
ON UTUMI'S RING OF QUOTIENTS 

JOACHIM LAMBEK 

The purpose of this note is to establish and exploit the fact that Utumi's 
maximal ring of right quotients (6) of an associative ring R (let us say with 1) 
is the bicommutator of the minimal injective extension of R regarded as a 
right J?-module. Nothing new will be said about Johnson's ring of quotients 
(4), which is still the most important case. 

While earlier papers on rings of quotients are referred to, the present note 
is self-contained, except that the reader is expected to be familiar with the 
concept "injective module" and with the following result by Eckmann and 
Schopf (2): 

Every i?-module MR possesses an extension ERl unique up to isomorphism 
over M, satisfying any one of the following three equivalent properties: 

I. ER is a maximal essential extension of MR. 
II. ER is an essential extension of MR and is injective. 

III . ER is a minimal injective extension1 of MR. 
Here ER is called an essential extension of MRl or MR is called a large sub-
module of ER, provided every non-zero submodule of ER has a non-zero 
intersection with MR. 

In what follows, R will be an associative ring with 1, and all i?-modules 
are understood to be unitary. 

1. Let IR be the minimal injective extension of the right i?-module RR 

associated with the ring R, and let H = Homfl (/, / ) be the ring of endo-
morphisms of IR. We write these endomorphisms on the left of their arguments 
and obtain a bimodule HIR. Again, let Q = Hom# (/, / ) be the ring of endo­
morphisms of the left i/-module HL We write these endomorphisms on the 
right of their arguments and obtain a bimodule HIQ. The letters R, i", H, 
and Q will retain their meaning throughout this paper.2 

The obvious mapping of R into Q is faithful, since Ir = 0 implies r = l r — 0 
for all r £ R. We shall regard R as a subring of Q. 

We also have a canonical mapping h —» hi of H into / . This is clearly an 
i7-homomorphism. 

Received June 21, 1962. 
xAs a matter of historical record, the minimal injective extension of a module is a special 

case of the "algebraic closure" of an algebraic system considered by K. Shoda in his paper 
Zur Théorie der algebraischen Erweiterungen, Osaka Math. J., 4 (1952), 133-144. 

2In the terminology of Bourbaki (1, Vol. 23, § 1), Q is the bicommutator of IR] a t least this 
is how I think the French word "bicommutant" should be rendered in English. The dual ring 
(or mirror image) of H would be called the commutator. 
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LEMMA. The canonical mapping of HH into HI is an epimorphism, that is 
HI = / . 

Proof. For any i £ / , the mapping r —» ir is a homomorphism of RR into 
IR and may be extended to some h 6 Homfl ( / , / ) , by injectivity of IR\ 
hence hi = i. 

2. Consider now the canonical homomorphism q —> lq of ()# into IR. We 
observe that its kernel is 0, since lq = 0 implies Jg = (Hl)q = H(lq) = 0, 
by the above lemma. We might therefore identify Q with the subset 1Q of I; 
but we prefer to keep up the notational distinction, at the risk of being 
pedantic. 

PROPOSITION. The canonical image of QR in IR consists precisely of those 
elements of I which are annihilated by all elements of H which annihilate R. 

Proof. Let h £ H, hR = 0, then A(10) = (hl)Q = 0. Thus 1Q is contained 
in the indicated submodule of IR. Conversely, assume that i £ I has the 
property: hR = 0 => hi = 0 for all h £ H. We shall find q £ Q such that 
i = lq} and this will complete the proof. 

By Lemma 1, any element of / can be written in the form hi, where h Ç H. 
Wri te (hl)q — hi, then q is a well-defined mapping of / into itself; for if 
h'l = hi with h' G H then (h - h')R = 0 and so (h - h')i = 0, by the 
assumed property of i. One easily verifies that q G Hom# (/, I) = Q. Finally, 
by taking h to be the identity element of H, we obtain lq = i. 

It follows from the above and a known result3 that Q is Utumi's ring of 
right quotients of R. However, we shall establish this fact more directly in 
§ 8. In the meantime, we shall feel free to call Q the ring of right quotients of R. 

Looking at the inverse image of 1Q in H we find the following:4 

COROLLARY. Q ^ P/K, where K = [h G H \ hi = 0} and P = {h Ç H \ 
KhCK). 

3. If we repeat the procedure of § 1 with Q in place of R, we obtain nothing 
new: 

PROPOSITION. IQ is the minimal infective extension of QQ and HomQ (/, I)=H. 

Proof. Let AQ be a, submodule of BQ and <£ Ç HomQ (A, I). Since IR is 
injective, </> can be extended to ^ G Homfi (5 , 7). It will follow that IQ is 
injective, if we show that ^ is a Q-homomorphism. 

