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Abstract

When G is a topological group, the set N(G) of continuous self-maps of G, and the subset N0(G) of
those which fix the identity of G, are near-rings. In this paper we examine the (left) ideal structure of
these near-rings when G is finite. N0(G) is shown to have exactly two maximal ideals, whose
intersection is the radical. In the final section we investigate subnear-rings of N0(G) determined by
certain continuous elements of the endomorphism near-ring.

1980 Mathematics subject classification (Amer. Math. Soc): primary 16 A 76; secondary 22 A 99.

1. Introduction

Let G be a topological group written additively. We denote by N(G) the set of
continuous maps / : G -» G, and by N0(G) those elements of N(G) for which
/(0) = 0. When no confusion can arise, the notation will not indicate the topology
used, but we will reserve T(G) and T0(G) for the case when G has the discrete
topology. N(G) and N0(G) are near-rings with identity under pointwise addition
and composition of functions. For general results on near-rings, the reader is
referred to Pilz [8] and in this paper all near-rings will be right near-rings. Unless
otherwise stated G will denote a finite group, and in the next section we will apply
some ideas of Hofer [3] to obtain information about the (left) ideals in N(G) and
N0(G). In the third section we look at two subnear-rings of N0(G) determined by
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endomorphisms, namely the intersection of N0(G) with the endomorphism near-
ring E(G), and the near-ring distributively generated by continuous elements of
E(G). In particular, the orders of these near-rings are obtained for classes of
near-rings for which the order of E(G) is known (see [1], [5], [6], [7]).

2. Ideals in N(G) and N0(G)

If G is a finite topological group, the topology is determined by a normal
subgroup. That is, G has a topology if and only if H is a normal subgroup such
that a basis for the open sets of G consists of the cosets of H (see for example [2]).
Then G is disconnected, the connected component of 0 being H. Now, if G is an
infinite Hausdorff group and C is the connected component of 0, Hofer [3]
defined Mo = {/ e N0(G)\f~\0) contains a clopen set about 0}, P = P(C) = { /
G N(G)|range of / c C} and Po = P C\ No and observed that P is an ideal in
N(G) and Po and Mo are ideals in NQ(G) such that M0\P0 # 0 . In our case,
although G is not T2, these results are still true. Moreover, H is the smallest
clopen set about 0 so MQ = {f\f(H) = 0} which is sometimes written (0 : H) or
Ann H. In fact, it is known that every left ideal of T0(G) is of the form Ann S for
some S c G ([8] Corollary 7.28), and that these all intersect down to left ideals in
NQ{G). We observe that Mo is one of these intersections and is, in fact, an ideal,
although T0(G) has no ideals.

THEOREM 2.1. If H is a subgroup of index 2 in a group G of order In then
\N(G)\ = 4 • n2n, \N0(G)\ = 2 • n 2 - 1 , |P| = n2n, \P0\ = n2""1 and \M0\ = 2 • n"
where, as above, P = { /e N\f(G) c H) andPo = P n No.

PROOF. The only non-trivial open sets are H and g + H (g <£ H). Therefore,/:
G -* G is continuous if and only if it is one of the following: (a)f'1(H) = H and
f'\g + H) = g + H, (b) f\H) = g + Hand f~\g + H) = H, (c) f\H) =
0 and f-\g + H)= G, (d) f~\H) = G and f'\g + H) = 0. There are n2n

maps in each case. In N0(G) since/"^O) 2 (0) only maps from (a) and (d) are
allowed and there are now w2""1 choices in each case. Clearly \M0\ = 2 • n". As
for P and Po> more generally if \H\ = k and |G| = m, then any map / : G -* G
whose range is in H is continuous so \P\ = km, and it is easy to see that
|P0| = k—\

As a corollary note that for H of index 2, Po is maximal in No being also of
index 2.

https://doi.org/10.1017/S1446788700022631 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022631


94 Gordon Mason [3]

Now Hofer has shown that when G is T2, P(C) is often the unique maximal
ideal in N(G), for example when \G/C\ = n > 2. Actually the proof in that case is
independent of the T2 condition. It uses the canonical map i//: N(G) -* N(G/C)
given by ^ ( / ) ( x + c) = f(x) + C whose kernel is P(C) and which is onto when
C is open. Now the isomorphism N(G/C) = N(G)/P induces N0(G/C) =
(N(G)/P)0 but the latter is not a priori isomorphic to N0(G)/P0. In other words
a near-ring surjection N -* R induces a map No —> Ro which may not be onto.
However, examining \\i more closely, let v: G —* G/C be the canonical map and k:
G/C -* G a map for which vk is the identity. Then for every g e N(G/C),
8 = M / ) where/(x) = £(g(.x + C)). In our case C = H is open, G / # is finite
and so discrete and ip restricted to NQ(G) produces a near-ring homomorphism
with kernel Po. Moreover, we can choose k so that k(H) = 0 so the preimage/of
g <= N0(G/C) is actually in N0(G) as required. We have

THEOREM 2.2. Po is a maximal ideal in N0(G).

