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Abstract

When G is a topological group, the set N(G) of continuous self-maps of G, and the subset Ny(G) of
those which fix the identity of G, are near-rings. In this paper we examine the (left) ideal structure of
these near-rings when G is finite. Ny(G) is shown to have exactly two maximal ideals, whose
intersection is the radical. In the final section we investigate subnear-rings of N;(G) determined by
certain continuous elements of the endomorphism near-ring.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 16 A 76; secondary 22 A 99.

1. Introduction

Let G be a topological group written additively. We denote by N(G) the set of
continuous maps f: G —» G, and by N,(G) those elements of N(G) for which
f(0) = 0. When no confusion can arise, the notation will not indicate the topology
used, but we will reserve T(G) and Ty(G) for the case when G has the discrete
topology. N(G) and Ny(G) are near-rings with identity under pointwise addition
and composition of functions. For general results on near-rings, the reader is
referred to Pilz [8] and in this paper all near-rings will be right near-rings. Unless
otherwise stated G will denote a finite group, and in the next section we will apply
some ideas of Hofer [3] to obtain information about the (left) ideals in N(G) and
Ny(G). In the third section we look at two subnear-rings of N,(G) determined by
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(2] Near-rings of mappings 93

endomorphisms, namely the intersection of Ny(G) with the endomorphism near-
ring E(G), and the near-ring distributively generated by continuous elements of
E(G). In particular, the orders of these near-rings are obtained for classes of
near-rings for which the order of E(G) is known (see [1], [5], [6], [7])-

2. Ideals in N(G) and N,(G)

If G is a finite topological group, the topology is determined by a normal
subgroup. That is, G has a topology if and only if H is a normal subgroup such
that a basis for the open sets of G consists of the cosets of H (see for example [2]).
Then G is disconnected, the connected component of 0 being H. Now, if G is an
infinite Hausdorff group and C is the connected component of 0, Hofer [3]
defined M, = { f € Ny(G)|f ~*(0) contains a clopen set about 0}, P = P(C) = { f
€ N(G)lrange of fC C} and P, = P N N, and observed that P is an ideal in
N(G) and P, and M, are ideals in Ny(G) such that M,\ P, # &. In our case,
although G is not T, these results are still true. Moreover, H is the smallest
clopen set about 0 so M, = { f|f(H) = 0} which is sometimes written (0: H) or
Ann H. In fact, it is known that every left ideal of T,(G) is of the form Ann S for
some S C G ([8] Corollary 7.28), and that these all intersect down to left ideals in
Ny(G). We observe that M|, is one of these intersections and is, in fact, an ideal,
although T,(G) has no ideals.

THEOREM 2.1. If H is a subgroup of index 2 in a group G of order 2n then
IN(G)| =4 - n*" |Ny(G)| =2 - n?""L, |P| = n®", [Py = n*""' and |My| =2 - n"
where, as above, P = {f€ N|f(G)C H}and Py= P N N,.

PRrROOF. The only non-trivial open sets are H and g + H (g & H). Therefore, f:
G — G is continuous if and only if it is one of the following: (a) f "(H) = H and
fNg+H)=g+H (b)f(H)=g+Hand f(g+H)=H, (c) f(H) =
@ and f(g+ H)=G,(d) f"(H)=G and f"}(g + H) = &. There are n*"
maps in each case. In Ny(G) since f~(0) 2 (0) only maps from (a) and (d) are
allowed and there are now n?"~! choices in each case. Clearly |[My| = 2 - n". As
for P and P,, more generally if |H| = k and |G| = m, then any map f: G - G
whose range is in H is continuous so |P|= k™, and it is easy to see that
|Pol = k™~ 1.

As a corollary note that for H of index 2, P, is maximal in N, being also of
index 2.

https://doi.org/10.1017/51446788700022631 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700022631

94 Gordon Mason 3]

Now Hofer has shown that when G is T,, P(C) is often the unique maximal
ideal in N(G), for example when |G/C| = n > 2. Actually the proof in that case is
independent of the T, condition. It uses the canonical map : N(G) = N(G/C)
given by Y (f)(x + ¢) = f(x) + C whose kernel is P(C) and which is onto when
C is open. Now the isomorphism N(G/C) = N(G)/P induces Ny(G/C) =
(N(G)/P), but the latter is not a priori isomorphic to Ny(G)/PF,. In other words
a near-ring surjection N — R induces a map N, —» R, which may not be onto.
However, examining y more closely, let »: G = G/C be the canonical map and k:
G/C — G a map for which »k is the identity. Then for every g € N(G/C),
g = Y (f) where f(x) = k(g(x + C)). In our case C = H is open, G/H is finite
and so discrete and ¢ restricted to Ny(G) produces a near-ring homomorphism
with kernel P,. Moreover, we can choose k so that k(H) = 0 so the preimage f of
g € Ny(G/C) is actually in Ny(G) as required. We have

THEOREM 2.2. P, is a maximal ideal in Ny(G).

