K. Yamato
Nagoya Math. J
Vol. 76 (1979), 35-114

AN EFFECTIVE METHOD OF COUNTING
THE NUMBER OF LIMIT CYCLES

KAZUO YAMATO

Introduction

We are interested in determining, after a finite number of procedures,
the number and the approximate positions of limit cycles for a given
system.

For instance, let

() 7= g(x,)

be a given autonomous system on an (x, y)-plane R®. Suppose that ana-
lytic expressions for the solutions of (x) are not to be expected. Then
in order to know the analytic properties of the solutions, we have to
study the “pattern” described by the family of integral curves. For this
purpose it is of basic importance to investigate the singular points (points
such that f(x, y) = g(x, y) = 0) and the limit cycles (isolated closed integral
curves), because the singular points and the limit cycles dominate the
global pattern. The problem of investigating the singular points is the
one of algebraic equations, while as to the problem of investigating the
limit cycles, any effective, general method has not been known yet.

The purpose of the present paper is to give a method by which the
number and the approximate positions of limit cycles can be determined.
Indeed we shall show that

(i) our problem (i.e. determining the number and the approximate
positions of limit cycles) can be reduced to the problem of finding ap-
proximate solutions of a partial differential equation (denoted by (E) be-
low),
and as applications of our method to Liénard’s equations we shall prove

(i1) the classical theorem concerning the generating circles of limit
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cycles (the typical result by the classical perturbation technique).

(iii)) the Liénard’s theorem (the existence of a unique limit cycle).

(iv) the comparatively recent result (Hochstadt, Stephan and D’hee-
dene) concerning the existence of an infinite number of limit cycles.

As for the features of our method we wish to emphasize the following:

(i) In our proof of the existence of limit cycles we have not to
draw any geometrical figures. Moreover, the approximate positions of
limit cycles are given by algebraic inequalities. In this sense, our theory
plays the same role in the problems of limit cycles as analytic geometry
plays in purely geometric problems.

(ii) The essential part of our existence-proof of limit cycles is to
find the function by which the given system is to be multiplied. There-
fore, after having found it, we can note in a small space the function as
the key to the proof.

(iii) Because of the differential-topological property of our method,
the function (mentioned above) can be used also in the study of the per-
turbed systems (and hence in the study of the forced systems).

Let us explain our method in more detail. Let X be the vector field
corresponding to (%), i.e., X = fd/ox + gd/dy. As usual, let divX be the
divergence of X (with respect to the ordinary area-element dxdy), i.e.,
divX = le—}— g,- We consider the following condition:

D) (X div X)(x, y) = {f(div X), + g(div X),}(x,y) < 0
for any (x,y) e 2 = {(x, y)|(div X)(x, y) = 0} .

This condition means that for each point p in %, the tangent vector X,
at p points into the set {(x,y)|(div X)(x,y) < 0}. Therefore, if (x) satisfies
condition (D), then each closed integral curve for (x) is contained in a
connected component of R* — %, and the function div X has a constant
sign along each closed integral curve; hence each closed integral curve
is positively or negatively asymptotically stable according as it is con-
tained in {(x,y)|(div X)(x,y) < 0} or in {(x, y)|(div X)(x,y) > 0}. In this
way, if system (x) satisfies condition (D), we can estimate the number of
limit cycles of (x) in terms of the topology of R* — 3.

Now, when (x) does not satisfies (D), what can we say? At this point,
notice that div X can take a different form when we multiply X by a
positive function e*“%, and note that the vector field ¢*X gives exactly
the same pattern as X. (We do not try to change the area-element on
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R, for a certain reason.) Then, if we can choose a function e* so that
the new vector field Y = e*X satisfies

(Ydiv Y)(x,y) <0

for any (x,y)e 2’ = {(x,y)|(div Y)(x, y) = 0}, then we can say the same
thing for () as for systems satisfying condition (D).

Well, but how shall we find such a function ¢*? Indeed, it is not
easy to solve directly the partial differential inequality

D) e“X(dive*X) <0 on Y.

Our answer is to find approximate solutions e¢* of the partial differential
equation

(E) e“X(div e*X) — (dive*X)* = —2

(which is equivalent to
X —-divXX)Xu) + X —divX)divX + e =0),

where 1 is a constant. Note that for the solution (or approximate solu-
tion) e* of (E) with 1 0, the vector field e*X satisfies condition (D’).
Hence if we find an approximate solution e¢* of (E), then we can estimate
the number of limit cycles. Furthermore, as we shall see, our knowledge
of the positions of limit cycles becomes more accurate as the approximate
solution of (E) becomes more correct. Thus, our problem of determining
the number and the approximate positions of limit cycles reduces to the
problem of finding approximate solutions of (E).

Let us explain equation (E). Analytically, the solution e* of (E) is
the “best” function (in the sense of calculus of variations) of all func-
tions satisfying (D’). Geometrically, equation (E) means that the 1-para-
meter transformation group {¢,} generated by e*X has the following pro-
perty. Recall that div (e*X) gives the relation between the area 4,(p; U)
of an infinitesimal neighborhood U of a point p in R* and the area 4,(p; U)
of the infinitesimal neighborhood ¢,(U) of the point ¢,(p), by the formula

4(p; U) = 4(p; U) exp || (@iv e X))t

Equation (E) means that the function 4,(p; U) of t behaves as the function
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1
ce + (1 — c)e®

where ¢ is a constant (0 < ¢ < 1) depending on the point p.

It should be remarked that the solution e* of (E) is a “generalized”
integrating factor for X. An integrating factor for X, if any, is a function
e satisfying div (e*X) = 0. (If such a function e* exists, then the pro-
blem of solving (*) reduces to a mere quadrature.) Note that if e* is an
integrating factor for X, then e* satisfies (E) with 1 = 0. Hence the solu-
tion e* of (E) can be viewed as a generalized integrating factor for X.
Although integrating factors exist only in the exceptional case, our “in-
tegrating factors” exist for almost every X.

Let us now describe the contents of this paper.

In §1, we deal with a vector field X defined on a closed surface M.
On M we fix an area-element w. Then we can define the divergence divX
of X and the set Y = {p e M|(div X)(p) = 0}. We begin with a geometric
theorem (Theorem 1.1.1), which asserts that if X satisfies

D) XdivX)(p) <0  for any pe2,
then we have

the number of limit cycles < ${2} — 1 + the genus of M,
where ${3} is the number of connected components of X .

The lower bound of the number of limit cycles is given by Proposition
1.2.1.

One of the main results of this paper is Theorem 1.1.2 which makes
Theorem 1.1.1 useful. Theorem 1.1.2 asserts that if X is “‘strongly” struc-
turally stable, then there exists a function e*: M — R such that

(E) (e*X — div e*X)(div e*X) = — 2%,

where 2 is a positive constant.
Practically the following (Theorem 1.2.2.) is more important. If e’ is
an approximate solution of (E), i.e., if e° satisfies

—(A 4 &) < (e'X — diverX)(dive'X) < —(2 — ¢)?
with constants ¢, 2,0 < & < A, then the set

{pe M|(div e’ X)(p) > (2 — &)}
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contains all limit cycles. Moreover, this set approaches the limit cycles (and
singular points and separatrices) as ¢ — 0.
By this theorem we can get the approximate positions of limit cycles as
accurately as we want. Let us roughly explain this theorem. If a vector
field e*X satisfies (E), then the set {p € M|(dive*X)* = 2’} is an invariant
set and contains all the closed integral curves (which are necessarily
limit cycles). Hence if a function e” approximates the function e*, then
the set {pe M|(dive’X)* = 2*} also approximates the set above for e“X,
and so gives the approximate positions of limit cycles.

1.3 and 1.4 are the proofs of Theorems 1.1.1 and 1.2.2 respectively.
It may be noted that the formula in Lemma 1.4.2 gives a new type of
relation between a curvilinear integral and a surface integral. We end
this section by giving an example satisfying condition (D).

In §2 (which can be read independently of the rest of this paper),
we discuss the applications of our method to Liénard’s equations

{x =y — (%)
y=—x, f—2)=—f@).

In order to solve equation (E), with X = (y — f)d/dx — x0/0y, we use a

@L

perturbation technique (except 2.5).

We begin with the modifications of Theorem 1.1.1 adapted for Liénard’s
equations, and in 2.2 we give the approximate (or formal) solution of (E).
Using this approximate solution we obtain the classical result (cf. Lefschetz
[9, p. 320]) that the generating circles of limit cycles are given by the

27
zeros of f cos 0 f(r cos 6)df .
0

In 2.3 we study the case f(x) = pgsinx and prove the result (due to
Hochstadt, Stephan [6], and D’heedene [3]) that the system

Xx=y— psinx
y=—x (1: nonzero constant)

has an infinite number of limit cycles.
In order to explain 2.4 and 2.5, we have to note that equation (E)
may reduce to the equation

div (e*X) = +2.

It is geometrically obvious that if a vector field X on R* has a unique
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limit cycle with nontrivial characteristic exponent and has a unique sin-
gular point, say (0, 0), then there is a function e*: R* — {(0, 0)} - R such
that the divergence div (¢“X) has a constant sign. (Indeed, as mentioned
in 2.1, we can make div (¢*X) = constant.) Recall that instead of multi-
plying X by e*, if we multiply the area-element dxdy by e* then the di-
vergence div, X of X with respect to the area-element w = e*dxdy is given
by e *(dive*X) = Xu + div X. Therefore, the equation div, X = constant
is linear (in u), while the equation div (e*X) = constant is nonlinear.
Thus in order to study a Liénard’s equation with a unique limit cycle
(or without limit cycle), we had better deal with the equation div, X =
constant. Under this view, the van der Pol equation is discussed in 2.4,
and the Liénard’s theorem is proved in 2.5.

§ 3is devoted to the proof of Theorem 1.1.2. Here it may be appropri-
ate to insert the geometric idea for the proof of this theorem. In order
to simplify the explanation, let us deal with a nonsingular vector field
X on T* = R*Z?, and suppose that X has a global cross-section and that
there are only two closed integral curves with nontrivial characteristic
exponent. We want to give a function e* such that e*X satisfies (E).
Let A, B be the two closed annular domains bounded by the two limit
cycles. Let «, B be the areas of A, B respectively. (Clearly « + 5 = 1.)
Then we introduce a C* vector field Y on T? as follows:

0 0
Y= —
f(x) T %
where

2 in %y for xe0,q],

T o
f=1", °.
—+2 sin = (x — a) for x e [a, 1] .
T B
Note that Y has just two limit cycles, x = 0, x = «, and the areas of the
two annular domains bounded by these limit cycles are «, 8 respectively.
Furthermore it is easily verified that

(Y—divY)divY = —2.

In order to get a function e* such that e*X satisfies (E), it suffices to
construct a homeomorphism A: I* — T (diffeomorphism almost everywhere)
such that A is area-preserving and such that each integral curve for X
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is mapped by A onto an integral curve for Y (In fact, define e* by the
formula A, (e*X) = Y). We construct such a homeomorphism 4 as follows.
Let y be a noncompact integral curve for X. There is a unique point p
on 7 such that for an infinitesimal neighborhood U of p, the area of the
(infinitesimal) domain | _J,., ¢,(U) is equal to the area of .., 4.(U), where
{¢.} is the 1-parameter transformation group generated by X. Such points
p, when 7 runs over all noncompact integral curves, constitute two cir-
cles S,C A, S,C B. Since h must be area-preserving and orbits-preserv-
ing, the circles S,, S; must be mapped by A to the circles x = «/2, x =
a + B/2 respectively. If the image of one point in S, is once determined,
then the images of other points in S, are uniquely determined again by
the requirement that A is area-preserving and orbits-preserving. Similarly,
the images of other points in 7® are also determined. In this way the
map A is constructed.

Let us return to the contents of § 3. In 3.1 we consider some geo-
metric conditions for a vector field. Lemma 3.1.1 gives a sufficient con-
dition in order that a pathpolygon is an « or w-limit pathpolygon. In
3.2 we introduce the notion of an elementary vector field and investigate
its basic properties. The vector field e*X satisfying the condition (E)
above is, by definition, an elementary vector field. A typical example of
elementary vector fields is the vector field Y on T® mentioned above. The
geometric conditions in 3.1 are, roughly speaking, the geometric chara-
cterization of elementary vector fields. The precise formulation is Theo-
rem 3.3.1, which is more general than Theorem 1.1.2. A variant of Theo-
rem 3.3.1 is Proposition 3.3.2, to whose proof 3.4-3.7 are devoted. Lastly,
in 3.8 the proof of Theorem 1.1.2 is completed.

We mention Cherkas [1] for the recent review concerning limit cycles.
We also mention Bellman [13] for the various methods to solve equation
(E).

Finally we wish to refer to [12]. In the analysis of vector fields the
divergence is one of the basic notions. The corresponding notion of dif-
ferential forms is the exterior derivative. The paper [12] deals with the
geometric properties of integral manifolds defined by a completely inte-
grable 1-form by means of the exterior derivative.

The author wishes to express his appreciation to Prof. Shiraiwa who
made a number of useful comments on the manuscript.
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§1. The number and the approximate positions of limit cycles

Let M be a connected, orientable, closed (i.e., compact and without-
boundary) 2-dimensional manifold of class C? and let v be an area-ele-
ment (i.e.,, a nonsingular 2-form) of class C* on it. We fix .

1.1. An upper bound of the number of limit cycles of a vector field
with condition (D)

Let X be a vector field of class C® on M. Denote by X the set of
zeros of div X, that is,

3 = {pe M|(@iv X)p) = 0} .
We consider the following condition concerning X:
(D) XdivX)(p) <0 for any pe .

Note that condition (D) implies that ¥ is a closed 1-dimensional submani-
fold of class C' in M (see 1.3) and hence X is a union of a finite number
of circles.

We begin with the following simple fact. It shows the importance of
condition (D) and is our starting point for discussing the qualitative pro-
perty of X,

THEOREM 1.1.1. Suppose that X satisfies condition (D). Then the num-
ber of limit cycles is equal to or less than ¥{2} + g — 1, where ${2} de-
notes the number of connected components of X, and g is the genus of the
surface M. Especially, in the case where M is a sphere (resp. torus), the
equality holds if X has, as singular points, only sources and sinks (resp.
if X is nonsingular).

This theorem will be proved in 1.3.