3See (3, 2.7). A proof of this result appears in (4, Theorem 1). Incidentally, the proof of 
(3, Theorem 2.6) fell short in failing to verify that the ordered system considered there was a 
set; but this can easily be remedied. 

4Findlay and the present author had originally used this formula to construct Q, but later 
favoured another approach. The formula was again observed by Utumi, who mentioned it 
in a letter. 
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For any a G A consider tyaq = ^{aq) — (\pa)q. Clearly \pa G Homfl (Q, / ) and 
\[/aR = 0. But \//a can be extended to an element of H; hence, by the propo­
sition in § 2, \l/aQ = 0. This shows that \f/ G Hom ç (B, / ) , as required. 

Now, since IR is an essential extension of QR, IQ is an essential extension 
of QQ. Being injective, it is therefore the minimal injective extension of QQ. 

Clearly Hom0 (/, / ) C HomB (/, / ) = H. We have equality, since HIQ is 
a bimodule. 

COROLLARY. Q is its own ring of right quotients.6 

4. One may ask what happens if the above construction of Q is generalized 
as follows. Let IR be any (not necessarily minimal) injective extension of RR, 
and let H' = Horn* (/', / ' ) and Q' = Hom#> (/', / ' ) • It can be then shown 
that 

R C 1<2' C IQ C / C / ' , 

where IB is the minimal injective extension of RR contained in IR. The 
following example shows that, by appropriate choice of / ' , we can arrange 
to have Qf small. 

Example. Let KR be the minimal injective extension of the i?-module Q/R. 
Take IR' = IR@KR, then Q' = R. 

I do not know whether every ring between R and Q can be obtained in 
this way. 

5. PROPOSITION. The following conditions are equivalent: 

(1) HH = HI canonically. 

(2) IR ^ QR canonically. 

(3) H ^ Q canonically as rings. 

(4) QR is injective. 

(5) IQ = QQ canonically. 

(6) Q is right self-injective. 

Proof. (1) <=> (2). Assume (1), then the mapping h —» hi has kernel 0. Thus 
hR = 0 implies hi = 0, and so / = 1Ç, by the proposition in § 2. Thus 
(1) =» (2), and this argument may be reversed. 

(1) and (2) =» (3). Tracing the given isomorphisms H —> I <— Q, we find 
that h € H corresponds to q 6 Q if and only if hi = lq. Suppose also that 
ft'l = lq'; then (hh')l = *(A'l) = h(lq') = (M)g' = {lq)qf = l{qqf). 

(3) => (2). Assume (3), then the relation hi = lq is an isomorphism between 
H and Q. Now for any i € / there exists /r G iJsuch that Al = i, by Lemma 1. 
Hence, by assumption, there exists q G Q such that i = lg. Therefore (2) is 
true. 

6This was first shown in (6, (1.15)). 
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(1) <=> (5). In view of the proposition in § 3, this is a special case of the 
statement (1) <=> (2), which has already been shown. 

(2) <=> (4), (5) <=> (6). Assume QR is injective; then so is its canonical image 
in IR. But IR is an essential extension of this image, hence I = IQ. 

6. It is known (6, (1.3)) that an element of Q belongs to the centre of Q 
if and only if it commutes with every element of R. (Given q £ Q, let 
<t>qq' = qq' — q'q, for any q' £ Q. Then <t>qR = 0 and so 4>qQ = 0.) Applying 
this criterion twice, one sees that if R is commutative, then so is Q (3, 7.2). 

LEMMA. The centres of H and Q coincide with H C\Q = Hom# tQ ( / , I ) . 

Proof. An endomorphism of HIQ is an endomorphism h of IQ such that 
h(h'i) = h1(hi) y for all h' Ç H and i £ I. This means that h lies in the centre 
of H. By writing hi = ih, we see that this can also be interpreted to mean 
that h 6 H H Q or that h lies in the centre of Q. 

COROLLARY. If R is commutative, then Q is isomorphic to the centre of H. 

Proof. Since Q is commutative, it coincides with its own centre, hence with 
the centre of H. 

An example by Utumi (6, (1.1)) can be used to show that in general H is 
not commutative even if R is. 

Example. Let F be any field, 5 = F[x]/(x4), R the subring of 5 generated 
by 1, x2 and x3; thus 

S = F + Fx2 + Fx\ 

where x is the image of x in S. As Utumi pointed out, SR is an essential extension 
of RR but, when SR is regarded as a submodule of IR, S (£ IQ. The endo­
morphism s —> xs of SR may be extended to hi 6 H. The mapping <j>: S —» 5 
denned by 

4>(fo + /xx + hx2 + /3x3) = /ox + (/i + /2)x3 

is an endomorphism of SRl as is easily verified, and may be extended to h2 € H. 
Now hi(h2l) = x0l = x2 and h2(h1l) = <j>x = x3; hence &1&2 5̂  ^2^1-

7, A submodule F a of Q/B will be called cZe»56 if h F = 0 implies M = 0 
for all 1 6 5 . 