Clearly, however, N, does not have a unique maximal ideal since M, is
contained in some maximal ideal(s) and M, ¢ P,. We shall see below that for G
finite, M, is maximal and that P, and M|, are the only maximal ideals. For now we
simply observe (even for G infinite) that Zorn’s lemma applies to .S = {ideals
I{I\ P, # 0} and the maximal elements so obtained must be maximal ideals.

In Lemma 2.12 of [3] it was proved that if G is 7, and [ is an ideal of Ny(G)
such that I\ P, # @ then I contains all functions whose range is finite. The
conclusion is false for general non-Hausdorff groups; for example when G is
finite this would say [ is all of Ny(G), but we know M, is a proper ideal satisfying
M\ P, # @. However, the following weaker statement is true, and in fact it is a
valid replacement for Lemma 2.12 in [3, Theorem 3.3 and Theorem 3.8(b)] (see
next Corollary). Let R(f) denote the range of f and call its order the rank of f.

PROPOSITION 2.3. Let G be any disconnected group and C the connected compo-
nent of 0. (G need not be Hausdorff or finite.)

(a) If I is an ideal in Ny(G) such that I\ P, # &, then I contains all functions f
with R(f) = {0, a} where a &€ C. Moreover, I does not contain all functions of
rank 2, in the case G is finite.

®) If |G/C| > 2 and I is an ideal in N(G) with I\ P + & then I contains all
functions fwith R(f) = {c, a} wherec € C,a & C.

PrOOF. The proof given in [3, Lemma 2.12} remains valid except at one point.
It is noted that when G is Ty, if R(g) = {0, a} then g~}(0) and g~'(a) are clopen.
For arbitrary G, this will be true if a &€ C. The result follows.
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Suppose I contains all functions of rank 2. We show I contains P, which is a
contradiction. Proceeding by induction let R(f) = {0, h,,...,h,} C H. Put f(x)

= 0if f(x) = 0, fi(x) = h, otherwise. Then f is continuous and by hypothesis it
isin 1. Also by inductionf — f, € Isof € L.

COROLLARY. For G as in the proposition, if |G/C|=n > 2 then P(C) is the
unique maximal ideal of N(G) (see [3, Theorem 3.8D)).

We now show M|, is maximal, first recording the following characterization of
continuity.

LEMMA 2.4. If y € T,(G) then Y € Ny(G) if and only if Y(g)ex+ H=
Yy(g+H)Ccx+ H.

PrROOF. This is simply the observation that ¢ is continuous if and only if the
inverse images of basic open sets (cosets) are open.

THEOREM 2.5. There is a near-ring isomorphism between Ty( H) and Ny(G)/M,.

PROOF. Map ¢: Ny(G) — T,(H) by restriction, noting that by the lemma | is
in Ty(H). This is easily seen to be a near-ring homomorphism. Moreover, it is
onto since any f € T,(H) can be extended to a continuous map on G by, for
example, setting f(x) = 0 for all x € H. Finally, kery = { f|f|, = 0} = M,.

Since by [8, Theorem 7.30] T,( H) is simple we have

COROLLARY. M, is a maximal ideal in N.

We refer the reader to [8, Chapter 5] for definitions of the radicals.

THEOREM 2.6. All the radicals J, of Ny(G) coincide and equal M, N P,,.

PRrROOF. J = My N P, is nilpotent since f € J implies f(H) = 0 and f(G) C H.
Therefore for all f, f, € J ffi(G) C f(H) = 0. Hence J C J;. On the other hand

by [8, Theorem 5.42] J;, = J, = Nall maximal ideals C J. Hence J = J, and by [8,
Theorem 5.48]J = J, = J; ,, also.

THEOREM 2.7. M, and P, are the only maximal ideals of Nj,.
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PrROOF. Suppose I is maximal, I # P,. We show I D M,. By the previous
Theorem I > My N P, so we show I contains all f with f(H) = 0and R(f) ¢ H.
Proceeding by induction, it is true for rank f = 2 by Proposition 2.3. Suppose
f € M, has rankn, R(f) @ H, that is, R(f)= {0, a,,...,a,} with a, & H.
Define f,(x) =0 if x € f}(H), fi(x) = a, otherwise. Then f; is continuous,
rank(f — f1) = n — 1 and f — f; € I either because R(f — f;) € H or by induc-
tion. Also f, € I by Proposition 2.3 so f € I as required.