Unfortunately, vector fields satisfying condition (D) do not make a
dense subset in the set of all C? vector fields on M, although they make
an open subset. In order to overcome the difficulty, we try to change
the velocity of X by multiplying a positive function e* so that the new
vector field ¢*X (having obviously the same qualitative property as X)
satisfies condition (D). The following theorem tells us not only the pos-
sibility but also how to seek out such a function e*. Recall that a vector
field X on M is said to be structurally stable if a C'-small perturbation
of X does not change the qualitative property of X. (For the precise
definition, see [10].)
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TueEoREM 1.1.2. Let X be a vector field of class C? on M. Assume
that X is structurally stable, and that (div X)(p) # 0 for any singular
point p of X. Then there exists uniquely a continuous function u: M — R
and uniquely a positive constant 2 satisfying the following conditions:

(1) The function u is of class C* with respect to X, that is, the de-
rivatives Xu, X’u exist, and are continuous on M.

(ii) The function u is a solution of differential equation

(E) (X — div X)(Xw) + (X — div X) div X 4 e = 0.

(iii) The integral of u on M is equal to zero, that is,

J unw = 0.
M

We shall prove this theorem in § 3.

Remark. Let X, u, 2 be as above. Then, using an elementary for-
mula div e*X = e*(Xu + div X), we see that the vector field Y = e*X satis-
fies the identity

(Y — div V) divY = —2

and hence especially condition (D). (Strictly speaking, although the as-
sumption concerning the smoothness of Y is not satisfied, it makes no
matter.)

1.2. A lower bound of the number and the approximate position of
limit cycles

ProrositioNn 1.2.1. Suppose that a C* vector field X satisfies condition
(D). If X is structurally stable, then the number of limit cycles is equal to
or greater than the number of the connected components of M — X which
contain neither sources nor sinks.

This is an immediate consequence of the Poincaré-Bendixson theorem,
the characterization theorem of Peixoto [10], and the plus or minus in-
variance of each connected component of M — ¥ (see 1.3). The following
theorem will be proved in 1.4.

TaEOREM 1.2.2. Let X be a C? vector field on M, and let ¢, 2 be two
numbers such that 0 < e < 2. Assume that there exists a C* function v: M
— R satisfying the inequalities
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—(A+ e < (X —-divX)Xv + (X —divX)divX < —(2 — g)le™™,
Then the sets

M, = {pe M|e"(Xv + div X)(p

) = A— E} ’
M. = {pe Ml|e"(Xv + div X)(p) <

—( =9}

have the following properties:

(i) The sets M,.,, M_,_,, are 2-dimensional, compact, C' submani-
folds (with boundary) of M, and are invariant in the negative direction of
X, in the positive direction of X respectively.

(ii) Every closed trajectory y is contained in M,_, U M_,,_,,, and is
an a or o-limit cycle according as y is contained in M,_, or in M_,,_,,.

(iii) The respective areas of the sets M,_,, M_,_,, are less than

2 1+ #) (1-p)/201+ p) I
2 = T & .ayctan # o). R where y =
r (1—pf ( "1 :
Remark 1. Let X, v be as above. Then the vector field Y = e¢'X
satisfies condition (D). In fact, it is an immediate consequence of the
inequality (Y — div Y) div Y < —(2 — ¢)* which is equivalent to the right-
hand side of the above inequalities for v.

£
T

Remark 2. Assertion (iii) implies that if X is nonsingular on M,_,
UM._,_,, then the sets M, , and M_,_,, approach limit cycles as ¢ — 0.

1.3. Proof of Theorem 1.1.1

Let X satisfy condition (D). Since X(div X) = 0 at singular points of
X, the set 2 contains no singular point. This fact and condition (D) imply
that any point in 3 is not a critical point of the C' function divX. By
the implicit function theorem we see that 3 is a closed 1-dimensional sub-
manifold of class C' in M, and that {p e M|(div X)(p) <0}, {p € M|(div X)(p)
> 0} are compact 2-dimensional submanifolds of M whose boundaries coin-
cide with 2. Furthermore, condition (D) implies that for any point p of
Y, the tangent vector of X at p points toward the interior of {p € M|div X
< 0}. From this it follows that no limit cycle can traverse 3, and hence
that each limit cycle is contained in a connected component of {pe
M|(div X)(p) < 0} or of {pe M|(divX)(p) > 0}. We must therefore esti-
mate the number of limit cycles contained in each connected component.

Let F be a connected component of {p € M|(divX)(p)<0}. Note that
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F is a connected, compact surface with boundary. Let #{0F} denote the
number of connected components of the boundary 9F. Let g(F) be the
genus of the closed surface obtained by attaching #{3F} closed disks to
F (i.e. by identifying each boundary of the disks with each connected
component of 4F).

LemMmA 1.3.1. The number of limit cycles in F is equal to or less than
g&(F) + ${oF} — 1.

Proof. For simplicity of notation, we put g = g(¥), h = ${6F}. Let
H(F; Z,) be the 1st real homology group of F with coefficients Z/2Z. It
is easy to see that the dimension of H(F; Z,) is equal to 2g + A — 1.
Let I: H(F; Z,) X H(F; Z,) — Z, be the bilinear map defined by intersec-
tion. We note that the rank of I is equal to 2g. Suppose now that there
were, in F, g 4+ h limit cycles C,, C,, - - -, C,., (C; N C, = ¢ if i %= j). Using
the facts that the integral of divX on an invariant set is zero (cf. [7,
p. 281]) and that (div X)(p) < 0 for any interior point p of F, we see that
any C;, C;, - - -, C;; can not bound a 2-dimensional submanifold of F. Hence
the homology classes [Cl], - - -, [C,,.] in H\(F; Z,) are linearly independent.
On the other hand, it is clear that I([C], [C,]) = 0 for any i, j. From
these two facts we see that the rank of I is equal to or less than 2g— 2.
This contradiction proves our lemma.

From this lemma it follows immediately that the number of limit
cycles in {p e M|(div X)(p) < 0} is equal to or less than

@) + $0F} - 1),

where F runs over all the connected components of {p e M|(div X)(p) < 0}.
To arrange the expression, we recall that the Euler characteristic of a
closed surface S is equal to 2(1 — genus of S). Then we have, for each
connected component F,

HOF} + 2, index (p) = 21 — g(F)) ,

where p runs over the set of singular points in F, and index (p) denotes
the index of X at p. Using this relation and the fact that

3 HOF} = #3},

we conclude that the number of limit cycles in {p e M|(div X)(p) < 0} is
equal to or less than
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H{#y— | 3 index (@)} ,
2 div X (p) <0

where p runs over the set of singular points in {p e M|(div X)(p) < 0}
Clearly, we have the similar inequality for the number of limit cycles in
{pe M|(div X)(p) > 0}. Consequently, the number of limit cycles in M is
equal to or less than

HZ) — % 3 index (p)

ie.,
2l +g—1.

To prove the latter part of our theorem, let us consider the case
where M is a torus and X is nonsingular. Then we can see easily that
each connected component of {p e M|(div X)(p) < 0} or {pe M|(div X)(p)
> 0} is homeomorphic to a closed annulus and contains at least one limit
cycle. From this it follows that the number of connected components
of {pe M|(div X)(p) < 0}, {p e M|(div X)(p) > 0} is equal to #{2} and hence
the number of limit cycles is equal to or greater than #{¥}. From this
and the former part of our theorem, we conclude that the number of
limit cycles coincides with #{X}, as desired. As for the case where M is
a sphere, we can prove similarly that the number of limit cycles is equal
to #{2} — 1. (Our assumption on singular points implies that the index
of each singular point is 1. Using the Poincaré-Hopf theorem we see
that M — X is a union of two open disks and #{2} — 1 open annuluses.)

1.4. Proof of Theorem 1.2.2

Let the notation be as in Theorem 1.2.2. Introduce a vector field
Y = ¢°X. Recall the elementary formula div Y = e"(Xv + div X). Then
the assumption concerning v can be written

-+ < (Y —-divY)divY < —(1 — ¢,
The sets M,_,, M_,_., can be written

Ml—e = {peMl(diV Y)(p) = A= 8} ’
M_;-, = {pe M|@div Y)(p) < —(2 — o)} .

and hence the boundaries of M,_,, M_,,_,, coincide with {p e M|(div Y)(p)
=1—c¢}, {pe M|(div Y)(p) = —(2 — &)} respectively.
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To prove (i), let p be a point of the boundary of M, .. From the in-
equality (Y — div Y)div Y << — (1 — ¢)’, it follows that (Y div Y)(p) < 0, and
hence that the tangent vector Y, points toward the exterior of M, ,. It
is clear that the boundary of M,_, is a 1-dimensional, closed manifold of
class C', because the C' function div Y: M — R has no critical point on
the boundary of M,_,. Consequently, M,_, is a 2-dimensional compact
submanifold of class C! in M and is invariant in the negative direction
of Y and hence of X. Similarly, the assertion for M_,,_,, can be verified.

To prove (ii) let y(s) be a closed trajectory for Y. By the mean value
theorem we see that there is a number s, such that d/ds|.,, (div Y)(7(s))
=0, i.e. (Ydiv Y)(7(sy)) = 0. Hence {(div Y)(s)} > (2 — ¢)’. 'This means
that y(s))e M,_, U M_,_,,. Part (i) shows that y(s)e M,_, U M_,_,, for all
s. The latter part of (ii) is obvious.

To prove (iil), we begin with a comparison theorem.

LeMMA 14.1. Let a: R — R be a continuous function such that
A —ef < —als) <@+ e
for all se R, where A, ¢ are constants satisfying 2 > ¢ > 0. Let h = h(s)
be the solution of a differential equation
d*h

e —a(s)h

with initial condition h(0) = 1, (dh/ds)(0) = 0. Then h satisfies the follow-
ing inequalities:

cosh (1 — ¢)s < h(s) € cosh (1 4+ ¢)s for all se R,

_hﬁg(,}-i—g)tanh(x—l-e)s for all s > 0.
h(s)

(Here K'(s) = dh/ds, as usual.)
Proof. Recall that
cosh (1 £ &)s = F(e"*® 4 e ¥=)
and that the functions g(s) = cosh (4 % ¢)s satisfy the differential equations

d’g
ds?

= xeg

with initial condition g(0) = 1, g’(0) = 0. Now, consider two functions
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7:(8) = cosh (A & &)s — h(s) .

To prove 7.(s) >0, 7_(s) <0, we observe that 7.(0) =0, 7.(0) =0, and that

D) > o), L < _a(s(9).

s? 5%

Since —a(s) > 0, we conclude that 5,(s) > 0 for s = 0, and 5_(s) < 0 for
s #+= 0. Consequently, we obtain

7.8 >0, 7.(8<0

for all s, which show that A satisfies the former inequalities in our lemma.

To prove the latter inequality, note that G(s) = (1 + ¢) tanh (2 + ¢)s satis-
fies the differential equation

4G _gro-6
ds
with initial condition G(0) = 0. Using the inequality —a(s) < (1 + &)}, we
observe that g(s) = h'(s)/h(s) satisfies the differential inequality

W Gyyog

ds
with initial condition g(0) = 0. By the usual argument we conclude that
2(s) < G(s) for s >0, and hence that g(s) < G(s) for all s > 0. This com-
pletes the proof of the lemma.

We prepare another lemma. Recall that Y = e'X. Let {{} be the
1-parameter transformation group generated by Y. For a 2-dimensional
compact submanifold N of M, we introduce the following notations. De-
note by 4N the boundary of N, and by area (IN) the area of N, i.e,,

area (IN) = L_w .

We denote by v(N) the set {y(p)|pe N}. Note that the 2-form w|y on
N defines naturally an orientation of N, and the orientation of N defines
an orientation of dN in the canonical way.

LEmMA 1.4.2. Let N be a 2-dimensional compact submanifold of M.
Assume that there exist two positive constants p, v such that (div Y)(¥(x))
< —v for all s > p and all xe N. Then we have
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00

area (y,(N)) = —Lew {j (exp j (@iv Y)(«p,(x))da)da}zyw

S

for any se R, where ¢, is the interior product of Y and o, i.e., the 1-form
defined by (cy0)(§) = (Y, §).

Proof. Consider two functions

f(s) = area (y(N)) ,

00

g0 =—| { f (exp L (iv Y)(«[r,,(x))da>da}zyw.

Note that for a fixed s, the integral
f -» (eXp L (div Y)(\lfo(x))da)do
converges uniformly for x in dN, and hence is continuous on 9N, because
exp fo (div Y)(¥,(x))do < constant.e >

for any ¢ > 0 and any x € dN. It is obvious that lim,_ ., f(s) = 0 = lim,_.., g(s).
We contend that f(s) = g’(s). This will prove that f(s) = g(s). Using
elementary properties of Lie differentiation .#,, we observe that

ro =2 o=2[ yto=| 210

ds Jv.an

— [ vi@w) = [ vi@v e = | @vye.

(3

On the other hand, using the fact that the pull-back ¥» of o by ¥, is
given by

fexp [[ @iv D)oo,
0
and recalling the formula %,0 = d(,0) (cf. [7, p. 282]), we observe that

g@ = [ {exp [ @v D.dofeo = [ oty

— I o = f div V)o .
a(¥s(V)) Ps(N)

Consequently, we obtain f'(s) = g’(s), as desired. This proves our lemma.
Now, we return to the proof of Theorem 1.2.2. Consider a 2-dimen-
sional compact submanifold
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N = {pe M|(div Y)(p) < 0} .
Let ¢ be a positive number defined by the formula
A—e= QA+ ¢e)tanh (1 + &)o .
We contend that
(1) area (b (N)) = — J ~ {r (exp L (div Y)(xlr,(x))ds)ds}zyw :
(2) M—(Z-—e) < 11b'v(N) .

Formula (1) is a direct consequence of Lemma 1.4.2 and the assumption
(Y—divY)divY < —( —¢)’. To prove (2), it suffices to prove that

V(D) & M_ g,y —0M_,_,

for any p in dN, because M_,_,,, N are invariant by ¥, (s >0), and M_,_,,
C N. To prove this, fix a point p in dN, and consider a function

he) = exp { - [| @iv Dw.(p)ds} -
Then h(s) satisfies A(0) = 1, A/(0) = 0. Furthermore,

F(s) = —(div Y)W (2)A(s) ,
K'(s) = —(Ydiv ¥ — (div Y))(¥(p)A(s) .

