now completed. D

COROLLARY 2 . Assume that fx satisfies (32) with 1 < px ^ (n + 2)/(n - 2) and
0 6 [1/2,1]. Let J"i be the map defined by

(35)

where F\(u) is the Nemitskii map associated with f\. Then, T\ is an e-regular map
relative to (Y(

lg)_i,Y{g)_i) for each e 6 [0, (1/2^)] and -y(e) = pxe. That is,

(36)

W - l

Pl-1

eY, l+E
W - l '

whenever e € [o, (1/(2/?!))].

The intervals of £-regularity of T\ are a function of the growth exponent p\. In
Figure 1 the reader can see how the intervals of e-regularity change as a function of p\.

The u-coordinate of T {J-\ above) behaves very much the same in the case 8=1/2
and in the case 8 6 (1/2,1). As for the ^-coordinate of T (F2 below), in the case
0 € (1/2,1] it has completely different behaviour from that observed in the case 8 = 1/2.
For the case 8 £ (1/2,1] the behaviour of the ^-coordinate of T resembles the case
identified as an ultra-critical map in [2]. That can be seen from the following lemma.
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Figure 1: Intervals of e-regularity for T\

LEMMA 4 . Let 9 € [1/2,1] and

(37)

where

(38)

r-1), sljS2€R,

= p2(n,6).

Define e0 = (n)/(2n + 80). Then, there exist e € [0,e0] and 7(5) e [p2e, 1/2] such that

(39)
< c\\wi -

P R O O F : From (37), the Holder inequality and the Sobolev embedding we obtain:

(n+2-47(e)(l-0))/(2n)

Therefore, (39) will be true provided that

2n
2 - 47(er)(l -0)+4eO n- Ae6
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which implies both the condition

(40) Pi
n + 2 - 4 7 ( e ) ( l - 0 )

n-4e9

and, if we make use of the condition j(e) ^ p2e, also the inequality

(41) no < U + 2

Since the right hand side of (41) attains the value p2{n,9) for e = e0, the proof is
completed. D

COROLLARY 3 . Assume that 9=1 and that f2 satisfies (37) with (n + 2)/(n)
< Pi ^ (n + 4)/(n). Let T2 be the map defined by

(42)
Fi(v)\

where F2(v) is the Nemitskii map associated with f2. Then, T2 is an e-regular map
relative to (*$,_,,*(«)_,) for e e [(np2 - n - 2)/(4p2), l/(2p2)] and j{s) € [p2e, (1/2)].
That is,

(43)

-Ti
\v'\

1 +

whenever e € [(np2 - n - 2)/(4p2), l/(2pa)], 7(e) € [p2e, (1/2)].

The intervals of e-regularity of T2 are a function of the growth exponent p2. In
Figure 2 the reader can see how in the case 9=1 the intervals of e-regularity change as
a function of p2.

COROLLARY 4 . Let T in (19) be given by

(44)
:

with T\, T2 being Nemitskii maps associated with / j , f2 respectively. Suppose that j \ is

restricted by (32) and (33), and f2 is restricted by (37) and (38). Then,

1. T\ satisfies condition (36) with parameters e = (n - 2)/(2(n + 2)) =: ex,

2. J"2 satisfies condition (43) with parameters e = n/(2n + 89) =: e2, 7(e)
= 1/2 =: 72(e2),
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Figure 2: Intervals of e-regularity for T2 and 6 = 1

where 6 € [1/2,1] and E\, e2, 7i(£i), 72(^2) are such that

(45) m i n | 7 i ( e i ) ; i = 1,2} = l / 2 = 7 > e = U =max{g , ;z = 1,2J.

In particular, T in (44) fulfills the assumptions required for nonlinearity in Proposition 6.

We are now ready to formulate the following existence theorem.