To exploit Theorem 2.5 further we note as mentioned earlier that for any finite
group G the left ideals in T,(G) are precisely of the form Ann S for § C G, so
maximal ones are obtained for S = {g} and minimal ones for S = G — {g}.
Following Pilz [8] we will denote the latter by L, and put Z_g = L, N N,. By [8,
7.18] we have L, = Ty(G)e, where e, is the idempotent given by e (g) =g,
e (x) = 0 for all x # g. Note that G is an N(G)-group and an Ny(G)-group under
canonical action.

LEMMA 2.8. v /G is strongly monogenic and y_(,G is monogenic.

PrOOF. All constant maps are in N(G) so N(G) - g = G for every g. In the case
of Ny(G) if g &€ H then for all x there is f € N, with f(g) = x so for those g,
No(G)-g=G.

THEOREM 2.9. (a) e, is continuous if and only if g € H and then L_g = No(G)e,.

(b) L, = No(G)/Ann h forallh € Hand L, = H for all g.

(¢) G=N(G)/Anng (for all g€ G) as N(G)groups. If g&¢ H G =
Ny(G)/Ann g as Ny(G)-groups.

(d) Z; is a minimal Ny(G)-subgroup of N, for all g and Ann h is a maximal
Ny(G)-subgroup for all h € H. (So they are respectively minimal and maximal left
ideals also.)

PROOF. (a) Clearly e, is continuous if # € H and on the other hand if g & H,
-e;l(H) = G\ { g} is not open. Moreover, L_g =L, N Ny = Ty(G)e, N No(G) =
No(G)e,. .

(b) Map a: Ny(G) = L, = Ny(G)e, by a(f) = fe,. This is an Ny(G)-epimor-
phism whose kernel is Ann h. Now let 8: H — L_g be given by B(h,) = f where
f(8) = hy, f(x) =0 for all x # g. Then B is an Ny(G)-homomorphism which is
1 — 1. It is also onto for if f€& ITg, f(x) =10 except when x = g and then
f(g) = a, where by continuity a € H. Thus f = B(a) as required.

(c) By Lemma 2.8 and [8, Proposition 3.4] we have G = N(G)/Ann g for all g
and G = Ny(G)/Ann g for all g & H.

(d) We show I; is minimal by showing for all 0 # f € L_,, Ny(G)f = L_,, Now
f(x)=0Vx # h and f(h) # 0. Define g by g(f(h)) = h, g = 0 otherwise. Then
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g E N, and e, = gf C Nyf. Hence L,= (G)e, C N,f as required. Clearly
L, = L, for all g so that L, are minimal also. Applying (b) we have Ann 4 is a
maximal N -subgroup for allh € H.

Having seen the Ann & are maximal N -subgroups we turn our attention to
Anng, g€ H.

LEMMA 2.10. The only N,~subgroup of G is H.

ProOOF. If K is an Ny-subgroup of G, it is a subgroup of (G, +) such that
Y(K) € K for all ¢ in N,. This is certainly true of H. On the other hand, if
H\K+ & let h€ H\ K, h # 0 and define { by y(g) = h for all g # 0, and
¥(0) = 0. Then ¢ is continuous but Y (K') ¢ K. Finallyif H ¢ K, K = Ug(g + H)
for some set S of coset representatives. There exists g € S\ H so define ¢, by
Y, (g+ H)y=y+ H for any y € S, and ¢, the identity on the rest of G. Then
again y/, is continuous but y,(K) ¢ K.

PutS, = {f€ Ny|f(g+ H)C H} forg & H.

PROPOSITION 2.11. S, is a maximal left ideal and maximal Ny-subgroup properly
containing Ann x for all x € g+ H. Moreover S, = S, for all x,g & H and

PROOF. S, is a normal subgroup of (Ny(G),+ ) since H is normal in G.
Moreover for all y,a €N, and f€ S, let x =[y(a+f)—Yal(g+ h)=
Y(a(g + h) — h)) — ya(g + h) where f(g + h) = h, € H. By Lemma 24, x €
H, so S, is a left ideal. By Theorem 2.8(c) G = Ny(G)/Ann g and under this
isomorphism (which comes from the evaluation map) S, corresponds to H. Thus
the S, are all isomorphic (in fact S, = S, if x € g + H). By Lemma 2.9, the only
Ny(G)-subgroup of G is H so the S, are the only Ny(G)-subgroups of N, which
contain Ann g. Finally P, C S, for all g and if f € NS, then f(g + H) < H for all
g, thatis, f € P,.