Applying Lemma 1.4.1 to A(s) and a(s) = (Y div Y — (div Y)(y,(p)), we
obtain

(3) cosh (1 — ¢)s < exp {—fz (div Y)(yo( p))ds} < cosh (2 + ¢)s

for all se R, and
(4) —(div Y)(¥«(p)) < (A + ¢) tanh (2 + ¢)s
for all s > 0. From (4) and our definition of o, it follows that
(div V)(v.(p)) = —(2—9),
and hence that
¥.(p) €{ge M|(div Y)(@) < —(2 — o)} .

Consequently, we see that M_,_,, C ¢,(IN), as desired.
Next, we contend that
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—_— 2 —(d+e)o
(5) T arctan (e )LN tyw < area (v, (N)) ,
(%) area (v (V) < — 2 arctan (e‘“‘“"’)j ty® .
A—c¢ N

(6)

< < —_—”-——I .
tyw < area (N) %G — 2 e

To prove these inequalities, we use the formulas

T L

= 1 2
ds = arctan (e~ “£2%) ,
L cosh (A + ¢)s A+ ( )

(Note that arctan 1/x = z/2 — arctan x.) Furthermore, we note that

J tyw < 0
aN

because of the definition of the orientation of 6N and because of the
positive invariance of N with respect to Y. Then, from (1), (3), we obtain
(5), (5"), and (6). Moreover, these inequalities yield

area (V,(IV)) 42 + ¢) PRNCEDYV IR
(7) area ()~ m(@ — o) “retan {(-> } ‘

In fact, by definition, we see that

e (2—¢)/2(2+¢)
e~ (A—¢e)a — (___ .
A

Hence, from (5') and the left-hand side of (6), we get at once (7).
To prove (iii) of our theorem, we need another inequality:

(8) area (IV) < —2—(—22_—6)area M) .
To prove this, we consider the set P = {p e M|(div Y)(p) > 0}. Then, we
have
/ T T
(6) mj“’ tyo < area (P) < mLP ty®

which correspond to (6). Since area (M) = area (N) + area (P), it is ob-
vious that

area (N) = % area (M) + }(area (N) — area (P)) .
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Then, from the right-hand side of (6), the left-hand side of (6), and the
fact that 0N = —0P (as oriented manifolds), it follows that

&

20— 9@+ o) Jor T
On the other hand, by the left-hand sides of (6), (6), we see that

area (N) < -;— area (M) +

}% LP yo < area (M) .

Consequently, we get

A

area (IV) < 2—(2-——5)

area (M) .

Now, using (2), (7), and (8), we obtain immediately

—&)/2(A+e¢
area (M_,_,) < % .arctan {(%)u " )}-area M) .

This is one of the desired inequalities. Similarly, we obtain the inequality
for area (M,_,). This completes the proof of our theorem.

1.5. An example satisfying condition (D)

We shall give a simple example to which we can apply Theorem 1.1.1.

Let T? be the torus {(x, y) € R*}/Z? and let v = dxdy (i.e. the ordinary
area-element on T?). Let f(x,y) be a C* function on T? and let x4 be a
real number. Consider a vector field

X = pf(x, y)ai + 2
x oy

on T’ Since divX = pf, and
X(div X) — (div X)* = p(ffo. — 12) + pfer >

we have:

If ff.. — 2 <0 on T’ then for p with sufficiently large |p|, the vector
field X satisfies condition (D), and hence the number of limit cycles of X
is equal to the number of connected components of 2 = {(x,y) € T*|f.(x,y) = 0}.

§2. Application to Liénard’s equations

Let us consider a system of the form
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(L) {56=y*f(x)

y=—-x, f(—=x)=—-f(x),

on an (x,y)-plane R’. In this section, as an application of our theory,
we investigate the number of limit cycles of (L) in some cases. We shall
discuss in 2.3 the case f(x) = psin x, and in 2.4 the case f(x) = u(x® — %),
where u is a constant. In the previous section, we studied under the
assumption that the surface on which X is defined is compact. For the
study of (L), we have to reformulate the assertions in § 1.

2.1. Modifications of Theorem 1.1.1
Let X be the vector field

X=(y—f@)l -z
ox oy
on R’. We assume that f is an odd function of x. For simplicity, we
assume that f is of class C~. Let o = e*®¥dxdy be an area element of
class C* on R:. (In practice, we shall deal with the usual case o =
dxdy.) Denote by div X the divergence of X with respect to w. It is an
elementary fact that div X = Xw — f,. Moreover, for a C' function u: R*
— R, we have

div (*X) = (X + div X)e* = e*(Xu + div X) .

(We consider X 4 div X as an operator.) It is obvious that ¢“X has the
same qualitative property as X. In order to investigate the system (L)
or the vector field X, we modify Theorem 1.1.1 as follows.

TaHEOREM 2.1.1. Assume that there exists a C* function u: R*— R such
that the vector field Y = e*X satisfies the following condition:

D) (Ydiv Y)(x,y) <0  for any (x,y)e ¥,
where
2 = {(x,»|(div Y)(x, y) = 0} .

Let n (0 < n < ) be the number of compact connected components of 2.
Then the number of limit cycles of (L) is equal to n — 1 or n.

Proof. If ¥ = ¢, then div Y has a fixed sign on R* and hence there
is no limit cycle (Criterium of Bendixson [9, p. 238]). Suppose now X +# ¢.
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Note that X is written as a disjoint union
Y=J UJ,U ---UJ, UL U---UL,

where J, are Jordan curves, L, are open, complete lines, and 0 m < oo.
This is an immediate consequence of condition (D’) and the implicit func-
tion theorem (applied to the function div Y: R* — R). Furthermore, we
observe that each trajectory y intersects 2 transversely (if there is any
intersection), and the intersection of y and each connected component of
2 is at most one point.

Now, if n = 0, then there is no limit cycle. Because if there were a

limit cycle C, then by Green’s theorem we should have f (div Y)w =0
D

where D is the disk whose boundary is C. Hence there would be a point
p in D such that (div Y)(p) = 0. Hence pe L, for some i. Since L, is
open and complete, we should conclude that L; N C consists of at least
two points. This is a contradiction.

Suppose now n > 1. Since the only singular point of X is the origin,
we may assume that J,, ---,J, are ordered so that the domain bounded
by oJ; is a disk which contains no other J;,, and so that the domain
bounded by J; and J;,; (1 <i < n — 1) is an annular domain which con-
tains no other J;. It is obvious that the disk bounded by <J; contains no
limit cycle, because div Y has a fixed sign on the interior of the disk.
Furthermore, we see that each of the n — 1 annular domains contains
a unique limit cycle, because each annular domain is invariant in the
positive or negative direction of X, and divY has a fixed sign on the
interior of the annular domain. Hence there exist exactly j — 1 limit
cycles in the domain bounded by J; (j =1, ---,n). If n = co, our theo-
rem is obviously proved. Suppose n << co. Let U be the unbounded con-
nected component of R* — J,. By the same argument as above, we con-
clude that the number of limit cycles in U is at most one. This proves
Theorem 2.1.1.

Considering Theorem 1.1.2, we have a more precise modification of
Theorem 1.1.1.

THEOREM 2.1.2. Assume that there exists a C* function u: R*— R and a
positive constant ¢ such that the vector field Y = e*X satisfies the inequality

(1) (Y — divY)divY < —&,
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which is equivalent to

(1) (X — div X)Xu + (X — div X) div X + e < 0.

Furthermore, assume that ® = oo, Then the number of limit cycles of
R2

(L) is equal to the number of compact connected components of 3 =
{(x, | (div Y)(x,y) = O}.

Proof. From our assumption (Y — div Y)div Y < —¢*, it follows at
once that the condition (D’) in the preceding theorem is satisfied. We
use the same notation as in the proof of the theorem. To prove our
theorem, it suffices to prove that if n < oo, the set U (the unbounded
connected component of R* — J,) contains at least one limit cycle. To
prove this, we may assume that the vector field X points outward along
J,. Denote by C*(J,) the union of positive half trajectories starting at
points in J,. It is clear that C*(J,) — J, is an open set in R? and con-
tained in U, and that J, is a connected component of the boundary 9C*(J,,).
We contend that

cCJ,)=J, UU.

Indeed, from the assumption (Y — div Y)div Y < —¢?, we see that there
is a positive constant ¢, such that

divY< —g on C*(J,) — N(J,),

where N(J,) is a neighborhood of «J,. Using this inequality, we observe
that the area of C*(J,) is finite, i.e.,.

J 0w < oo,
C+ (T

From the assumption J o = oo, we conclude that C*(J,) & J, U U, as

Re
desired. Hence 9C*(J,) — J, = ¢. Let y be a trajectory passing through
a point in 9C*(J,) — J,. It is obvious that y < 9C*(J,) — J,. If either
the a-limit set or the o-limit set of y is nonempty, then by the Poincaré-
Bendixson theorem we conclude that there is a limit cycle in U. On the
other hand, since our system (L) is of the special form, we have the fol-
lowing:

LemmA 2.1.3. There is no trajectory of (L) whose a and w-limit sets
both are empty.
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This lemma is an immediate consequence of the following two facts
(proved by the argument similar to [5, p. 219]).

(i) If a trajectory y through a point (x,, f(x,)) (x, # 0) has not the
origin (0,0) as its «-limit point or w-limit point, then 7 intersects the
positive y-axis {(0, )|y > 0} and the negative y-axis {(0,y)|y < 0}.

(i) For any y,,y_(y, > 0,y_ < 0), either the positive half trajectory
starting at (0, y,) or the negative half trajectory starting at (0,y_) inter-
sects the curve {(x, f(x))|x > 0}.

Consequently our theorem is proved.

In the study of the equation of van der Pol, the following theorem
will be useful.

THEOREM 2.1.4. Assume that [,(0) <0, and that o = co. Further-

R2
more, assume that there exists a C' function u:R* — {(0,0)} > R and a
positive constant ¢ such that the vector field Y= e*X on R*—{(0, 0)} satisfies

divY< —e on R —{0,0)}.
Then there exists uniquely a closed integral curve for (L). This integral

curve is asymptotically stable.

Proof. The assumption f,(0) < 0 implies that the origin (0,0) is a
source of (L). Hence there is a Jordan curve J about (0, 0) such that
the vector field X points outward along J. The same argument as in
the proof of the preceding theorem shows that the unbounded connected
component of R® — J contains a unique limit cycle. It is obvious that
the limit cycle is asymptotically stable.

Remark. Assume that f,(0) # 0, and assume that
[ @v @t o
0

for each nontrivial periodic solution y(¢), with period z, of (L). Let 2 be
a positive real number. Then there exists a continuous function u: R*
— R such that

(1) the derivatives Xu, X(Xu) exist and are continuous on R

(i) the vector field Y = e*X satisfies

(Y—-divY)divY = —2.

If, in addition, we assume that (L) has only one limit cycle, then we can
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take a continuous function u': R* — {(0, 0)} — R such that
(i) the derivative Xu' exists on R* — {(0, 0)} and is continuous.
(i) the vector field Y = ¢“X satisfies

ivYP=2 on R —{0,0)}.

The proof of these facts is similar to the one of Theorem 1.1.2.

2.2. Approximate solutions of (¢*X — div (e*X)) div (¢*X) = — 2
From 2.1 we know that the problem of counting the number of limit
cycles of (L) is reduced to the one of solving the partial differential in-
equality
(D) X—-divX)Xu+ (X —divX)divX + e <0,

where ¢ is a positive constant. Furthermore, we know that if the system
(L) is “structurally stable”, then there is a function u satisfying the partial
differential equation

(E) X —-divX)Xu + (X — divX)divX 4 2e®™ =0,

where 1 is an arbitrary positive constant. (Equation (E) is equivalent
to the equation (e*X — div (e*X)) div (e*X) = — 1) Therefore, it is im-
portant to seek out approximate solutions of (E). In the present paper,
in order to obtain the approximate solutions, we use a perturbation tech-
nique. For this purpose we introduce some notations.

In polar coordinates (r, §) (x = r cos 8,y = rsin ), system (L) becomes

= —cos@f(rcosb),
6=—1+ lsinﬁf(rcost?) ,
r

and the vector field X is written
Gl 1 . 0
X= —cosbf(rcos)— + |—1 + —sindf(rcosb) )— .
or r o0
Put
G 1 . 0
X, = —cosf f(r cos §)— -+ — sin 0 f(r cos §)—- .
or r o0

Then we have X = —3/60 + X,. For a function g = g(x, y), we write g,
= ag/aﬁy 8 = ag/ar7 ot
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For a continuous function g of angular variable 8, we put
_ 1 27
7= f 2(0)dd .
T JO

If the mean value g vanishes, then we denote by J gdf the primitive func-

tion whose mean value vanishes. It is obvious that

fouo [ LI ([t

The assumption g = 0 implies that Igdﬂ is a function of angular variable
0, i.e., a periodic function with period 2z. For a continuous function g

of @, it is obvious that I (g — g)do is a function of 4. Note that if g(6)
is odd (i.e., g(—6) = —g(6)), then fgdﬂ is defined (and even), because g
= 0. If g(6) is even and g = 0, then the function f: gdf is odd and hence
we have f gdf = f: gdd.

ProrosITION 2.2.1. Assume that f is written in the form

f(x) = pfi(x)
where p is a constant, and f, is independent of p. Let 2 be a real number.
Put
a=-L f @divX)ds, b=-L r cos 0 f(r cos 6)d8
2z Jo 2r Jo
and put

n=X —divX.

(We consider x, as an operator.) Let U(r), U(r), ---, U,,(r) (n > 1) be C~
functions depending only on r. Define

U= u + pu + pfuy + e+ U,

as follows.
(0) u, = Uy(r) .
(1) ﬂul=A_u0rB,
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where

du,
dr

A=J(divX—a)d6’, B:f(cosof(rcose)—b)do, Uy =

(2) s = [ Xpu)ds + (@ — b)), [ Bdd + (@ — bu,) [ Ad0 + UG .
In general, for 2 < m < n,
@2m — 1) [lzm_luzm—x = I(Xﬂzm_zuzm—z - Xx#m_2u2m—z)d0 + J:[ (de)mn—z)dﬁda ’

where

Ous = (" -y = K™t )
@m) it = [t )0 + ([ o — 7P )00 + " Vinr)
where
Doy = ("t = K" M) = =X s + [ (0110

Then we have:
(X — divX)Xu + (X — div X) div X 4 e
= b(bu,, — @), + a(bu,, — a) + e

- X:djs — x1@2k+1 — Xxd)zn—l
- (X1#2"u2n)0 — X1¢2n — X1("'X1/J2"u2n) ’

where
Oy = ("t)s — X"ty _) .
Proof. For simplicity of notation, we put
E=X—-divX)Xu + (X — div X) div X + 2%e™**.
Recall that X = —3/00 + X|, y; = X, — divX. Then we have

E= (=2 + n)(—u + X+ (=5 + 1) div X + e
= Uy — (Xiu), — Xl(uo — Xu) — (le X)o =+ X,(diV X) + e .