THEOREM 3 . Consider (19) as a counterpart of (1) in the case when f(u,v)

= fi(u) + f2(v) and functions fc : R —• R, i = 1,2 are as in Corollary 4. Let

and By» I ~ ,r\ be a ball in Y° with radius r > 0 centred at

Then, there are r > 0 and T0 > 0 such that for each
Vo\ \Vo

, r there

exists a unique e-regular solution (•,uo,vo) to (19). In addition,

(i) t<

(ii)

(t, UQ, V0)

(t,UUVl) -

, 0 < C < 1/2,

{t,U2,V2) C whenever

Y°

«i \u2

\viy\v2

(iii) H (-, uo, vo) € C((0, T0] , K^+J^) n C1 ((0, T0], y(J+«) for 0 < C < 1/2; in

particular the solution, {••,UO,VQ) satisfies both relations in (19).
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PROOF: The assertion follows from Corollary 4 and Proposition 6. D

3.3. FURTHER COMMENTS ON LOCAL EXISTENCE. PROOF OF THEOREM 1. Using
the original results of [2, 3] concerning the existence of e-regular solutions (see Subsec-
tion 3.1), one cannot take advantage of working with coordinates. In this subsection we
consider an extension of these results to include systems with different e-regular proper-
ties in each coordinate.

More specifically we consider problems of the form (19) where .4(0)_, is the sectorial
operator previously defined in Y^)_l with domain Y° = Y^_t = Xll2 x X.

Assume that there are constants e\ > 0, e2 > 0, p\ > 1, p2 > 1, 7I (EI) S [pi£i, 1),

72(^2) 6 [p2e2,1) such that T\
\F(u,v)

satisfies

\\F{u,v)-F(u',v)\\x_lim+yilElW_t)

\\F{u,v) - F(u,v')\\

(47) ^ c2\\v - v'\\x<>C2{l + \\v\\^l + Wv'WZZl), v,v' 6

Under these conditions we have the following extension of the results in [2, 3].

PROPOSITION 7 . Let y0 € Y° and BYo(yo,r) denote a ball in Y° with radius

r > 0 centred at j/o- Suppose also that

(48) min{7i; i = 1, 2} = : 7 > s :— max{ej; z = 1,2}.-

Then, there are r > 0 and TQ > 0 such that for each yo 6 Syo(yo, r) there exists a unique
E-regular solution y = y(-,yo) to (19). In addition,

(i) t<\\y{t,yo)\\ i+( -4 0as t ->0+, 0 < C < 7,

(ii) t<\\y(t,yi) -y(t,y2)\\Yi+< ^ C'\\yi - y2\\Yo, t G [0,r0], for 0 ^ C ^ Co < 7,

2/i,?/2 S BYo(y0,r),

(iii) y e C((0lTO],r(£7I) n C f t O . T , ] , ^ ) , C < 1, and, in particular, y
satisfies both relations in (19).

The hypothesis on the map F allows us to consider maps that may not be decom-
posed into a sum of maps each of them depending only on one coordinate.

The proof of the above result follows step by step the proof of a similar result
contained in [2, 3]. We must only be careful to see that when we need an estimate on
the norm of F(u, v) we must decompose it into F = F\ + F2 where Fx(u, v) = F(u,0)
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and F2(u,v) = F(u, v) — F(u,0). Also note that, from (46) and (47) we have

and

\\F2(u,v)\\x_il/2)+n(C2Hi_e) = \\F(u,v) -

On the other hand, when we wish to estimate F(u,v) - F(u',v') we must decompose it

into the sum

F(u, v) - F{u', v') = [F(u, v) - F(u', v)] + [F(u', v) - F(u', v1)]

and use the assumption (46).

In the application to the strongly damped wave equation (1) we observe that the

map T is given by

Kfj)W
where F(u, v) is the Nemitskii map originated from a function / : R2 —>• R. Assume
that the function / : R2 ->• R satisfies (7) with 1 < px < (n + 2)/(n - 2) and 1 < p2

^ (n + 46)/n. Then the inequalities in (46) are satisfied with parameters £*, ji(£{),
i = 1,2 such that (48) holds. Proposition 7 can be then applied to obtain the local well
posedness of (1). Theorem 1 is thus proved.
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