3. Subnear-rings of N,(G)

In this section, G is again a finite topological group with topology determined
by a normal subgroup H and we will write Ny(G) as Ny. Let I, A and E be the
near-rings distributively generated by Inn G, Aut G and End G which are respec-
tively the groups of inner automorphisms, automorphisms and endomorphisms of
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G. There is an extensive literature on these near-rings for various classes of finite
groups (see for example {1], [4]), [5], [6], [7]) and using these results we will
examine two kinds of subnear-rings of Ny. The first is E; = Ny N E, the
near-ring of continuous maps in E, and the second is Cy, the near-ring distribu-
tively generated by the continuous elements in End G. (E,, although a subnear-
ring of E, is not necessarily distributively generated. ) Since every inner automor-
phism is continuous in all topologies we have for all H

1) IcCyCcE,CE.

We shall see later that for G = Dy, the dihedral group of order 8, we have in fact
a chain of maximal proper inclusions 1 G A g Cy G Ey G E. At the other
extreme, it may happen that I = E (for example G dihedral of order 2n, n odd
([6]) or G = S, the symmetric group, for n > 5 ([1])). In such a case £ C N, and
the same is true whenever H is fully invariant, in view of the next result.

LeEMMA 3.1. If y € End G,y € E, if and only if y(H) C H. Also if € Aut G,
Y € Egifandonly if YH = H.

PrROOF. Apply Lemma 2 4.

Thus for characteristic subgroups H the sequence (1) can be modified to
include I € A € C,. To complete the example for S,, n = 3 or 4, in each case the
only normal subgroups are members of the derived series [9, page 112]) and these
are fully invariant so again E C N,

PROPOSITION 3.2. J(Ny) N E C J,(E) for all radicals J,.

PROOF. From [4] we know all radicals of E coincide. Since J( Ny, ) is nilpotent so
is J(Ng) N E and the result follows.

From the remarks following Theorem 16 in [4] we find that if G has a unique
fully invariant subgroup H then J(E) is precisely (in our notation) M, N P, N E.
Thus in this case, equality holds in Proposition 3.2. (An example will be given
later where equality does not hold.) To complete our discussion of S,, n > §, it is
mentioned in [1] that E(S,) is close to being all of T,(S,). Weknow E C N, C T,.

PROPOSITION 3.3. E(S,) = Ny(S,)when H = A,
ProOF. From [1] E = N + (T,(H) ® Z,) is a semi-direct sum where N = M,

N P, (again in our notation). Moreover T,( H) is a direct sum of n!/2 subgroups,
each isomorphic to H. Thus |E| = |Ny| using Theorem 2.1.
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To obtain information about C,, and E, we use the following decomposition
procedure from, for example, {7]. If R is a d.g. near-ring, one decomposes the
generators 7, by an idempotent e, to obtain elements of the form r, — e,r,, and of
the form e, r,, the latter generating a group M,. The elements of the first form are
conjugated by elements of M, and these conjugates generate 4,. Choose a second
idempotent e, € 4, and again form the conjugates of all x — e,x (x € 4;) by
elements of the group generated by the e,x. These conjugates generate D and
R = D + A, + M,. The procedure may be iterated.

In particular if G = D,, is the dihedral group of order 2n for n even with
presentation G = <a, bla" = b? = abab = e), following [7} we denote an endo-
morphism ¢ by [s, ¢] where ¥ (a) = s and ¢(b) = ¢, and denote any map by the
images of (e, a, a*,...,a""'|b, ab,...,a" " 'b) in that order. The endomorphisms
are of six types:

(1) [a’,a*p], O<y,x<n-—1,

(@) [d.e]
(3) [d.d]

() [e,a"?],

(5) [axb, ax+n/2b]
(6) [a™d,a""?]