Substituting v = w, + pu, + - -+ + #*"u,, in this expression, and consider-
ing the powers of y, since u, = Uy(r), we get
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E = (pu)sy — (Xitty)s — (div X),
+ (ﬂzuz)oo - (.quu,),, - Xl(#uw — Xu,) + Xl(div X) + 2o
+ ((us)os — (Xipf'th)o — (' tee — Xiprusy)
+ e
+ (" Usn)os — (X" s _1)s — 01(" Ugno1o — X" ")
— (X )y — X Usne — X" g y) — o= Xopf ")

For 1 <j < 2n, put
9, = (Wuy)y — Xip''uyy .
Then

E =0, — (divX),
+ @y — X1@1 + Xl(div X) + e ™

+ ﬁaa - qu}z
+ oo

+ ij - X1¢j—1
.+. o

+ Dyo — XIQZn—l
- (Kﬂznuzn)a - Xxdjzn - X1(_X1,Uznu2n) .

On the other hand, by our definition we see that p/u; is an even or odd
function of # according as j is even or odd, because A, B are clearly
odd, and the operators X, y; preserve the property of “even” or “odd”.
Hence we also see that @, is an even or odd function of ¢ according as
j is odd or even. Let us return to the expression for E obtained above.
Since @, = div X — a + bu,,, we see that the 1st term &,, — (div X), cer-
tainly vanishes. It is easy to see that

Py = —x(a — bu,) + b(buy, — a), + a(bue, — a) .
Hence the 2nd term @,, — (@, — div X) + A%¢™** is equal to
b(bu,, — a), + a(bu,, — a) + e .
Now, for 3 < j < 2n, the definitions of g/u,, @, yield
() @10=X1¢I—1_X1Ti—1'

(If j is odd, we have y,@,_, = 0, because y,®,_, is odd.) Consequently, we
see that E is equal to the desired expression.
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Remark. The formula () in the proof will be used later.
The following fact can be directly verified.

Prorosition 2.2.2. Let u = u, + pu, + --- + *"u,, be as in the pre-
ceding proposition. Then we have

div (e*X) = e*(@¢ — buy, — 0, — Dy — - -+ — @, + X\ "Us,) ,
where
D; = (p'uy)e — Xi(p'uy-y)
The following lemma gives us how to define the function u,.

LeMmA 2.2.3. Let a, b be the same as in Proposition 2.2.1. Assume
that b = b(r) has only a finite number of zeroes. Let by,=0<b, < ---<b,
be the nonnegative zeroes, and assume that b,(b,) # 0 for each b,, in other
words, each b, is a simple root of b(r) = 0. Let k, 2 be two positive numbers.

Furthermore, assume that w(x,y) depends only on r = ¥** + ¥, and that

f e’dxdy = k for each i =0,1, ---, m,

bi<z+y2<bi4r

where b,,,, = oo. Suppose that b(r) <0 for re(0, b). Define a function
uy(r) by the following formulas:

euo(bi) — (_1)12

a(b,)
2 1 . (T
e — . _F sin (—I w) orr+b
27  re*b £ J1or] f t
where
I w = e“’dxdy
[0,r] 0<a2+y2<r?

Then u(r) is a C= function of r, and satisfies the differential equation
b(buor - a)r + a(buw —_ a) + lze"?uo — O A

Furthermore we have

e*(a — bu,,) = A cos (ij w) .
[o,r]

K

Remark. In the case where b(r) > 0 for re (0, b,), we define u,(r) by
the formulas:
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e — ('—1)“12

ab)
A 1 . T
enon — K4 sin (——J ) for r=+0,.
2n*  re“db £ [o,r:lw # 0

Then u,(r) satisfies the same conclusion as in the lemma, except that the
last formula is replaced by

e*(a — bu,,) = —1cos (ij w) .
[0,7]

K

Before proving the lemma, we note the following fact.

LEMmA 2.2.4. Let a, b be as in Proposition 2.2.1. Assume that w(x,y)
depends only on r = v/2* + 3*. Then we have

a= -1 rl f(r cos 6)dé — bw, ,
2r Jo
b, = l_f f.(rcos6)do — 2. .
2r Jo r

Proof. The former relation can be directly verified. By integration
by parts, we have

1 J% sin® 4 f,(r cos 6)df = 12 .
2z Jo r

From this we obtain the latter relation.

Proof of Lemma 2.2.3. To prove the smoothness of u/r), clearly it
suffices to prove the smoothness of e« at r = b,. Let i > 1. Note that
the C~ function b(r) is written

b(r) = (=1)""'(r — b)B(r) ,
where fA(r) is a C= function with f(b,) > 0. Using Lemma 2.2.4, we see
that g(b;) = (—1)‘a(b,). Note that the C* function sin (n/:cf o) is also

[0,7]
written

sin (—E— J.[M] w) = (=D r — b)a(r) ,

K

where a(r) is a C* function with ¢(b;) > 0. Using the fact
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d

— o = 2rre” ,
dr Jo.n

we see that a(b;) = (27*/k)b,e”®. From these expressions it follows that

eton — KA a(r)
2r*  re”p(r)

on a neighborhood of r = b,. This shows that e»™ is of class C* at
r = b,. Similarly, we can verify that e“™ is of class C* at r = 0. Con-

sequently, we see that uy(r) is a C~ function. Now, differentiating the
both sides of

be* = — £2 1 sin (—ﬂ—j co) ,
27* re* £ Jon
we get

eu(b, + bu,) = — ( 1 )sin(lj w)—zcos(f_j w).
2n* \ re* /r £ Jo.r1 £ Jo.rl

The first term of the right-hand side is equal to —be*(w, + 1/r). Since
b, = —a — b(w, + 1/r), we obtain

e“(a — bu,,) = A cos (ij w) ,
[0,7]

K

which is the latter formula in our lemma. Again differentiating the both
sides of this formula, we get

e““{(a - buw)r + uor(a’ - bu‘”‘)} = (be"")“lz sin’ (i I[ ]w) )
0,7

K
Since
b(a - buor)r + a(a - buM) = b{(a - buOr)r + uor(a - buor)} + (a - buOr)2 >

we obtain

bla — bu,,), + ala — bu,,) = Aze‘““{sin2 (1 I w) + cos? <£fw>}

K K

= Jle7™™,

This proves our lemma.
By taking v = u, + pu, + ffu, as an approximate solution of (E), we
can now prove the following fact.
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TuroreM (Lefschetz [9, p. 320]). Let f, b be the same as in Proposi-
tion 2.2.1. Assume that b = b(r) has only a finite number of zeroes, and
let b,=0<b,;< --- < b,, be the nonnegative zeroes, and R a number greater
than b,. Assume that b.(b,) # 0 for each b,. Then there exists a positive
number p, such that if 0<|p|<p, then the system (L) on the disk {(x,y)|x*
+ 3* < R?} has precisely m limit cycles. As p-—> 0, each limit cycle tends
to a circle {(x,y)|x* + ¥* = b}} for some b,(l < i< m).

Proof. Put D, = {(x,y)|x* + »* < R*}. It is easy to construct a C=
function w(r) so that

bi+1
27zf re*dr =1

23

for i=0,.--,m, where b,,;,= . Let o=e""dxdy, and let t =1, 1=|y|.
Then we can apply Lemma 2.2.3 or the remark. Define uy(r) by the for-
mulas in Lemma 2.2.3 or in the remark according as b(r) < 0 or >0 on
(0, ). By the definition of u,(r), we have at once

b(bu,, — a), + a(bu,, — a) + e =0,
Note that u(r) is independent of p. Let U(r) =0. Defining pu,, pfu,

by the formulas in Proposition 2.2.1, and putting uv = u, + pu, + L'u.,, we
get
X —-divX)Xu + (X — divX)divX
= b(buy, — @), + a(bu,, — @) — (Xipf )y — 1D — p(—Xip'un) .
Hence
X —divX)Xu + (X — divX) div X = —pPe™™ + [4]s,

where [y], is a function such that

Hedsl < K |1
for any (x, y) € Dy and any p with |¢| <1, where K, is a positive constant.
Since e ** = e (1 — 2(pu, + pfu,) + - --), for each positive integer n, we
can find a constant p, > 0 such that

2 _ 2
_(i;ltl#) e—Zu < _#28—»21&0 + [ﬂ]:& < _(n . 1#> e~

for any (x,y)e Dy and any g with 0 <|p| < p,. We may assume that
n < 1/n* for each n. Consequently we obtain
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_(n + 1p)2e'“ <(X—-divX)Xu + (X — divX)divX < —<n - 1#)2e_2u
- n

for any (x,y)e D, and for any x4 with 0 <|g| < g,. On the other hand,
by Proposition 2.2.2 and Lemma 2.2.3 or the remark, we have

div (e*X) = +p cos (nj[ Ja)) + [,
0,7

’

where [y], is a function such that |[y],] < K;|gff for any (x,y) € Dp and
any u with |p| < 1, where K, is a positive constant. From the proof of
Theorem 1.2.2 we now observe that if N is a sufficiently large number,
then for any n > N and for any p with 0 < |g| < p., the set

M, = {(5) € Da] |@iv eX)(x, )] = =L ||

is written as a disjoint union
M,=A,UAU---UA,

where A, satisfy the following conditions:

(i) A, is a closed disk containing the origin, and each A, (i > 1)
is a closed annular domain containing the circle x* + y* = bl

(ii) Each A, is invariant in the positive or negative direction of X.

(iii) Each A, (i >1) contains exactly one limit cycle, and any limit
cycle in D, is contained in some A; (i > 1).

(iv) As n— oo, each A; (I > 1) tends to the circle x* + y* = b.

This proves the theorem.

Remark. The preceding theorem does not give us the qualitative pro-
perty on the whole plane R®.. By means of a Liapunov function ([8]), the
following fact is known: (J. R. Graef [4, Theorem 3.1]) Assume that there
are positive constants & and ¢ such that

flx) >c ifx>Fk

(and hence f(x) < —c if x < —k&, because f is assumed to be odd). Then
there is a closed disk D such that the vector field X points inward along
the boundary 9D, and such that any trajectory starting in R* — D enters
D after a positive time.
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2.3. The case f(x) = psinx
Let us apply our theory to the system

x=9y—psinx,
o {

y=—-x,

where p is a constant. Hochstadt, Stephan [6] and D’heedene [3] proved
that for x == 0, system (I.),.,. has an infinite number of limit cycles. We
shall prove this fact by taking such a function u = u, + pu, + --- + (fu,
as in Proposition 2.2.1, by verifying that the system multiplied by e* satis-
fies condition (I') in Theorem 2.1.2 (in a neighborhood at oo), and by ob-
serving that the set Y contains an infinite number of circles.

Now let f(x) = psinx, and recall the notation in 2.2. The vector
field X corresponding to system (L),.n.. is written in polar coordinates

(r,0)

0
X=—+1X,
‘ 60+

where
] 1 . 0
X, = —cos 0 f(r cos )— + — sin 6 f(r cos )—- .
or r o0

For a function g of angular variable 6, we denote by g its mean value.
ProrosiTioN 2.3.1. Let o = dxdy and let p + 0. Let u, = Uyr) be a

C* function such that

1 nr
= —log 2. f =1,
u, 20g2 or r >

and let Uy(r) = U(r) = --- = Ufr) =0. Define pu,, ffu,, ---, p'us by the
formulas in Proposition 2.2.1. Put v =u,+ pu, + --- + pfus. If ¢ is a
sufficiently small positive number, then there exists a positive number R
such that the function u satisfies

(1) (X — div X)Xu + (X — div X) div X + e%e=™ < 0
on {(x,y)|r = vV2* + ¥* > R}.

For the proof we use the notation O in the following sense: for a
function g(r,d) which is not assumed to have period 2z in the angular
variable 4, we write

https://doi.org/10.1017/50027763000018535 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018535

NUMBER OF LIMIT CYCLES 67

g(r, 0) = O(r™™)

if there exists a constant K such that r™|g(r, §)] < K for any r > 1 and
for any @ satisfying 0 < 0 < 2x.

LEmMMmA 2.3.2. The functions

a = 1 r" f.(r cos 6)dé , b= 1 fx cos 6 f(r cos 6)dd
2r Jo 9 Jo

have the following properties:

(i) a= —pd|(r), b = pJ\(r), where J(r), J|(r) are the Bessel functions
of order 0, order 1 respectively.

(i) a,=b b =—a—2.

r
(i) a= 0@, b =00?
(v) @ + b = pZ{_Z_ + O(r“z)}
Tr

Proof. The properties (i)-(iii) are well known in the theory of Bessel

functions. From the asymptotic expansions of J,, J, we have (iv).

LEmmA 2.3.3. The functions
A= r (—f.(rcos6) — a)df , B = r (cos 6 f(r cos 6) — b)dd
0 0
have the following properties:
(i) A, =B, B, =—A—1B+Lgnear
r r
(i) A= 0(@F*%), B= 0.

Proof. It is easy to verify (i). The proof of (ii) is the same as that
of Lemma 1 of Hochstadt and Stephan [6, p. 372].

LemMmA 2.3.4. The function
D, = (U, — X1(ﬂu1)
has the following property: For any integer i > 0 we have

58;7@2= ory, 2 o,=ory, I

9 . — 00) .
ariao arag e = 00

Proof. By the definition of u,, we have
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@2 = (a - buor)rB + (a - buor)A
and hence
D,y = (@ — buy,)(cos 6 f — b) + (@ — bu,)(—f; — a)
Dypo = (@ — buy,)(—sinbf — rsind cosbf,) + (@ — bu,,)Xrsinéf,,) .