PROPOSITION. / / FR and GR are submodules of QR and F is dense, then 
Honiij (F, G) is canonically isomorphic to the uresidual quotient" 

G:F= {qtQlqFCG}. 

Proof.* The canonical homomorphism of G : F into Homfî (F, G) is of 
course the mapping which associates with each q G G : F the homomorphism 

6This proposition could also have been deduced from (6) or (3). 
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/—> g/of F into G. It is a monomorphism, since g F = 0 implies g = 0. (Recall 
that lg = M, for some h £ H, and F is dense.) It will follow that it is an 
isomorphism if to each </> G Homfi (F, G) we can find g G <2 such that 
*/ = qf for all / ^ . 

Indeed, extend <j> to h £ H, in the sense that hlf = 10/ for all f £ F. Now 
consider any h' ^ H such that /*'!? = 0. Then h'hlF C /*'1<2 = 0, and so 
h'hlQ = 0, since i7 is dense. Therefore hlQ C 1(?, by Proposition 1. In parti­
cular, hi = lg for some g G (?. Thus 10/ = M / = lg/, and hence <t>f = g/, 
for all / G /s as required. 

As an application we may mention the following corollary. 

COROLLARY A. Two dense submodules FR and GR of QR are isomorphic if 
and only if there exists an invertible element q G Q such that qF = G. 

Now let R be a commutative ring ; then so is Q (see § 6). Assume that FR is 
invertible1 in the sense that FF~l = R for some submodule F~l of Q. It is not 
difficult to see that then F~* = R : F. By Corollary A, FR ^ GR if and only 
if there is an invertible element q G Q such that qR = GF~l. Thus, as in 
classical ideal theory, we have the following corollary. 

COROLLARY B. Let R be commutative. The group of isomorphism types of 
invertible submodules of QR is isomorphic to T/IL, where T is the group of in­
vertible submodules and U is the subgroup of principal invertible submodules of QR. 

8. PROPOSITION. / / A is the set of dense right ideals of R, then 

Q = U R:D. 
DtA 

Proof. Let q G (?, then q £ R : D, where D = {d G R \ qd G R}. It remains 
to show that D is dense.8 Given h G H and hD = 0, we want to show that 
hi = 0. Consider the mapping <j> : R + lqR-* I defined by <t>(r+lqrf) =hr'. 
(That this is well-defined follows from the fact that hD = 0.) Extend <f> to 
V G H; then h'R = 0, and hence A'lQ = 0 and hi = 4>lgl = h'lql = 0. 

COROLLARY. Le/ = fo /Ae equivalence relation that holds between <j> G Homfi 

( A i?) and 4>' G Homfl (£>', 12) if and only if (<j> - <j>f) (D r\ £>') = 0, wAere 
A £>' G A. FA*?» 

Q ^ U H o m a ( A i ? ) / = . 
DeA 

7Findlay and the present author first became interested in Utumi's ring of quotients upon 
observing that an ideal A of R (let us say R is commutative) is invertible in Q if and only if 
A is projective, finitely generated, and dense. Looking at Bourbaki's treatment of invertible 
ideals (1, Vol. 27, Chapter 2, § 5), one is tempted to ask whether an abstract module MR is 
isomorphic to an invertible submodule of QR if and only if MR is finitely generated and pro­
jective of rank 1. 

8The density of D is a special case of (3, Proposition 1.2). 
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Proof. This follows from the last two propositions if we observe that <f> = <j>f 

if and only if q = q' for the corresponding elements of R : D and R : D'. 

This formula may be interpreted as a direct limit of groups. It is Utumi's 
original construction of Q (6), based on Johnson's original construction (4), 
to which it reduces in the case considered in § 9 below. 

Actually, Utumi had considered a slightly more general situation, namely 
any associative ring 5 (without unity) satisfying the condition : for all s Ç S, 
sS = 0 ==> 5 = 0. Now let R be the ring of endomorphisms of the right module 
Ssi then R is a ring with 1 and a faithful extension of S. Moreover Utumi's 
maximal ring of right quotients of 5 coincides with that of R.9 

9. Johnson's singular submodule of any module MR consists of all those 
elements of M which annihilate some large right ideal of R. Let JR be the 
singular submodule of IR\ then J C\ R is an ideal, called the right singular 
ideal of R. Let N be the inverse image of / in H under the canonical epimor-
phism of HH onto HI; then N is an ideal of H. The ring H/N = I/J is a 
regular ring.10 Utumi11 used this to show that N is the Jacobson radical of 
H. It follows immediately that / is the radical (i.e. intersection of maximal 
submodules) of HI-

As in all important applications up to date it has always happened that 
J = 0, we record here, without offering any new ideas, the following known 
set of equivalent conditions: 

(1) R has zero right singular ideal. 
(2) IR has zero singular submodule. 
(3) H is semi-simple in the sense of Jacobson. 
(4) HI is semi-simple (i.e. has zero radical). 
(5) Q is regular in the sense of Von Neumann. 
(6) All large right ideals of R are dense. 