Clearly, however, No does not have a unique maximal ideal since Mo is
contained in some maximal ideal(s) and Mo <t Po. We shall see below that for G
finite, Mo is maximal and that Po and Mo are the only maximal ideals. For now we
simply observe (even for G infinite) that Zorn's lemma applies to S = {ideals
I\I \ Po =£ 0} and the maximal elements so obtained must be maximal ideals.

In Lemma 2.12 of [3] it was proved that if G is T2 and / is an ideal of N0(G)
such that I\P0¥= 0 then / contains all functions whose range is finite. The
conclusion is false for general non-Hausdorff groups; for example when G is
finite this would say / is all of N0(G), but we know Mo is a proper ideal satisfying
Mo \PQ^ 0 • However, the following weaker statement is true, and in fact it is a
valid replacement for Lemma 2.12 in [3, Theorem 3.3 and Theorem 3.8(b)] (see
next Corollary). Let R(f) denote the range of/and call its order the rank of/.

PROPOSITION 2.3. Let G be any disconnected group and C the connected compo-
nent ofO.(G need not be Hausdorff or finite,)

(a) / / / is an ideal in N0(G) such that I\PQ¥= 0, then I contains all functions f
with R(f)={0,a} where a € C. Moreover, I does not contain all functions of
rank 2, in the case G is finite.

(b) //\G/C\ > 2 and I is an ideal in N(G) with I\P =£ 0 then I contains all
functions f with / ? ( / ) = {c, a) where c e C,a € C.

PROOF. The proof given in [3, Lemma 2.12] remains valid except at one point.
It is noted that when G is T2, if R(g) = {0, a} then g-1(0) and g'\a) are clopen.
For arbitrary G, this will be true if a € C. The result follows.
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Suppose / contains all functions of rank 2. We show / contains Po which is a
contradiction. Proceeding by induction let J R ( / ) = {0, h2,...,hn) a H. Put/X(x)
= 0 if f(x) = 0, / i(x) = h2 otherwise. Then/j is continuous and by hypothesis it
is in / . Also by induction/ - fx e / s o / e / .

COROLLARY. For G as in the proposition, if \G/C\ = n > 2 then P(C) is the
unique maximal ideal ofN(G) (see [3, Theorem 3.8b]).

We now show Mo is maximal, first recording the following characterization of
continuity.

LEMMA 2.4. / / ^ e T0(G) then *p e N0(G) if and only if *p(g) e x + H =*
H)Qx + H.

PROOF. This is simply the observation that \p is continuous if and only if the
inverse images of basic open sets (cosets) are open.

THEOREM 2.5. There is a near-ring isomorphism between T0(H) and N0(G)/M0.

PROOF. Map ip: N0(G) -* T0(H) by restriction, noting that by the lemma ^ | H is
in T0(H). This is easily seen to be a near-ring homomorphism. Moreover, it is
onto since any / e T0(H) can be extended to a continuous map on G by, for
example, setting/(x) = 0 for all x € H. Finally, ker \p = { f\f\H = 0} = Mo.

Since by [8, Theorem 7.30] T0(H) is simple we have

COROLLARY. MO is a maximal ideal in No.

We refer the reader to [8, Chapter 5] for definitions of the radicals.

THEOREM 2.6. All the radicals Jt ofN0(G) coincide and equal Mo n Po.

PROOF. / = Mo n Po is nilpotent since/ e J implies f(H) = 0 and f(G)<zH.
Therefore for all / , / t e J ff^G) c f(H) = 0. Hence J c Jv On the other hand
by [8, Theorem 5.42] Jx = J2= n all maximal ideals c J. Hence J = Jx and by [8,
Theorem 5.48] J = J0 = J1/2 also.

THEOREM 2.7. Mo and Po are the only maximal ideals of No.
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PROOF. Suppose / is maximal, / # Po. We show / 2 Mo. By the previous
Theorem I ^> M0C\ P0so we show / contains all /with f(H) = 0 and R(f) <£ H.
Proceeding by induction, it is true for rank / = 2 by Proposition 2.3. Suppose
/ e Mo has rank/i, R(f)<tH, that is, R(f)= {0, a2>...,an) with a2<£H.
Define fx(x) = 0 if x ef~\H), f^x) = a2 otherwise. Then / j is continuous,
rank( / - fx) = n - 1 and / - fx e / either because / ? ( / - / x) c H or by induc-
tion. A l s o ^ G / by Proposition 2.3 s o / e / as required.