Recall that u, = {logar/2. Hence u, = 1/2r. Using (ii), (iii) of Lemma
2.3.2, we observe that for any integer i > 0,

ai

(a — bu,) = O(r%) .
ort

On the other hand, by (i), (i1) of Lemma 2.3.3 we also have
O A = 0¢-) 9 B—orb
ort ’ art )
Consequently, using Leibniz’s formula we conclude that
ot -
5}7@2 = O(r™)

for each integer i > 0. Similarly we can verify the others.

LemmA 2.3.5. The function
Uy = j (X,p)d0 + (@ — buy), j Bdf + (a — buy,) IAdﬁ

has the following property: For any integer i > 0 we have

ai
art

az +2
orio6*

Z+1
fuy = 00, Oty = O3,

artoo Y, = O(r?) .

Proof. First we verify that
IAdﬁ — 0@, j Bdf = O(r#) .

By definition we have

jAde - j: Ado — —élzﬁ (j: Ada)da .

Using the fact A = O(r~*) we obtain J.Adﬁ = O(r%). Similarly we obtain

deﬁ = O(r-%). Furthermore, using (i) of Lemma 2.3.3, we get
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ai
ort

[4@ =o06¢s, 2 [Bas= o6
for each i > 0. Consequently the function

g=(a— buo,),JBdﬁ + (@ — buo,)jAda
satisfies (¢'/or’)g = O(r™"). It is easy to see that g satisfies also
5

ai+l +2
= Or“1 ’ —_—a = O -3 .
oS = 00D, o = 00T

Therefore, to prove our lemma we have to prove that the function

‘[ (Xjpu)do satisfies

ai
ort

[ oo = 00y, 2 ) = 067, T (Xpu) = 06 .
or or‘of

To prove this, recall that pu, = A — u,,B. Since A, = B, we have

X,pu, = —cos 0f{B — (u,,B).} + s'in—r”{—fx —a — uy,(cosff — b)}.

Recall that u,, = 1/2r. Hence, to prove 'a’/é?r’ J Xpu)dd = O(r-*) it suffices

to prove
ai
& j cos 0fBdf = O(") .
ort

Note that

Icosﬁdeﬁ =j(cosaf— b)Bdd + bdea: %Bz + b_[Bdﬁ.

This shows thatfcos 0fBdf = O(r'). Furthermore, using (i) of Lemma

2.3.3 we observe that 31/6rijcos 0fBdf = O(r™*), as desired. It is easy to

see that (8'/or)(X,pu,) = O(r-?), (8*'/ora6)(X,pu,) = O@r?). Our lemma is
proved.

LEMmA 2.3.6. Let g(r,0) be a C> function which is not assumed to
have period 2z in the angular variable 6. Let G(r,0) be the function
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r (X,g)d8 or the function j’ (g)ds.
0 0 E

(i) Assume that for any integer i > 0, we have

& gm0y, 8 g op-mrny, O

o o0 sl = 0T

Then for any integer i > 0 we have

5t G = 0" i+t G = 0(-") oite G 0"+
i =77 e A =

(i1) Assume that for any integer i > 0, we have

ot o _m) Fit+t O(r-m oi+e O(r-m+1
—a‘rjg— r ’ Wg— "), Wg— (r ) .

Then for any integer i > 0 we have

O g=06", 2 G=06").

i
2 G =0¢",
ort ortod orto6?

0
Proof. (i) Let G(r,0) = L (1.2)d6. By the definition of 7, we have
0 1 9 . 0 .
G, 0) = —J cos 6 fg,df + ——f sin 4 fg,df — I (div X)gd# .

0 rJo 0

First, we shall prove that the function G, = r cos 0 fg,df satisfies

0
ai+2

G =0rm™, g =00m, 97 a =o00"
1 = r ™ 1) - r_m 9 = -m .
art ariog arag T OV

It is obvious that (d3%/arY)f = O(r’). Hence, by the assumption (3*/or*)g =
O(r-™) we see that G, satisfies the first two properties. Since

%Gl = gg{-—sin 6fg, + cos 6 (—rsinbf,)g, + cosbfg,},

by the assumption (3'*!/or‘df)g = O(r-™**) we see that G, satisfies also the
last property. Similarly we observe that the function f: (div X)gd# satisfies
the same property as G,. Next, we shall prove that the function G, =

1/r Jw sin 0 fg,dd satisfies
(]
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a* i+t 5i+e
E‘TGZ = O(r'm—'}) ) or'a0 Gz = O(r'm—'}) , WGZ — O(r—m+§) :

Since (0**!/or'af)g = O(r-™*%), the function G, satisfies the first two pro-
perties. Since

1+2 i
iGe= 2 Licos0fg, + sin 6 (—rsinO)f.g, + sin0fgu}

and (0***/or'a6®)g = O(r-™***), we obtain (9'**/or'96*)G, = O(r-™*%*). In par-
ticular, the function G, satisfies the same property as G,. From these we

conclude that the function ‘r (1:8)d0 satisfies the desired property. The
0
proof above shows that the function r (X,2)dd also satisfies the same
0
property. Part (i) is proved.
(i) As in the proof of (i), let G, = r cos 0 fg,dd. We shall prove that
0

ot I i+t gi+e o
ariGl = O(r-""%), WGI = 0(r "), WGI = 0(r—"*).

By integration by parts we have

ai ai 6 ]
G, = —(Bgr - f Bg,,df + bf grdﬂ) .
ort rt 0 0

Note that (d'/dr)b = O(r-*) because of (ii), (iii) of Lemma 2.3.2, and note
that (8¢/or)B = O(r-*) because of (i), (ii) of Lemma 2.3.3. Then the as-
sumptions (0°/or)g = O(r-™), (8**'/or'dd)g = O(r-™) yield (0*/or")G, = O@r ™"%),
Since (0°*'/or‘06)G, = (3*/or*)(cos 0 fg,), we have at once (3*!/or'd0)G, = O(r-™).
Further, since

0" G, = O (—sin0fe, + cos0(—rsinf.)g, + cos 0.0} ,
or'o6* ort

we obtain (0'*%/or‘06*)G, = O(r-™**). Similarly we observe that the function

6
J (div X)gd0 satisfies the same property as G,. It is easy to see that the
0

]
function G, = 1/rj sin 6 fg,dfd satisfies
0

ot G o . o+t G o Y gi+? G oG-
9 a — -m- — -meny o 9 @G, = r-m) .
GG = 0™, oy G = O orioe
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In particular, the function G, satisfies the same property as G,. Con-
4 ()

sequently we see that the functions J X,gdﬁ,j 118d0 satisfy the same pro-
0 0

perty as G,. This proves (ii).

Proof of Proposition 2.3.1. We use the notation in Proposition 2.2.1.
We shall prove that

(i) If ¢ is a sufficiently small positive number, there exist positive
constants K, R, such that

b(bu,, — a), + a(bu,, — a) + e < - K
r

for all r > R,.

(i) 0@ = O, 105 = O™, 10, = O@r~").

(i) Xifug)y = O0F™*"), 1195 = O(r~").

@) w(Xpfu) = O,
These and Proposition 2.2.1 will prove our proposition. In order to prove
our assertion, it is convenient to introduce the following notation: Let
g(r,0) be a function which is not assumed to have period 2z in the an-
gular variable # and which is of class C* on {(r,0)|r > 0}. Let «,  be
two real numbers > 0. We write

g(ra 0) = O(r—m; «, ‘8)

if for any integer i > 0 the function g satisfies

ai 0( ) ai+l O( + ) ai+2 O( + +,9)
9 5= rom , — pomta , — r-mta .
e arae® araet

Lemmas 2.3.4 and 2.3.5 assert that

(1) 0, =041, fu=00";41).

Furthermore, by Lemma 2.3.6 we have:

O(r";0,1) if g(r,0) = O(""; 4, 1),

(2) L (X.8)ds, L (ug)dh = {O(r"’“*; 1,1)  if g(r,6) = OG—™;0,1) .

We shall also use the following obvious fact: If G(r,6) = O(r™;e«,p),

then r G(r, 6)dd = O(r'™; a, B), because we assume that ¢, § > 0. We now
9

contend that
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(3) Dy, p'u, = O(r''; 0, 1),
(4) Dy, pruy, = O™ 1, 1),
(5) @, pfus = O(r-**;0,1) ,
(6) D, pfuy = O(r; 4, 1),
(7) D, 'u, = O(r%;0,1) ,
(8) Dy, fiuy = O(r™"*; 4, 1) .

Indeed, by definition we have
Oy = —Xip'u, + I(Xn@z)dﬁ ,
puy = [ Gptu, — Xpuyds + | [ u0dsds .

By (1), (2) we see at once that @, (fu, = O(r~*;0,1). The formulas in
(8) are proved. By definition we have

0, = [ - 1:0)ds
i, = j (Xiyiug)do + “ (1B, — 7.By)dods .

By (2), (3) we obtain at once 9,, p'u, = O(r-**;%,1). Similarly we can
verify (5)-(8). Our contention is proved. We can now prove our asser-
tion (i)-(iv). To prove (i), note that the function pu, + pfu, + --- + ffu,
is bounded on {(x,y)|r* = x* + »* > 1}. Using Lemma 2.3.2 we get

b(buy, — a), + abu,, — @) + e = 2 {—pt 4 e 4 O(r N},
wr

where @t = pu, + -+ + pfu,. Since e ** is bounded on {(x,y)|x* 4+ y* > 1},
we obtain (i). To prove (ii), we use again (2). Indeed, by (2), (3) we have
at once 5,9, = O(r**; },1). This shows that y,@, = O(~*?. Similarly we
get 1,0, = O(r'?), 1,0, = O(r~*%). In order to prove that (X,/fu,), = O(r~*?),
we note that

(9) j (Xyfuds = O~ 0, 1) ,

because of (2) and (8). Then by definition we get what we want. To
prove the latter part of (iii) we use again (2) and (8). Then
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I "y = OG0, 1)
0
and hence, in particular, 3,9 = O(r—*#). It remains to prove (iv). The
formula (9) yields
X'l#sus = O(r %, (Xlﬁsus)r = 0@, (Xl‘uaus)o = 0@ .

From these it follows that y,(Xifus) = O(r~*%). This completes the proof
of our assertion (i)-(iv). Consequently our proposition is proved.

Proposition 2.3.7. Let w = dxdy, and p+0. Let u=u, + pu, + ---
+ pfu, be the same as in Proposition 2.3.1. Then we have

div (e*X) = ye“{—— J% cos (r - _Z_) + O(r“)} .
Hence there exists a compact set K in R* such that the set
e ={(x,y) e R* — K|(div e*X)(x, y) = 0}
consists of an infinite number of circles.

Proof. From Proposition 2.2.2 and (1), (3)-(9) in the proof of Proposi-
tion 2.8.1 it follows that div (¢*X) = e*(a 4+ pO(r*)). By (i) of Lemma 2.3.2
we have div (e*X) = e“(—pJy(r) + p£O@F™"). It is well known that

Jy(r) = «/% cos (r — %) + O@r*") .

This shows the former part of our proposition. The latter part is obvious.

By Propositions 2.3.1, 2.3.7 and from the proof of Theorem 2.1.2 we
now conclude that if g 5 0, then system (L),..,. has an infinite number
of limit cycles. More precisely, we have:

THEOREM (cf. Hochstadt and Stephan [6], D’heedene [3]). Let u = 0.
Then there exists a compact set K such that the system (L), ., restricted
on R* — K has the following properties:

(i) It has an infinite number of closed integral curves.

(i) Each closed integral curve is positively or negatively asymptotically
stable.

Remark. For generalizations of this result, see Comstock [2], Ponzo
and Wax [11].
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2.4. Liénard’s equations with a unique limit cycle

It is well known that if p is a positive constant, then the van der
Pol equation

e {x =y — ux' — ),

y=—x

has a unique limit cycle. The remark at the end of 2.1 asserts that if
¢ > 0, there exists a function u: R* — {(0, 0)} — R such that the divergence
of the system

{x ={y — px’ — x)}e"
y = —xe*

on R* — {(0, 0)} (with respect to the ordinary area-element dxdy) is a ne-
gative constant. It is important to know the analytic expression of such
a function u. For instance, it will provide an effective tool in the study
of forced van der Pol equations. Here, we shall give explicitly a func-
tion w such that if 0 < |g| < 1, then the divergence div X of the system
(1), With respect to the area-element w = e“dxdy satisfies

|div X| > positive constant

on R* — {(0,0)}. This and Theorem 2.4.1 mentioned below will prove that
if 0 <|p| <1, the system (L),s-, has a unique limit cycle.

Remark. Let X and w be a vector field and a function on R® respec-
tively. The relation between the divergence div, (e*X) of ¢*X with respect
to the ordinary area-element dxdy and the divergence div, X of X with
respect to o = e“dxdy is given by the formula:

div, (e*X) = e* div, X .

We now begin by noticing the following fact corresponding to Theo-
rem 2.1.4. As in 2.1, let f(x) be a C~ odd function and let

P )
X=(w—-02% —x% .
(v f)ax xay

THEOREM 2.4.1. Suppose that f,(0) = 0. Assume that there exists a C*
function w: R* — {(0, 0)} — R and a positive constant ¢ such that the diver-
gence div X of X with respect to o = e*dxdy satisfies the following inequality:

divX< —e or divX>e
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on R* — {(0, 0)} according as f,(0) <0 or f,(0) >0. If I @ = oo where
R2-D

D = {(x,y)|x* + y* < 1}, then there exists a unique closed integral curve
for (L). This integral curve is positively or negatively asymptotically stable
according as f,(0) < 0 or f,(0) > 0.

The proof is the same as that of Theorem 2.1.4. In order that we may
apply this theorem, we prepare the following proposition. We use the
notation in 2.2.

ProposiTiON 2.4.2. Suppose that f is written in the form
f(x) = pfi(x),

where p is a constant, and f, is independent of p. Put
—1 (% 1 27
a= —‘[ fu(r cos 6)dd b= m‘[ cos 0 f(r cos 6)do .
2r Jo 2z Jo

Let Wy(r), W(r), - -+, W,,(r) (n > 1) be functions defined on r > 0 and of
class C~. Define a function

w:wo_*_#wl_{_ +#2nw2n
on R* — {(0, 0)} as follows.

(0) w, = Wy(r) .
(1) ;lwl:A—'onB,
where

A= f(—f,(r cosf) — a)dd, B= f(cosof(r cos 6) — b)dd .