Let H = (a) be the cyclic normal subgroup of index 2. We now restrict to n = 4
for ease of calculation. Then ([7) E =D + A, + M, where D =
{(e, e, a’, a’le, e, a®, a?) ® (e, a?, a?, ele, e, a?, a?)}, A4, = {(e, g,
e, gle, g, e, g)lgE G} and M, = {(e,e,e,e|g, g, & g)lg € G}. Using Lemma
3.1 we see all 8 elements of M), all 4 elements of D and the 4 elements of A4, for
which g € H, are continuous. Thus |E,| > 128. But since | E| = 256 and there are
endomorphisms which are not continuous, |E| = 128. If on the other hand we
topologize G by K = {e, b, a%, a’b} then there are 32 maps in E, which are a
sum of continuous maps in each of D, A, and M, so |Eg| > 32. As we shall see
later however the order of E is actually 128.

Now we can obtain Cy by applying the procedure outlined above. First, there
are 29 continuous endomorphisms, namely all those from (1), those from (2) and
(3) with d = a?, (4), and the identity [e, e]. Using the idempotent y, = [e, b] we
get one form for a — y,a, namely 8 = (e, a’, a?’, a*’|e, a’, a*’,a®) for 0 < y
< 3. The elements v« are [e, a*b], 0 < x < 3, [e, €], and [e, a?] which generate
M, = {(e, e, e e|g g g g)} as before. Conjugating B by the y,« gives 8 and
B, = (e, a’, a?’, a¥le, a™”, a=¥, a ¥). Choose the idempotent y, =
(e, a, a?, a’le, a, a%, a®) to get the single form y,8 =v,8, = B so 4, has 4
elements. Then B — v,8 =[e,e] and B, — v,B, = (e, e, e, ele, a*’, e, a?’) so

} d any element of order 2,

}Osxsn—l.
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conjugating these by y,8 = 8 gives only B; — v,8, again and hence D has 2
elements. Thus |Cp| = 64.

THEOREM 3.4. If n is even and H = {a), |Cy(D,,)| = n>. Moreover for n = 4,
I g A g Cy g Ey G E where the order of each near-ring is twice the preceding one.

PRrROOF. For general D,, the procedure outlined above can be generalized, giving
Cy =D + A, + M, where |M| = 2n, |A,| = n and |D| = n/2. The second state-
ment comes from the above discussion and [7].

REMARK. The elements of C, are of the form ¥ + f;, where the f; are the
continuous endomorphisms. In general, all possible ordered sums must be calcu-
lated. As an interesting consequence of the computer programme we used to
exhibit the elements of C,, (Dg) we found that (i) of the 20 continuous endomor-
phisms, only the 8 automorphisms plus the endomorphism (e, e, e, e|b, b, b, b)
were needed, (ii) only elements ¥ f; (all + ) were needed, and (iii) all elements
could be obtained from one particular ordering of the 9 generators. Also in
producing the 32 elements of A( D), (ii) and (iii) were true.

To complete the discussion of Dg, let K = {e, a%, b, a’b}. Then there are 24
continuous endomorphisms and the standard decomposition using the idempo-
tents v, = [e, b] and v, = (e, ab, e, able, ab, e, ab) show that |C,| = 128. Since
there are endomorphisms which are not continuous, |Ex| = 128 too. The only
other normal subgroups are (i) K, = {e, ab, a%, a’b} and (ii) the centre Z =
{e, a®}. By symmetry Cx, = C, and every endomorphism is Z-continuous.

THEOREM 3.5. The continuous subnear-ring structure of Ty( D) is given by
Nz
Nk =Nk, ‘ Ny

S~

EK:—CKzCKl:EKl l

/

.
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For G = D,,, n odd, we have already seen that I = E C Ny for all H. In [6] it
is shown that J(E) contains an element y for which y(a) = a". For H = ( a)
then, ¢ & M, so the inequality of Proposition 3.2 is strict.

Finally let G = Q, be the generalized quaternion group of order 2", n > 3 with
presentation Q, = <a, bla¥ "' =babla=a? p? = e>. Then (see [5]) the nor-
mal subgroups are precisely the subgroups of H = (a), or K, = (a%,b) or K,
= (az, ab) and the automorphisms are of the form [a”, a*b] for 0 < x, y < 2°
— 1 and y odd. Moreover || = 23" 5 and |4| = |E| = 2374,

THEOREM 3.6. For G = Q,,C, = E = A=Eforall L< Hand Cy = Eg = I.

PROOF. Since I has index two in E, for every normal 4, C, and E, will equal /
or E. Invoking Proposition 3.2 and looking at the form of the automorphisms we
see every automorphism is L-continuous for all L < H. On the other hand, only
half are K -continuous, namely those [a”, a*b] with y odd and x even. As shown
in [5] the map (e, e, e, e,~|a, a,--,a) is in 4 but it is not K-continuous. The result
follows.
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