It is known that if J = 0 ,then Q will be right self-injective. This may also 
be deduced from the following lemma. 

LEMMA. If i £ I and Hi r\J = 0, then i G 1(?. 

Proof. Let L = {r G R | ir Ç R}. Since IR is an essential extension of RR, 
therefore LR is a large submodule of RR. (By a standard argument: if A is a 
right ideal of R and L C\ A = 0 , then iA C\ R = 0 and so iA = 0. But then 
i C l ^ ^ = 0 - ) Now suppose h £ H and hR = 0; then (hi)L = 0, and so 
hiemr\J = O. Thus i € IQ. 

9In (3) rings of quotients of arbitrary associative rings were also considered. I t seems less 
clear how to fit these into the present framework. 

10See (8, Theorem 2), where essentially this result is established in a more general set-up. 
IR being the minimal injective extension of any module MR. 

nSee (6, Lemma 1). He considered the more general set-up mentioned in the preceding 
footnote. 
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Appendix. A number of people have asked : What is the relation between 
Utumi's ring of quotients and (I) the classical ring of quotients, say as de­
scribed in the book by Jacobson {Theory of rings. New York, 1943, Chapter 
6), or (II) the constructions recently advocated by Bourbaki? 

I. Let R be an associative ring with 1, Qc an extension of R (with the same 
1). Then Qc is called a classical ring of right quotients of R if all regular elements 
of R are invertible in Qc and every element of Qc has the form ab~l with a, 
b G R and b regular, (b is called regular if it is neither a left nor a right zero-
divisor.) Qc will exist (and be uniquely determined up to isomorphism over R) 
if and only if R satisfies the following condition. 

Condition (Ore). For every pair of elements a, b £ R, b regular, there exists 
a common right multiple ab1 = ba' such that a', b' G R and bf is regular. 

Now let R satisfy this condition and let b be a regular element of R. Then 
bR is a dense right ideal of R (in the sense of § 7). For from hbR = 0, h G H, 
we deduce, for any a £ R, that hab' — hba' — 0, with b' regular, and hence 
that hR = 0. Let <t> G HomB (bR, R) be defined by <t>br = r, r G R. (Note 
that br = 0 implies r = 0). Then by the corollary appearing in § 8, <t> gives 
rise to an element q of Q such that qb = 1. By the regularity of b, also bq = 1, 
and hence b is invertible in Q. In view of the usual addition and multiplica­
tion of fractions, we see that the elements of Q of the form aft-1, with a, b G R, 
b regular, form a subring of Q. We may therefore write R C Qc C Q-

These facts were observed by Findlay and the present author, but only 
the commutative case was treated in (3, §7) . It was shown there that in 
general Qc T^ Q. In all known examples for which Qc ^ Q, R fails to satisfy 
the maximum condition for right ideals. On the other hand, Goldie has proved 
that Qc — Q for any semi-prime ring with maximum condition (A. W. Goldie, 
Semi-prime rings with maximum condition, Proc. London Math. Soc, 10 (1960), 
201-220). This is where the problem rests today. 

II. Bourbaki gives a general construction of what one might call "rings of 
quotients" in a set of exercises attributed to P. Gabriel (1, Vol. 27, pp. 157-
165), but which actually contains several results by Johnson and Utumi. 
Bourbaki considers a set 3> of right ideals of R satisfying the following con­
ditions : 

(1) Every right ideal of R containing a member of $ belongs to <ï>. 

(2) $> is closed under finite intersection. 
(3) If A G $ and r Ç R, then r~lA = {x G R | rx 6 A) G $. 

He forms the direct limit R$ of the modules HomB (A, R) for all A G <ï>, and 
shows that this can be naturally turned into a ring under the further con­
dition: 

(4) If B G $ and A is a right ideal such that b~lA G $ for all b G B, then 
A G $. 
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The canonical mapping R-+R$ is a monomorphism if and only if: 

(5) For all A 6 $, 0 : A = 0. 

It is not diffiuclt to verify that the set A of dense ideals satisfies conditions 
(1) to (5) and is in fact the largest set of right ideals satisfying these conditions. 
Thus Q — RA is the largest of those Bourbaki-Gabriel rings of right quotients 
which faithfully extend R. 
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