(2) dw, = [ Gpw)do + W)
In general, for 2 < m < n,
@2m — 1) ,Uzm_lwzm—l = I(X1#2(m_l)w2(m—x) - Xlﬂz(mnl)wz(m—l))do .

(2m) ™y, = j(X,w-*wm_,)da W (r)

Then the divergence div X of X with respect to

o = e*dxdy
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is given by

divX=a—w,b+ Y X wn + Xy w,, .

1<m<n-1
(In the case n =1, read divX = a — w,.b + X,pfw,.)

Proof. Note that divX = Xw — f,. Substituting w = w, + pw, + - -
+ "w,, in Xw — f,, and recalling that X = —3/0f + X,, we obtain

divX = —pw, + Xw, — f,
—pfwy, + Xipw,

“‘flkwm + Xy 'wy

“F‘anzno + Xl,uzn_lwnq + Xlﬂznw2n .

Since X,w, = —cos 0 fw,,, our definition of w, implies that the 1lst term
becomes

— Wy, + Xw, — f, =a — w,b.

Note that pw, is odd (as a function of 6), and hence that X pw, is also
odd. Therefore the function pfw, = j(X,,uwl)dﬂ + (2W,(r) is well-defined

and even. The 2nd term —p’w,, + X,pw, certainly vanishes. Generally,
both p*w,, X p*w, are even or odd functions of § according as k is even
or odd. Our proposition is now obvious.

In order to apply this proposition to the van der Pol equation, let
f = p(x* — x), and let Wy(r) = —4logr, and Wy(r) a function to be deter-
mined. Define w = w, + pw, + pfw, by the formulas in Proposition 2.4.2.
We know already that

divX =a — w,b + X pfw, .

We shall prove that if 0 < |g| <1, and if Wy(r) is chosen suitably, then
div X > positive constant or < negative constant according as px < 0 or
> 0. (See Proposition 2.4.3 below. We will now give a heuristic argu-
ment for it.)

First, we contend that

a— W,b=—p.
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27 27
In fact, using the formulas J cos’ 0df = =, I cos* 0d0 = 3, we see that
0 0

a= —(u/2)8r* — 2), b = (¢/2)r(3r* — 1). Our definition of w, implies that
@ — Wy b= —p.

Now, we must evaluate Xj;’w,. Note that pw, is odd (as a function
of §), and so is pw,,. Hence pw,, can be written in the form

pw,, = psind 2, ,
where 2, is even and in fact a function of r, cos. We consider 2, as a
function of r, x. Recall that gfw, = f(Xl;zwl)dH + (#Wy(r). Then we can

write
fw, = I(——r sin a)(_} cos 0 fud, — };fywl,)dﬁ T W) .
r

Note that pw,, = —f, — Wy, /r)xf + . We now choose Wy(r) so that pfw,
is divisible by («* — 1)>. In other words, we define

= J (Lot 20 - i

Then yfw, can be written in the form
prw,, = p(x* — 1D, .
Thus

X ffw, = —cos 0 fPw,, + 1 sin 6 fifw,,
r
= f{__l_/fx(x’ — 10, — sin®*6 Lg(,ule + fo + w"’ =0 xf — y)}
r r
—#—f;{rQZ + sin® 4 (x.Q. + Wor of + lfx — 1)} .
r pr 7
It remains to determine £2,, £2,. By definition we have

pWy, = —j ( — —cosﬁf— y) daeg .

Then it is easy to see that
pw,, = 2ursin d cos®d ,

whence
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0,=2
r
We contend that
1 1 1 1
2, = —(—x6 xt 4+ x° 1) —(2x‘ — =x — ——) .
2= 5 +x+x+1)+ = 7 9
Indeed, since w,, = —4/r, the expression for p‘w, yields

sy, = {5 [ @ — axprax) + (& [ 1(f. - ppas} .
Using the fact that
yj (x* — Dx*(x* — 2)dx = —;—(x2 — 1Dzt — 22— 1),
one can verify directly that

prw,, = pi(x* — 1){l(—x"' +xt+ 2 +1) + l(Zx‘ ~ L l)} .
re r? 2 2
From this our contention follows. We now substitute these £,, 2, in the
expression for X y*w, obtained above. Omitting the intermediate calcula-
tions, we obtain

_ ppfl 3.V 5
X1#2w2 = '——r'; 2{—"—4(9(33 — E“f‘) + 4r4(r2 — %)

1 7 1 .
+ et gu(¥ = ) o er — ).
We shall prove that
(*) —Lxpw, > (—1 4 o

7

on R* — {(0, 0)}, where ¢ is a sufficiently small positive constant. This will
prove that if 0 < |g| < 1, then

div X = —y(l — —1-X,y2w2> < —p  or > —pe
U

according as ¢ >0 or g < 0.
In order to prove the estimate (x), it suffices to prove that
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& LR 2= ) (3

N DU 1,
(ii) - sin’ 4 (8x* — 2) > 5 78
It is obvious that (i) holds on x* > 4. Moreover (i) holds on r* < 4. If

x*< 3, and r* > 1, we have

f_z{l + l(xz — l)} > ﬁ(__7_> > _lfz > __7_;;2 "
rt  2r ?

rt 2 r 4r? 4 27
because
2 _4_ 2
maxf' = ot

If x* <%, and 4 < r*<1, then
7

ﬁ{i (z_i)}=7_f2(z__1_ 2)
r:irt + r? ¥ 2 art ¥ 2 + r?

2 2
S L) 3> -8

These show (i). To prove (ii), note that cos’fsin*f < 1. Since (ii) holds
on x* > %, it suffices to prove that (ii) holds on x*<%. If x*< %, we have

r sin® 0 (3x* — 2) = y* cos® @ sin® 0 (x* — 1)’(3x* — 2) > —;—;f .

rZ
The estimate (ii) is proved. Consequently, calculating the terms w,, w,
we obtain:

ProrositioN 2.4.3. Put
w= —4logr + -Ez—x(x"’ — 2)y
r

H(x* — 1) 1 1
+#—2r2—{x2""’§_‘§r_2(x4'—2x2— 1)},7‘2=x2+y2.
Then the divergence div X of

d a
- — 3 —_— . — .
X =(y— px*— x)) o x P

with respect to o = e“dxdy satisfies the following inequality: There is a
positive number ¢ such that
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< - if 0 <1,
div X {\ po 0<ps
> —pe if —1<p<0.
Verifying that I o = oo for p # 0, by Theorem 2.4.1 we have:
R2-D

CoroLLARY 2.4.4. Suppose that 0 < |p| < 1. Then system (L), has
a unique closed integral curve, which is positively or negatively asymptoti-
cally stable according as p >0 or p < 0. (Compare Lefschetz [9, p. 268],
Hirsh-Smale [5, p. 218].)

2.5. A proof of the Liénard’s theorem

Let fi(x) be a C' odd function such that f,(x) has a single positive
zero x,f; <0 on (0,x), and such that f,(x) >0 if |x| > x,. Let X =
(y — pfi)o/ox — x0/oy, where p is a nonzero constant. We want to prove,
by means of div X, the following theorem.

THEOREM 2.5.1 (cf. Lefschetz [9, p. 268]). The vector field X possesses
a unique closed integral curve. This integral curve is positively or nega-
tively asymptotically stable according as p > 0 or p < 0.

Proof. Let c,d:[—x,, x;] = R be functions defined by

c(x) = max (vVai — &, pfy(%)) ,
d(x) = min (— 2] — &, pfi(x)) .
We introduce a closed (topological) disk
D = {(x,y)] x| < %, d(x) < y < c(x)} .
It is easily verified that D is positively or negatively invariant for X ac-
cording as p¢ <0 or g > 0. Moreover, noting that X(x* 4 y*) = —2uxf,
one sees easily that D contains no closed integral curve. On the other
hand, using the same Liapunov function as in Graef [4, p. 45], we see
that there is a closed disk E containing D such that E is positively or
negatively invariant for X according as ¢ >0 or ¢ < 0. Hence E — D
contains a closed integral curve (Poincaré’s closed path theorem). We
shall prove its uniqueness. We define w: R* — D — R by the following
formula:
oo _ .Ty#fl_ if x| < %,
1 if |x] > x, .
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The definition of D assures us that w is well-defined. It is obvious that
w is continuous (on R* — D) and of class C' except on |[x| = x,. Now, we
let w = e”dxdy and consider the divergence div X (defined on R* — D —
{lx] = x,}) of X with respect to w. Using the formula divX = Xw — uf,,

we obtain
__l_tﬁt’_ on lxl < x
divX = { y(y — ¢f) '
— ttf1z on x| > x, .
Hence
1 ..
—divX<0
u

on {(x,y)e R* — D|x+# 0, x #+ +x,} and the equality holds only on x = 0.
Noting that X|R* — D traverses the lines x = 0 and |x| = x, (y = 0), we
conclude that if 4 > 0 (resp. < 0), any closed integral curve in R* — D
is positively (resp. negatively) asymptotically stable. Hence the closed
integral curve is unique (cf. [9, p. 235]). Theorem 2.5.1 is proved.

§3. Proof of Theorem 1.1.2

As in §1, let M be a connected, closed 2-dimensional C*® manifold
with a fixed area-element w (of class C%).

3.1. Geometric conditions for X and a decomposition of M

Let X be a C* vector field on M. We consider the following condi-
tions:
(a) Each singular point of X is either a source, a sink or a saddle point

(cf. [5]).
(b) For any singular point p of X, we have

(divX)(p) #0.
{(¢) For any periodic trajectory y(¢) of X with period z, we have
[ @v 0@ #o.
(d) If there is a trajectory y(f) which connects two saddle points

limy(®) =p, Ei‘l ) =gq,

L~ =00
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and if (div X)(p) is negative, then (div X)(q) is also negative.

Remark 1. Let X satisfy condition (b). Then, for any C' function
v: M — R, the vector field Y = ¢°X, also, satisfies condition (b) because
of the formula div Y= X(e°) + ¢" div X and the trivial fact that X(e*)(p)=0
for any singular point p of X.

Remark 2. For a singular point p of X, if (div X)(p) > 0 (resp. < 0),
then a function v: M — R satisfying

v(p) __ 1 < - 1 )
e =__ - (resp.—————
(div X)(p) (div X)(p)
has the following property:
(div e’ X)(p) = e*®(div X)(p) = 1 (resp. —1) .

In order to describe the qualitative property of X with these condi-
tions, we need the definition of pathpolygon.

DerFINITION (cf. Lefschetz [9]). A pathpolygon I' is a closed subset of
M having the following properties:
(i) The set I' is written as a union

I'=pU{r}Up. U {r} U --- Up, U {1}

where p, are saddle points (not necessarily distinct), and 7, are trajectories
with lim,._..7() = p;, lim,.,.7(8) = sy (Dr41 = p), and orbits {rd =
U-w<ico 76D

(i) There is a continuous map A: S! X [0, 1) — M such that the image
h(S* X 0) coincides with I" and such that the restriction A|:S* X (0,1) —
h(S' X (0,1)) is a homeomorphism whose image intersects with neither
local stable manifolds nor local unstable manifolds of the saddle points p,.

The set A(S' X [0,1)) will be called a collar of the pathpolygon I.
An a-limit pathpolygon is defined to be a pathpolygon I" which has a collar
W such that the «-limit set of any point in W — I' coincide with I
‘Similarly, we can define an w-limit pathpolygon.

LemmA 3.1.1. Suppose that X satisfies conditions (b), (d), and has a
pathpolygon I'. Let p be a saddle point in I'. If (div X)(p) is positive,
then I' is an a-limit pathpolygon. If (div X)(p) is negative, then I' is an
w-limit pathpolygon.
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Proof. Let I' =p, U{r} Up, U {1} -+ Up, U {r,} as in the definition,
and let W be a collar of I'. Replacing X by —X if necessary, we may
assume that (div X)(p,) < 0. We shall prove that I' is an o-limit path-
polygon. Note that condition (d) implies that (div X)(p,) < 0 for all i.
Let ge ' be a regular point. Choose a local coordinate system (¢, r) in a
coordinate neighborhood U of g such that X = 9/d¢t on U, v = +didr on
the segment £t =0, and such that UN I"={(¢,r)|r=0}, UNW={(,r)|r >0}
By means of the normal {(¢, r)|¢t = 0, r > 0} with coordinate function r, we
can define a so-called Poincaré map p: [0, ¢) — [0, 1) for a sufficiently small
positive number e. Let U, be neighborhoods of p, such that (div X)(x) <
—0 for xe U,, where d is a positive constant. Note that there exists a
positive constant [ satisfying the following condition. For any T > 0,
there exists r, > 0 such that for any point p with coordinates (0, r), 0 <
r < r, the trajectory y(t) starting from p has the following properties:

(i) The trajectory y(¢) crosses the normal {(0, r)|r > 0} at the point
with coordinates (0, o(r)) after a time 7 > T for the first time.

(i) The point y(¢) is contained in ( J;_; U; for any t¢€ [0, z] — S, where
S is a union of a finite number of subintervals of [0, z] such that the sum
of the lengths is less than [

Using this fact and the formula

—dﬁ(%) = "XP(I : (div X )(¢z(p))dt)

(4.} denotes the l-parameter transformation group generated by X), we
can easily see that dp(r)/dr— +0 as r— +0, and hence that p(r) < r for
sufficiently small r > 0. This shows that I is an o-limit pathpolygon.
Our lemma is proved.

Now, let X be a vector field satisfying conditions (a)-(d). We in-
troduce the following subsets of M. Let 2 be the set consisting of sin-
gular points and of limit cycles of X. Let £, be the subset of £ consisting
of singular points at which div X is positive, and of a-limit cycles. Simi-
larly, let £2_ be the subset of £ consisting of singular points at which
div X is negative, and of w-limit cycles. It is clear that 2 =2, U 2_
(disjoint union) because of conditions (b), (c). Furthermore, we denote
by 2%, 2% the sets consisting of saddle points at which div X is positive,
negative respectively. We put

&, ={peM|peQ, o-lim(p)e 23},
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B_={peM|pe% alim(p)c 2%},
—~ = E_;, U E_ >

where a-lim (p), o-lim (p) denote the a-limit set of p, w-limit set of p re-
spectively (cf. [5]). Note that &, N Z_ = ¢ because of condition (d). It is
obvious that the sets introduced above are invariant sets of X (in the
both directions).