To exploit Theorem 2.5 further we note as mentioned earlier that for any finite
group G the left ideals in T0(G) are precisely of the form Ann S for S c G, so
maximal ones are obtained for S = {g} and minimal ones^ for S = G - {g}.
Following Pilz [8] we will denote the latter by Lg and put Tg = Lg n #„. By [8,
7.18] we have Lg = T0(G)eg where eg is the idempotent given by eg(g) = g,
eg(x) = 0 for all x # g. Note that G is an -/V(G)-group and an A'0(G)-group under
canonical action.

LEMMA 2.8. NiG)G is strongly monogenic and N^G)G is monogenic.

PROOF. All constant maps are in N(G) so N(G) • g = G for every g. In the case
of N0(G) if g £ H then for all x there is / e No with f(g) = x so for those g,
JV0(G) • g = G.

THEOREM 2.9. (a) eg is continuous if and only if g e H and then Lg = N0(G)eg.
(b) Z^ = N0(G)/Ana h for all h e H and Tg - H for all g.
(c) G = A^(G)/Ann g (/or all g <= G) as N(G)-groups. If g <£ H G «

7V0(G)/Ann g as N0(G)-groups.
(d) Lg « a minimal N0(G)-subgroup of No for all g and Ann A w a maximal

N0{G)-subgroup for all h e H. (So they are respectively minimal and maximal left
ideals also.)

PROOF, (a) Clearly eh is continuous if h e H and on the other hand if g £ H,
eg\H) = G\ {g} is not open. Moreover, Tg = LgDN0= T0(G)eg n tfo(G) =
N0(G)eg. _

(b) Map a: N0(G) -» LA = N0(G)eh by a(f)=feh. This is an iV0(G)-epimor-
phism whose kernel is Ann A. Now let /J: H -> Lgbe given by P(h0) ~ f where
/ ( g ) = ' 'o ' /C^) = 0 for all x ¥= g. Then /? is an ^(G^homomorphism which is
1 — 1. It is also onto for if / e L^, / ( x ) = 0 except when x — g and then
/ ( g ) = a, where by continuity a e H. Thus / = /J(a) as required.

(c) By Lemma 2.8 and [8, Proposition 3.4] we have G = iV(G)/Ann g for all g
and G = iV0(G)/Ann g for all g € H.

(d) We show Lh is minimal by showing for all 0 ^ / e Lh N0(G)f = Lh. Now
/ ( x ) = 0 Vx * h and /(A) * 0. Define g by g(/(/i)) = A, g = 0 otherwise. Then
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g e No and eh = gf <z Nof. Hence Lh = N0(G)eh c NQf as required. Clearly
Lg = Lh for all g so that Lg are minimal also. Applying (b) we have Ann h is a
maximal iV0-subgroup for all A e H.

Having seen the Ann A are maximal A^-subgroups we turn our attention to
Ann g,g<£H.

LEMMA 2.10. The only N0-subgroup ofGis H.

PROOF. If K is an A^-subgroup of G, it is a subgroup of (G, +) such that
4>(K) c K for all \p in 7V0. This is certainly true of H. On the other hand, if
H\K* 0 let A e H\K, h * 0 and define $ by »/,(g) = A for all g # 0, and
^(0) = 0. Then if, is continuous but }(K) % K. Finally if H c # , /i: = Us(g + / / )
for some set 5 of coset representatives. There exists g e S\H so define if/j by
if/jCg + / / ) = _v + H for any >» € S, and if/x the identity on the rest of G. Then
again i/̂  is continuous but ^^K) <t K.

Put Sg = { / e N0\f(g + H) c / /} for g « 7/.

PROPOSITION 2.11. 5g is a maximal left ideal and maximal N0-subgroup properly
containing Ann JC for all x e g + H. Moreover Sg — Sx for all x, g $ H and

PROOF. Sg is a normal subgroup of (N0(G),+ ) since H is normal in G.
Moreover for all +, a e Â o and / e S g let x = [jf,(a + / ) - if,a](g + A) =
if/(a(g + A) - Ax) - if,a(g + A) where / (g + h) = h1 e H. By Lemma 2.4, x e
J ,̂ so Sg is a left ideal. By Theorem 2.8(c) G = iV0(G)/Ann g and under this
isomorphism (which comes from the evaluation map) Sg corresponds to H. Thus
the Sg are all isomorphic (in fact Sg — Sx if x G g + ^ ) . By Lemma 2.9, the only
A/o(G)-subgroup of G is H so the 5g are the only iV0(G)-subgroups of No which
contain Ann g. Finally Po c Sg for all g and if / e 0Sg then/(g + H) c /f for all
g, that is, / G Po.

