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Abstract

We consider two variants of M/G/1 queues with exhaustive service and
multiple vacations; (1) customers cannot wait for their services longer than
an interval of length T, and (2) customers cannot stay in the system longer
than an interval of length T. We show that the probability distribution
functions of the waiting times for the two systems are given in terms of
those for the corresponding M/ G /1 vacation systems without any
residence-time limits.

STEADY STATE DISTRIBUTION; ACI'UAL WAITING TIME; VIRTUAL WAITING

TIME; UP- ASD DOWNCROSSINGS

1. Introduction

We consider M / G /1 queues with exhaustive service and multiple vacations. The server
takes a vacation when he. finds the queue empty. At the end of the vacation, the server scans
the queue. If there are some customers, he serves continuously until the queue becomes
empty, and then takes the next vacation. If there are no customers at the end of the vacation,
the server takes another vacation. This system is studied by Levy and Yechiali (1975) and
Keilson and Servi (1987).

The systems under consideration impose one of the following residence-time limits on
customers: (1) no customers can wait for their services longer than an interval of length T, or
(2) no customers can stay in the system longer than an interval of length T. Hereafter, the
former is called the vacation system with the waiting time limit and the latter is called the
vacation system with the sojourn time limit. In both systems, customers whose waiting times
(or sojourn times) reach T should leave the system immediately.

In the case of no vacation, queueing systems with residence-time limits are studied by
Daley (1964), Takacs (1967), (1974), Cohen (1982) and Rubin and Ouaily (1988). On the
other hand, the process of the unfinished work in the M/G/1 vacation system with the
sojourn time limit is analyzed by van der Duyn Schouten (1978).

We derive the steady state probability distribution functions (PD Fs) of the waiting times for
both the M/G /1 vacation systems with the waiting time and the sojourn time limits in terms
of those for the corresponding M/ G / 1 vacation systems without any limits in terms of those
for the corresponding M/ G /1 vacation systems without any residence-time limits. The
analytical approach used in this paper is the level crossing argument which is developed by
Brill and Posner (1977), Cohen (1977), Shanthikumar (1980).

We describe the mathematical model in detail. Customers arrive at the system in
accordance with a Poisson process of density A and they are served by a single server in order
of arrival. The service time of a customer is independent and identically distributed in
accordance with a general PDF B(x) whose mean is denoted by E[B]. The length of a
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vacation is independent and identically distributed in accordance with a general PDF V (x )
whose mean is denoted by E[V]. For simplicity in description, let p denote AE[B].

Throughout this paper, we assume that the system is in equilibrium. In the following two
sections, it is assumed that p < 1. The cases p ~ 1 are considered in Section 4.

2. Waiting time limit

In this section, we consider the vacation system with the waiting time limit. Let w(x)
denote the steady state probability density function (p.d.f.) of the virtual waiting time. With
the level crossing argument by Shanthikumar (1980), we have the following equation for
x<T:

(1) E[Cw]w(x) = 1- V(x) + AE[Cw]f {1- B(x - y)}w(y) dy, x<T,

where E[ Cw ] denotes the expected length of a cycle which is defined as -an interval between
successive starts of vacations. The first term 1- V(x) in the right-hand side of (1) represents
the probability of an upcrossing of level x at the beginning of the cycle, and the second term
represents the expected number of upcrossings of level x due to arrivals of customers during
the cycle. The expected number of upcrossings of level x must be equal to the expected
number of downcrossings of level x, and the latter is given by E[Cw]w(x).

On the other hand, for x ~ T, we have

(2) E[Cw]w(x) = 1- V(x) + AE[Cw]r{1- B(x - y)}w(y) dy, «e t:

Since customers who found the virtual waiting time greater than T at arrival instants leave the
system without being served, the integration in the second term of the right-hand side of (2) is
performed from 0 to T.

We note here that when T goes to infinity, i.e., the system has no residence-time limits, the
p.d.f. woo(x) of the virtual waiting time satisfies (see Shanthikumar (1980»

(3) E[V] w~(x) =1- V(x) + A
1E[V]

LX {1- B(x - y)}woo(y)dy,
1-p -p 0

and woo(x) is given by (see Doshi (1986»

(4)
00

woo(x) = L (1- p)pkb(k)(X)* v(x),
k=O

where b(k)(X) denotes the k-fold convolution of the p.d.f. of the residual service time with
itself, v(x) denotes the p.d.f. of the residual vacation time, and * denotes the convolution
operator. Because (1) and (3) have the same form except for the constant multiplier, w(x)
should be for x < T

(5)
E[V]

w(x) = (1- p)E[Cw] woo(x), x<T.

«e r.

Thus (2) becomes

1- V(x) AE[V] (T
(6) w(x)= E[C

w]
+(1-p)E[C

w
] J

o
{1-B(x-y)}woo(y)dy,

Note that only E[Cw] is the unknown value. We proceed to the derivation of E[Cw].
Let p denote the blocking probability that an arbitrary customer leaves the system without

being served. By the definition, we have

(7) p =rw(x)dx.

https://doi.org/10.2307/1427557 Published online by Cambridge University Press

https://doi.org/10.2307/1427557


Letters to the editor 515

Substituting w(x) in (6) for that in (7) and manipulating with (3), we get

(8)
E[V]

P = E[Cwl {1- W~(T)},

where Woo(x) denotes the PDF of the waiting time for the corresponding vacation system
without any residence-time limits, i.e.,

(9)

(1- p)E[Cw ] Woo(T).