ProposrtioN 3.1.2. Suppose that X satisfies conditions (a)-(d) and the
following condition:
() The a and w-limit sets of every trajectory are either singular points,
closed orbits or pathpolygons.
Let IT,, IT_ denote the unions of a-limit pathpolygons, w-limit pathpolygons
respectively. Then M is expressed as the disjoint union

M=2UEUM,,

where
M, ={pe M|alimit(p) C 2, U I1,, o-limit (p) C 2_ U II_}.

The subset M, is open, and the subset 2 U 5 is closed. The set 2 consists
of a finite number of singular points and a finite number of closed. orbits.
Furthermore, we have

2, U8, ={peM|elim(p) C 2, U II,, o-lim (p) C 2,
Q. UE&.={peMlalim(p)C 2_, wlim(p)c 2. U II.}.

Proof. Tt is obvious that, 2, &, M, are disjoint each other. By con-
dition (e) we see that for any point p of M, if p ¢ 2 then the a-limit set
of p coincides with a source, saddle point, a-limit cycle or a-limit path-
polygon, and the o-limit set of p coincides with a sink, saddle point, w-
limit cycle or w-limit pathpolygon. In other words, M is expressed as a
disjoint union

M:QU#GM—Q

a-lim(p) C 2, U 2% U II+}
olim(p)c 2 UQUI_J’

Note that condition (d) implies that
{p € M|a-lim (p) € 2%, w-lim (p) € 25} = ¢ .

From these facts and the definitions of 5., it follows immediately that
M=QUZE&,U&_ UM, and hence M =02 U 5 U M, It is obvious that
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M, is open and hence £ U & is closed. The former part of our assertion
is proved. We see easily that

0, U8, Ci{peMlalim(p) C 2, U II,, wlim (p) C 2.},
Q_ UE.C{peMlalim(p)C 2., wlim(p) C 2_ U II_}.

Since M, and the two sets of the right-hand sides of these inclusion re-
lations are disjoint each other, and since M = 2 U & U M, (disjoint union)
as proved above, we conclude that in the inclusion relations, the equalities
hold.

It remains to prove that £ consists of a finite number of singular
points and a finite number of closed orbits. To prove this, it suffices to
prove that the number of closed orbits is finite. Lemma 3.1.1 implies that
each pathpolygon (if any) has a collar containing no closed orbit. There-
fore in order to prove the finiteness of the number of closed orbits, it
suffices to prove the following lemma.

Lemma 3.1.3. Suppose that a C' vector field X satisfies conditions (a),
(c), (e), and has an infinite number of closed orbits. Then there exists a
pathpolygon ' such that any collar of I’ contains an infinite number of
closed orbits.

Proof. Let x,;, i I, be the infinite number of closed orbits. Denote
by {=.} the set of points p such that the set {ie I|zr, N U # ¢} is infinite
for any neighborhood U of p. Then, using conditions (a), (c), () we see
that

(i) If pe{n), then o-lim(p) is a saddle point, and w-lim (p) € {=.}.
(i) If p is a saddle point and p € {z,}, then there is a trajectory () such
that lim,._., y(f) = p, and y(¢) € {=,}Y for each ¢.

Now, since M is compact, there is a point p e {z,}. Then, from (i) it fol-
lows that w-lim (p) is a saddle point p, € {z,}. By (il) we have a trajectory
7:(t) such that lim,.__ 7,({) = p,, and 7,(t) € {z,} for each ¢. Again from (i)
it follows that w-lim (7,(¢)) is a saddle point p, € {z,}, and hence lim,.., 7,(?)
= p,. Repeating the same arguments, since the number of saddle points
is finite, we obtain a pathpolygon I'. It can be directly checked that I
has the desired property. This completes the proof of our proposition.
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3.2. Elementary vector fields

Let Y be a continuous vector field on M. Assume that Y generates
a unique 1l-parameter transformation group {y,} of M and that Y has a
divergence div Y. Furthermore, we assume that the divergence div Y is
continuous, and the derivative Y(div Y) exists and is continuous (on M).
Here, we define div Y to be a function on M such that for any s€ R and
any open set U C M, the area of the set ¢,(U) is given by
I {exp j (div Y)(x;r,(x))ds}w .
z 0

eU

We define the derivative Yf of a function f by the formula
(¥F)(e) = lim —~{f () — f=)}

DErFINITION. Let 2 be a positive number. We shall say that the vector
field Y is elementary with stability exponent 2 if Y satisfies the equation
Y—-divY)divY= -2,

ie.,
(Y(div Y))(p) — (div Y)(p) = — 2
for all pe M.

DeriniTION. Let X be a vector field on M (such that X generates a
unique l-parameter transformation group). A function u: M — R is said
to be of class C" with respect to X if u is continuous and if the derivatives
Xu, X*u = X(Xu), - --, X"u exist and are continuous on M.

LemmA 3.2.1. Let X be a C* vector field, and let {¢,} be the 1l-para-
meter transformation group generated by X. Let u: M — R be a function
of class C* with respect to X. Then the vector field Y = e*X generates a
unique l-parameter transformation group {V,} and has a divergence divY
of class C' with respect to Y. The divergence div Y is given by

div Y = X(e*) + e*(div X) .

Furthermore, for each point p in M, there is a function S(t) such that, for
all ¢,
(i) ¢dp) = Vsu(D)-

(i) de;ft) = e-u, §(0) = 0.
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(iii) J ()dt = ex® LS“’ «(s)ds

where
o) = exp {[ @v 0@oNdt), o) = exp {[] @iv VroNds}
Proof. For pe M, let S(t, p) be the solution of the differential equation

adS@E,p) _ ,-uem with S©0,p) =0.
dt

We define +, by the formula

"r”s(p ) = ¢t(p)

where s = S(¢,p). We can easily verify that {y,} is the unique 1-para-
meter transformation group generated by the vector field Y. To prove
div Y = X(e¥) + e*(div X), it suffices to prove that this formula holds in a
flow box at any regular point of X. This can be directly verified. It
remains to prove (iii). For this, we put

h(t) = j 3Ot — e f“’ e(s)ds .

We shall prove A(f) = 0. First, note that A(0) = 0. From the formulas
in (ii) it follows immediately that

dn()
dt

= 3(t) — exP-ss(S(D),  H(0) = 0.
Furthermore, using the formulas
B — 300)- v XN60)
D) _ (S0 @iv DGp)- e,
(@v D) = e [ LD 4 @iv D)40))] ,

we obtain

dn) _ dh(®)
- ar (div X)(¢:(p)) .

Since h(0) = A’'(0) = 0, by uniqueness theorem of differential equations we
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conclude that h(f) =0, as desired. This completes the proof of our lemma.

LEmMA 3.2.2. Let X be a C* vector field. Let u: M— R be a function
of class C* with respect to X. Let 2 be a positive number. Then, in order
that e*X is elementary with stability exponent 2 it is necessary and sufficient
that the identity

X—-divX)Xu + (X —divX)divX + e > =0
holds.

Proof. By Lemma 3.2.1 we have div (¢*X) = e*(Xu + divX). By de-
finition, e*X is elementary with stability exponent 2 if and only if (e*X
— div (e*X))(div e*X) = — 2. It is easy to see that this equation can be
written

(X — div X)Xu + (X — divX) div X} = — 2.

This proves our lemma.
From this lemma we get immediately:

LEmmA 3.2.3. Let X, u be as in the previous lemma. Let u, be a real
number. Then e"X is elementary with stability exponent 1 if and only if
e**»X is elementary with stability exponent e™,

The analytic property of elementary vector fields is given by the fol-
lowing lemma.

LEmMA 3.2.4. Let Y be an elementary field with stability exponent 1.
Let {4} be the 1-parameter transformation group generated by Y. Let pe M,
and put

e(s) = exp{[ @V V() ds} .

Then we have

T ce + (1 —ce*
where ¢ is a constant satisfying 0 < ¢ < 1. Furthermore, two infinite in-

tegrals r e(s)ds, J.O
0

e(s)ds converge and coincide if and only if (div Y)(p)

= 0. If that is the case, we have
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€)= —L,  (dvY)¥(p) = —tanhs.
cosh s
Proof. Since &(s) satisfies the differential equation

) (v o) 06

we see that the function 1/e(s) satisfies differential equations

d( 1
) = ~@ Ve

o kd 1 . . 2
?(—@) = ((div Y)Y — Y(div ¥))(u(p)) —- ()

From the assumption (Y — div Y)div Y = —1, we obtain

d’ ( 1 ): 1

ds* \ &(s) e(s) ’
which is a linear differential equation with constant coefficients. Since
¢(0) = 1, we conclude that

% =ce*+ (1 — c)e*

where ¢ is a constant. Since &(s) > 0, the constant ¢ satisfies 0 < ¢ < 1.

If ¢c=0 (or 1), it is obvious that r e(s)ds = oo (or Jo e(s)ds = oo). o<
0 ~o00
¢ < 1, it is obvious that r e(s)ds, Io e(s)ds converge, and that r e(s)ds =
] —o 0

‘r e(s)ds if and only if ¢ = 4. On the other hand, since

1 de(s) = ce®—(1—c)e®
(div Y)W (p)) = —(g “ds | e+ A= e’

we see that (div Y)(p) = 0 if and only if ¢ = 4. Consequently we conclude
that j " (s)ds = j «(s)ds if and only if (div Y)(p) = 0. The latter part of
0 -0

our assertion is obvious, because if ¢ = , then &(s) = 1/cosh s, (div Y)({¥(p))
= —tanhs.

Remark. In order to explain the analytic property of elementary

vector fields, let us recall the meaning of &(s) = exp{ :(div Y)(x[r,(p))ds}.

https://doi.org/10.1017/50027763000018535 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018535

NUMBER OF LIMIT CYCLES 91

For simplicity, we assume that Y is of class C?. Then the l-parameter
transformation group {y,} induces the 1-parameter transformation group
{¢ro} on the tangent bundle of M. Let pe M, and let {v, v,} be a basis
of the tangent space at p. Denote by |(v, v,)| the area of the parallelo-
gram with the two sides v, v,, Then it is an elementary fact that the
relation between |(v;, v)| and |(Y,4 U1, ¥4 0s)] is given by the formula

|Gt box)] = @ vl exp { [ (@iv Vv ()} -

Therefore, if Y is elementary with stability exponent 1, then the function

1
l(\l"s*vl, ‘I"s*v2)l

of s is of the form const. {ce’ + (1 — c)e™*}, which is one of the simplest
functions in analysis.

The preceding lemma implies the following geometric property of
elementary vector fields.

ProposiTiON 3.2.5. Let Y be an elementary vector field with stability
exponent 1. Let {4,} be the 1-parameter transformation group generated by
Y. Put

N, ={pe M|(div Y)(p) = 1},
M, = {pe M| |(div Y)(p)| < 1}.

Then we have
M= N, U N_ U M, (disjoint union) .

The two sets N,, N_ are closed and invariant by {\»,}. Furthermore, for
any point p in M, the a-limit set of p is contained in N, and the w-limit
set of p is contained in N._.

Considering the function f(s) = (1/e(s))(de(s)/ds) instead of (s), we see
that the proof of Lemma 3.2.4 implies the following:

LemMmA 3.2.6. Every bounded solution f = f(s) of a differential equation

df
Y _pi1=0
ds f+

is given by
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__ce—(1—ce’
f8) = ce' + (1 —ce®

where ¢ is an arbitrary constant satisfying 0 < ¢ < 1. Hence, the solution
is constant if and only if c=0or c=1. If 0 <c¢ <1, then the solution
f has the following properties:

—-1<f(s <1 for all se R,
limf(s) = F1.

§— oo

ExampLE. Let R® be a plane with coordinate system (x,y). Let T
be the torus defined by R*/(2zZ X 2zZ), and let v = dxdy be the area-
element on T?. Let Y be a vector field

Y= f(x)% + g(x)—i7 ,

and assume that g(x) is continuous and periodic with period 2z. It is
directly verified that if f(x) = A/msin mx (2 is a positive number and m
is a positive integer), then Y is an elementary vector field on TI? with
stability exponent 4. More generally, using the fact that a function f
defined by

L sin ux for x >0
U
f(x) =

— sin yx for x < 0 (g, v; constants)
is of class C* (at x = 0), we get many examples of nonsingular elementary
vector fields on T?. Conversely, we can prove that if X is a nonsingular
vector field on T? and if X is structurally stable, then there is a homeo-
morphism which preserves the area-element o and by which X is equivalent
to the vector field mentioned above. Indeed, in the proof of Proposition
3.3.2, we seek out essentially such a homeomorphism.

3.3. Existence theorems of the multiplier ¢* such that e*X is ele-
mentary

In 3.2, we introduced a class of vector fields (elementary vector fields).
Despite its rather simple definition, this class is of generality in the fol-
lowing sense. For almost every vector field X, by choosing a suitable
multiplier, we can make X elementary. More precisely, as a (slightly
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generalized) reformulation of Theorem 1.1.2, we have:

THEOREM 3.3.1. Let X be a C* vector field on M. Assume that X
satisfies conditions (a)-(e) as in Proposition 3.1.2. Then there exists a
function u: M — R and a positive number 2 such that

(i) The function u is of class C* with respect to X.

(ii) The vector field e“X is elementary with stability exponent A.

(ii1) The integral of u on M, j uw, is equal to zero.
M

Furthermore, these u and 2 are uniquely determined.

This theorem is a direct consequence of Lemma 3.2.3 and the following
proposition.

ProposiTioN 3.3.2. Let X be the same as in the preceding theorem.
Then there exists uniquely a function u: M — R such that

(1) wu is of class C* with respect to X.

(i) e*X is elementary with stability exponent 1.

This proposition will be proved in 3.6. In 3.4, 3.5 we shall prepare
for the proof.

3.4. Solving linear differential equations with boundary conditions

We give some elementary facts of 1st order linear differential equa-
tions. Let d: R — R be a continuous function. Put

3(t) = exp { f 0 d(t)dt} .
LEmMMA 3.4.1. Let d = d(f) be periodic with period t. Assume that
5(z) = exp {L d(t)} +1.
Then the solution of a differential equation
980 1 dg®) = 1 (resp. —1)

with condition

8(0) = g(v)

is given by
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f (s + t)ds ( j a(s + t)ds)
80 = G = Do " 1 = 5090

Proof. The general solution of dg/dt + d-g = 1 is given by
t
2(t) = {c + f 0 i)‘(t)dt} / a(0) .
From the condition g(0) = g(z), we get
¢ = .f D 3(0)dt)(5(z) — 1) .
On the other hand, by change of variable we have
j’ (s + t)ds = j 3(0)dt + j a(c + t)dt — j a(t)dt .
0 0 0 0 !