3. Subnear-rings of N0(G)

In this section, G is again a finite topological group with topology determined
by a normal subgroup H and we will write N0(G) as iVH. Let 7, ^ and £ be the
near-rings distributively generated by Inn G, Aut G and End G which are respec-
tively the groups of inner automorphisms, automorphisms and endomorphisms of
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G. There is an extensive literature on these near-rings for various classes of finite
groups (see for example [1], [4], [5], [6], [7]) and using these results we will
examine two kinds of subnear-rings of NH. The first is EH = NH n E, the
near-ring of continuous maps in E, and the second is CH, the near-ring distribu-
tively generated by the continuous elements in End G. (EH, although a subnear-
ring of E, is not necessarily distributively generated.) Since every inner automor-
phism is continuous in all topologies we have for all H

(1) IQCHQEHQE.

We shall see later that for G = Ds, the dihedral group of order 8, we have in fact
a chain of maximal proper inclusions / ^ c C f f c EH c E. At the other
extreme, it may happen that I = E (for example G dihedral of order 2n, n odd
([6]) or G = Sn the symmetric group, for n > 5 ([1])). In such a case E c NH and
the same is true whenever H is fully invariant, in view of the next result.

LEMMA 3.1. / / > e End G, ^ <= EH if and only if\p(H) c H. Also if^ e Aut G,
\p e EH if and only if^H — H.

PROOF. Apply Lemma 2.4.

Thus for characteristic subgroups H the sequence (1) can be modified to
include / c A c CH. To complete the example for Sn, n = 3 or 4, in each case the
only normal subgroups are members of the derived series [9, page 112]) and these
are fully invariant so again E c NH.

PROPOSITION 3.2. J,(NH) n E c Jj(E)for all radicals Jf.

PROOF. From [4] we know all radicals of E coincide. Since J(NH) is nilpotent so
is J(NH) n E and the result follows.

From the remarks following Theorem 16 in [4] we find that if G has a unique
fully invariant subgroup H then J(E) is precisely (in our notation) MQ C\ Pon E.
Thus in this case, equality holds in Proposition 3.2. (An example will be given
later where equality does not hold.) To complete our discussion of Sn, n > 5, it is
mentioned in fl] that E(Sn) is close to being all of T0(Sn). We know E c NH c To.

PROPOSITION 3.3. E(Sn) = NH(Sn) when H = An.

PROOF. From [1] E = N + (T0(H) e Z2) is a semi-direct sum where N = Mo

n Po (again in our notation). Moreover T0(H) is a direct sum of «!/2 subgroups,
each isomorphic to H. Thus \E\ = \NH\ using Theorem 2.1.
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To obtain information about CH and EH we use the following decomposition
procedure from, for example, [7]. If R is a d.g. near-ring, one decomposes the
generators r, by an idempotent e1 to obtain elements of the form r, — exrh and of
the form exrt, the latter generating a group Mv The elements of the first form are
conjugated by elements of M1 and these conjugates generate Av Choose a second
idempotent e2 ^ Ax and again form the conjugates of all x — e2x (x e Ax) by
elements of the group generated by the e2x. These conjugates generate D and
R = D + Al + Mv The procedure may be iterated.

In particular if G = D2n is the dihedral group of order In for n even with
presentation G = (a, b\a" = b2 = abab = e), following [7] we denote an endo-
morphism ip by [s, t] where <|/(a) = * and \l>(b) = f, and denote any map by the
images of (e, a, a2,...,a"~l\b, ab,...,a"~lb) in that order. The endomorphisms
are of six types:

(1) [ay,axb], 0<y,x4in-l,

(2) [d,e]
,-,\ r j ,, i d any element of order 2,
(3) [d,d\j

(4)

(5) [^a^]\ ^
(6) [axb,a»/2] I

Let H = ( a) be the cyclic normal subgroup of index 2. We now restrict to n = 4
for ease of calculation. Then ([7]) E = D + Ar + Mx where D =
{(«, e, a2, a2 |e, e, a2, a2) e (e, a2, a2, e\e, e, a2, a2)}, A1 = {(e, g,
e, g\e, g, e, g)\g e G) andM, = {(e, e, e, e\g, g, g, g)\g e G}. Using Lemma
3.1 we see all 8 elements of M1; all 4 elements of D and the 4 elements of y^ for
which g G //, are continuous. Thus |£H| > 128. But since \E\ = 256 and there are
endomorphisms which are not continuous, \EH\ = 128. If on the other hand we
topologize G by K = {e, b, a2, a2b) then there are 32 maps in EK which are a
sum of continuous maps in each of D, Ax and Afx so \EK\ > 32. As we shall see
later however the order of EK is actually 128.