(10)

On the other hand, with (5), we have

1-p=rw(x)dx

E[V]

Thus, from (8) and (10), we get

(11)

x<T

x~T.

(12)

Hence, w(x) is completely determined by (5), (6) and (11).
We provide formulas with respect to individual customers in the vacation system with the

waiting time limit. When the virtual waiting time is less than T, the virtual and the actual
waiting times have the same p.d.f. because of the Poison arrival process. Therefore, from (5)
and (11), the PDF W(x) of the actual waiting time for an arbitrary customer is found to be

{

Woo(x)

W(x) = 1- p + pWoo(T)'
1,

The blocking probability p is given by

(13)
(1- p)(I- Woo(T)}

P = 1 - p + pWoo(T) .

Lastly, the PDF W(x) of the waiting time of an arbitrary customer who receives his service is
given by

x<T.

(14)

1 IXW(X)=1_p 0 w(y)dy

Woo(x)
Woo(T) ,

3. Sojourn time limit

In this section, we consider the vacation system with the sojourn time limit. Note that a
customer whose sojourn time reaches T should leave the system immediately even if he is
being served. Thus, the steady state p.d.f. w(x) of the virtual waiting time satisfies

(15)

and

E[Cslw(x) =1- V(x) + AE[Cslf {1- B(x - y)}w(y) dy, x<T,

(16) E[Cs]w(x) =1- V(x), «e t,
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where E[ Cs ] denotes the expected length of a cycle. By the same approach as in Section 2,
w(x) can be expressed as for x < T

(17)
E[V]

x<T.

x~T.

x<T,

Since w(x) is the p.d.f., we have

(18) rw(x) dx = 1.

It follows from (16), (17) and (18) that

(19) E[Cs] =~~~ Woo(T) + E[V] - r{1- V(y)} dy.

Thus, the p.d.f. w(x) of the virtual waiting time for the vacation system is determined by
(16), (17) and (19).

We provide the formulas with respect to individual customers in the vacation system with
the sojourn time limit. From (17) and (19), the PDF W(x) of the actual waiting time of an
arbitrary customer is found to be

{

E[V]Woo(x)

W(x) = E[V]Woo(T)+ (1- P)(E[V] - r{1- V(y)} dyY
1,

Let q denote the blocking probability that an arbitrary customer leaves the system without
being completely served. Then we have

q =r{1- B(T - y)}w(y) dy +f w(y) dy

= 1 _ E[V]Doo(T)

E[V]Woo(T)+ (1- p)(E[V] - r{1- V(y)} dy) ,

where Doo(x) denotes the PDF of the sojourn time in the corresponding vacation system
without any residence-time limits, i.e.,

Doo(x) = fB(x - y)woo(Y) dy.

Lastly, the PDF W(x) of the waiting time of an arbitrary customer who was completely
served is found to be

1 IXW(x)=- B(T-y)w(y)dy
l-q 0

=Doo~T) {Woo(X)B(T-X) + f Woo(T-y)dB(y)}. x<T.

4. General cases

In this section, we consider the cases p ~ 1 for the two systems. The Laplace-Stieltjes
transform (LST) F*(s) of a function F(x) which satisfies

dF(x) LX
~=I-V(X)+A 0 {1-B(x-y)}dF(y),
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is found to be
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Re(s»A-Aoo*,
* _ 1- V*(s)

F (s) - s _ A+ AB*(s)'

where B*(s) and V*(s) denote the LSTs of B(x) and V(x), respectively, and 00 = 00* is the
smallest positive real root of the equation

00 = B*(A - Aoo).

We can obtain the formulas for the vacation systems with the waiting time and the sojourn
time limits in terms of F(x). The derivation of the following is the same as in the cases p < 1.

For the vacation system with the waiting time limit:

E[Cw ] = E[V] + pF(T),

W(x) = {E[v];~F(T)'
1,

-1- F(T)
P ~ E[V] + pF(T)'

- F(x)
W(x) =F(T)' x < T,

x<T,

«e t,

and for the vacation system with the sojourn time limit:

E[Cs] = F(T) + E[V] - r{l- V(y)} dy,

{

F(x)

W(x) = F(T) + E[V] - r{l- V(y)} dy'

1,

{ F(T - y) dB(y)
q = 1- 0 _

F(T) + E[V] - r{l- V(y)} dy

F(x)B(T-x) + f F(T-y)dB(y)
W(x) = rF(T - y) dB(y)

x<T,

«e r.

x<T.

Note that when p<l, 00* is equal to 1 and F(x) becomes E[V]Woo(x)/(I-p). Thus, the
above formulas are also valid for (J < 1 and they are equivalent to those in the previous
sections.
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