Now we can obtain CH by applying the procedure outlined above. First, there
are 29 continuous endomorphisms, namely all those from (1), those from (2) and
(3) with d = a2, (4), and the identity [e, e\ Using the idempotent yl = [e, b] we
get one form for a — Yi«» namely /? = (e, ay, a2y, aiy\e, ay, a2y, a3y) for 0 < y
«$ 3. The elements yxa are [e, axb], 0 < x < 3, [e, e], and [e, a2] which generate
Mx = {{e, e, e, e\g, g, g, g)} as before. Conjugating /? by the yxa gives /} and
/?! = (e, ay, a2y, a3y\e, a'y, a'2y, a~3y). Choose the idempotent y2 =
(e, a, a2, a3\e, a, a2, a3) to get the single form y2f} = y2fil = /? so Ax has 4

elements. Then fi - y2fr = [e, e] and fix - y2Px = (e, e, e, e\e, a2y, e, a2y) so
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conjugating these by y2fi =*= /? gives only )81 — y2fix again and hence D has 2
elements. Thus |CW| = 64.

THEOREM 3.4. If n is even and H = (a), \CH(D2n)\ = w3. Moreover for n = 4,
/ c 4̂ g CH c £w g £ wAere f/te orrfer of each near-ring is twice the preceding one.

PROOF. For general D2n the procedure outlined above can be generalized, giving
CH = D + Ax + Mx where \M\ = In, \AX\ = n and \D\ = n/2. The second state-
ment comes from the above discussion and [7].

REMARK. The elements of CH are of the form L ±ft where the ft are the
continuous endomorphisms. In general, all possible ordered sums must be calcu-
lated. As an interesting consequence of the computer programme we used to
exhibit the elements of CH(DS) we found that (i) of the 20 continuous endomor-
phisms, only the 8 automorphisms plus the endomorphism (e, e, e, e\b, b, b, b)
were needed, (ii) only elements L/ , (all + ) were needed, and (iii) all elements
could be obtained from one particular ordering of the 9 generators. Also in
producing the 32 elements of A(DS), (ii) and (iii) were true.

To complete the discussion of £>g, let K = {e, a2, b, a2b). Then there are 24
continuous endomorphisms and the standard decomposition using the idempo-
tents yx = [e, b] and y2 = (e, ab, e, ab\e, ab, e, ab) show that \CK\ = 128. Since
there are endomorphisms which are not continuous, |£^| = 128 too. The only
other normal subgroups are (i) K1 = {e, ab, a2, a3b) and (ii) the centre Z =
{ e, a2 }. By symmetry CK = CK, and every endomorphism is Z-continuous.

THEOREM 3.5. The continuous subnear-ring structure of TO(DS) is given by

Nz

NH
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For G = D2n, n odd, we have already seen that / = E c NH for all H. In [6] it
is shown that J(E) contains an element ^ for which \p(a) = aw. For H = (a)
then, \}/ £ Mo so the inequality of Proposition 3.2 is strict.

Finally let G = Qn be the generalized quaternion group of order 2", n > 3 with
presentation (>„ = ( a, ftla2""1 = ft ab'xa = a2"'2b2 = e\. Then (see [5]) the nor-
mal subgroups are precisely the subgroups of H = (a), or Kl = (a2 , ft) or ̂ T2

= (a2 , aft) and the automorphisms are of the form [ay, axb] for 0 sg x> y < 2n

- 1 andy odd. Moreover | / | = 23n~5 and |yl| = \E\ = 23"~4.

THEOREM 3.6. For G = Qn,CL = EL = A = Efor all L < H and CK = EK, = /.

PROOF. Since / has index two in E, for every normal A, CA and EA will equal /
or E. Invoking Proposition 3.2 and looking at the form of the automorphisms we
see every automorphism is L-continuous for all L < H. On the other hand, only
half are X-continuous, namely those [ay, axb] withy odd and x even. As shown
in [5] the map (e, e, e, e,—\a, a,—,a) is in A but it is not A^-continuous. The result
follows.
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