Note that o(r + 2) = 6(r)d(t) because of the periodicity of d. Using these
relations, we see that

J é(s + t)ds
) =
(6(z) — 1)a(e)

Replacing g by —g, we get the assertion corresponding to the parentheses.

8t

LemmA 3.4.2. Assume that lim,_ .. d(#) =1 (resp. lim,_,. d() = —1).
Then the solution of a differential equation

90 1 dg) =1 (esp. —1)

with condition

lim g(f) = 1

t—too

is given by

j (s + t)ds ( j: a(s + t)ds)
=" Ty )

Proof. Let us consider the case lim,_.. d() = 1. Note that

f:a(t)dt = o, f ()t < oo .
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The general solution of dg/dt + d-g = 1 is given by

g = {c + L 6(t)dt} / a0) .

In order that g satisfies condition lim,__., g(f) = 1, it is necessary to choose

0
¢ = j sty ,
because lim,_._., () = 0. Let ¢ be chosen as above. Since lim,_., 6(f) = oo,

lim,,_., () = 0, by the theorem of de I’'Hospital we see that
limgt)=1.

L xoo

Furthermore, since f o)dt = Jo o(s + t)ds, we obtain

j " (s + Hds
&) = __ﬁT

Similarly, we can prove the assertion corresponding to the parentheses.
LEMmA 3.4.3. Assume that lim,_._., d(t) =1, lim,_., d(¥) = —1. Further-
more, assume that
0 o
j a()dt = j a(t)dt .
- 0

Let k be a positive constant. Then the solution of a differential equation

%O 1 aog® = —sin (k- [ a0)dt)

with conditions

g>0, limg®=1

l—xoo

exists if and only if k = 2/x r o(tydt. If that is the case, the solution is
0

given by

k cos (k" I: J(t)dt)

g = 0

Proof. The general solution is
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g0 = Jo_{sm (k(;;t{ : 5(t)dt)}6(t)dt |

‘Changing the variable by z = r o(t)dt, we observe that
0

¢c—k+ kcos (k“ J.: 6(t)dt>
@) '

On the other hand, by the assumption lim,... d(f) = F1, we see that
lim,.... 0(t) = 0. Hence, in order that lim,.. g(f) = 1, it is necessary that

g =

¢c— k+ kcos (k“ J:e 5(t)dt) =0

and

_sin (k" f B(t)dt)
lim 0
o d(t)
Hence, it is necessary that k& = 2/x r o(t)dt. Conversely, let k be as above.
0

Put c=k. Then, we can easily verify that g(f) satisfies g>0, lim,_.., g(t)
= 1. This proves our lemma.

3.5. The expression of the multiplier e*
Let Z be a vector field on M. Suppose that Z can be written
Z =e'X
where X is a C? vector field satisfying conditions (a)-(e) in 3.1, and v is

a function of class C* with respect to X. Let {¢} be the l-parameter
transformation group generated by Z (cf. Lemma 3.2.1). For pe M, put

ot, p) = exp {[ (@iv 2)cp)t} -

Let M =0 U & U M, be the decomposition induced by X as in Proposi-
tion 3.1.2. Note that Z induces the same decomposition. Now, let w: M

— R be a function of class C* with respect to Z. Put Y=e*Z. In terms
of {¢,}, div Z, w, we shall study the condition for Y to be elementary with
stability exponent 1. Note that we have a basic relation div Y = Z(e¥)
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+ e*div Z (cf. Lemma 3.2.1).
LemmaA 3.5.1. In order that
(Y—divY)divY = —1 on QUL
it is necessary and sufficient that

1 on 2, U&,,

divY =
v {-—1 on Q_UKE&_.

Proof. Suppose that (Y—divY)divY=—1on QUZE. Let pefQUA4&.
Let {y,} be the 1-parameter transformation group generated by Y. Consider
a function

f(s) = (div Y)(¥«(p)) .

It is obvious that the function f is bounded. Since 2 U & is an invariant
set of {y,}, we get

df(s) _ fis) = —1 for all s.
ds

From Lemma 3.2.6 it follows either that f(s) = +1 or that f has the
following properties:

—-1<f(s) <1 for all s, and lim f(s) = F1.

§— koo

Hence, if pe 2., it is obvious that f(s) = 1. If pe 5,, by the definition
of 5,, we see that lim,_., f(s) = 1, and hence f(s) = 1. Consequently, we
conclude that f(s) =1 for pe 2, U &,, in other words, divY =1 on 2,
U &,. Similarly, we see that divY = —1 on 2_ U &_. Conversely, sup-
pose that divY = +1 on 2, U 5,. Since £. U 5. are invariant by {y},
we see that Y(divY) =0 on £, U &,, and hence that (Y — divY)divY
=—1lon Q2 U2Z&.

LemMma 3.5.2. Suppose that Z has a periodic trajectory y = y(t) with
period t. If y represents an a-limit cycle {y}, then in order that divY =1
on {r}, it is necessary and sufficient that

(o, prat
ev® — JO
5(7: p) -1

If y represents an w-limit cycle {r}, then in order that divY = —1 on {7},

for pefy}.
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it is necessary and sufficient that

[[at, prat
Mo
1-— 5(7’ p)
Proof. Fix pe{r}. Put

g8@) = e, d(f) = (div 2)(C«(p)) .

ev® —

for pe{r}.

Note that g(¢), d(¢) are periodic functions with period z, and that ‘r d(t)dt
0

is positive or negative according as {y} is an «-limit cycle or w-limit cycle.
Since div Y = Z(e¥) + e* div Z, we have at once

(ﬁvm@@»=§%Q+gMﬂa.

Hence, we see that divY =1 on {y} if and only if
1= 980 4 gy .
dt
Applying Lemma 3.4.1, we see that div Y =1 on {7} if and only if

L (s + t)ds
80 = G =10
i.e.,

f 3(s + t, p)ds
(0(z, p) — 1)it, p)

P &P —

Using the facts that

oz, p) = &(z, {(p))  for all ¢,
ot + s, p) = a(t, p)(s, ¢(p))  for all s, ¢,

we observe that e*“?” can be written

[ a6s, e
LATOES

Replacing Z by —Z, we obtain the latter part of our lemma.

ewem —

Remark. Let y be as in the preceding lemma. Suppose that {r} is
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an o-limit cycle. Let pe{y}. Then we have
[ at, e
0

1=-dp)

In fact, since 1 > é(z, p) > 0, we observe that

j " 8¢, p)dt .
0

L a(t, p)dt

1= 5. D) = L (¢, p)AH{1 + o(c, p) + (e, p) + - + 5z, D) + ---}.

Note that §*(z, p)r o(t, p)dt = ‘[(Ml)rB(t, p)dt, because 6"(z, p)d(t, p) = d(nz + t,p).
[ nt

Then we get at once the desired formula.

LemMmA 8.5.3. Assume that divZ = +1 on 2.. Suppose that Z has
a pathpolygon I'.  If I' is an «-limit pathpolygon, then in order that divY
=1 on I' it is necessary and sufficient that

ev'? = r a(t, p)dt for all pe .

If I' is an w-limit pathpolygon, then in order that divY = —1 on I' it is
necessary and sufficient that

e = f "5t p)dt  forall pel.
0

Proof. As in the proof of the previous lemma, let pe ', and put

glt) =e*«®,  d(t) = (div Z)C(p)) .

Then we have
@wmw=%?ﬂmm.

Suppose that I' is an «-limit pathpolygon. By assumption, we have
div Z(saddle points) = +1. From this and the definition of I", it follows
that lim,_.. d(f) = 1. Now, suppose that divY =1 on I'. Then we have

%$+MM=L

First, let p be a saddle point (in I'). We contend that
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0
ev® = J ot p)dt =1.

Indeed, it is obvious that g(¢) is constant, and d(f) = 1. Hence we have
g(®) = 1, whence e = 1. On the other hand, we also have 6(¢, p) = e’ and

0
hence I

8(t, p)dt = 1. This proves what we want. Next, let p be a re-

gular point (in I"). By what we have seen, we know that lim,.,. g =1.
Then by Lemma 3.4.2, we get

d(s + t, p)ds
at, p)
Using the fact 6(t + s, p) = 6(¢, p)d(s, L(p)), we obtain

HOES L"

0
e @) — I—m 5(3, Cc(p))ds :

Conversely, suppose that
0
en? — j 3t p)dt  for all pel .

Let p be a regular point. Since [' is invariant by {{,}, we see that e”
satisfies the formula obtained above. Again by Lemma 3.4.2 we see that
dg(®)/dt + d(t)g() = 1 and hence that (div Y)(¢,(p)) = 1. This proves that
divY =1 on the regular points in I'. By the continuity of div Y, we
conclude that divY =1 on I'. Replacing Z by —Z yields the latter part
of our lemma.

Remark. Let Z be as in the preceding lemma. Let pe &, (or &),
and put

0 0
g = [ 26, c(p)ds (resp. | o6, Cp)ds) .
) 0
Then from the proof of the lemma, we have

% =1 — (div Z)(¢(p))-2(®)

(rvesp. %89 — —1 — (@iv 2)¢.(p)-200)

Similarly we can prove the following.
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LEMMA 3.5.4. Assume that divZ = +1 on 2, U II., where II,, II_
denote the unions of a-limit pathpolygons, o-limit pathpolygons respectively.
Put II =1, U II.. Then in order that

1 on 2, U &, ,
divyY =
{—1 on 2_U &_,
it is necessary and sufficient that
1 for pe2 U I,

0
e — || _dtpdt  forped.,
r (¢t p)dt  for pe . .
0

LemMA 3.5.5. Assume that divZ= +1 on 2. U Il, (as in the preced-
ing lemma). Let M, be the same set as in Proposition 3.1.2.

(1) The function (¢, p) converges to zero uniformly in the wider sense
for pe M, as t - +oo. Moreover the infinite integrals

1. =["aepar, 4@ = _opat

converge uniformly in the wider sense for pe M,. Hence 4.(p), 4.(p) are
continuous functions on M,
(ii) Put
Y ={peM,|4,(p)=4(p)}.
If Y is elementary with stability exponent 1, then we have
2 ={pe M|(div Y)(p) = 0} .
(iil)) Each point p in M, can be wriiten uniquely
p =109

with ge X, teR.
Gv) If Y is elementary with stability exponent 1, then we have

k cos <k" J: o(t, q)dt)
@, @)

P D) —

for any g€ 2 and any te R, where k =2/« r o(t, g)dt. Conversely, if w
1]
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satisfies this equality for any qe 2 and any te R, then we have
(Y—divY)divY = —1 on M,.
Proof of (i). By definition we have
o-lim(p)c 2_ U II. ) for pe M, .
By assumption we have
divZ = -1 on Q_UII_.

Hence for each point p in M,, we find a real number T and a neighbor-
hood U(p) of p satisfying the following condition: For any p’ e U(p),
there are a finite number of intervals I, I,, - - -, I, such that the sum of
the lengths is less than 7 and such that

@iv Z)(C(p) < —% for all ¢ [0, o) — \J I, .

1=

Hence for each p € M,, there is a neighborhood U(p) of p and a constant
such that

f (div Z)(C(P)dt < ——;—t + const.  for all £> 0 and all p ¢ U(p) .
0

Clearly (¢, p) converges to zero uniformly in the wider sense for p e M,
as t — oo. Moreover this inequality shows that the infinite integral

f ot = [ {eXP f (@iv 2)Cp)at}d

is uniformly convergent in the wider sense, and hence a continuous func-
tion of pe M,. Similarly, we can prove the other assertions.

Proof of (i1). Suppose that Y is elementary with stability exponent
1. Then from Lemma 3.5.1, Propositions 3.2.5 and 3.1.2, we observe that

{peM|divY)p)=£1}=02. UZ&..

Hence in particular, we see that if p satisfies (div Y)(p) = 0, then pe M,.
Therefore to prove (ii), it suffices to prove that for p € M,, the condition
4,(p) = 4_(p) is equivalent to the condition (div Y)(p) =0. Let {y,,} be
the 1-parameter group generated by Y. Let pe M, Put

o(s) = exp {[ (@iv V)(v.p)ds}
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Using Lemma 3.2.1, we have
A+(p) = Jw 5(t’ p)dt = e¥® J'°° e(S)ds )
0 0

4.(p) = f’w 3¢, p)dt = e*® Iome(s)ds.

On the other hand, by Lemma 3.2.4 we know that the condition r e(s)ds

0
= r e(s)ds is equivalent to the condition (div Y)(p) = 0. These prove
wha;,mwe want.
Proof of (iii). Fix pe M,. Consider a function
h(t) = 4.C(p) — 4-C(p)) -

Since the condition h(—7) = 0 is equivalent to the condition ¢_.(p)e 3,
it suffices to prove that A(f) has a unique zero. First, we shall prove its
existence. By the assumption divZ= +1 on £, U Il, and by the defini-
tion of M,, we have

lim (div Z)(E(p)) = F1.
From this it follows that
Lm 4.GE) =1, lim 40D = .
Hence we obtain

lim A(t) = F oo,

t—+oo

which shows that A(f) must have at least one zero. Next, to prove the
uniqueness, we shall prove that h(f) satisfies

izgi = —2 — (div Z)CL V() -

This will show that the differential coefficients of ~ at zeros are negative
and hence prove the uniqueness of the zero of A. Note that

2 (@iv 2)C.C0)) = -2 (div 2)XCCLDN) -
dt ds

Then

https://doi.org/10.1017/5S0027763000018535 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018535

104 KAZUO YAMATO

—a%a(s, o) = g-a(s, 2p)) — 85, L(p))- (div Z)(Cp)) -
S

Using this formula and the fact
5(00’ Ct(p» = 5(—°°9 Ct(p)) =0,

we get

%A(Ct(p)) = —1 — (div 2)(C(p))4. (D)) ,
%A_(Cz(p)) =1 — (div 2)(C(p)4-(C(p)) -

Consequently we obtain

O, — 2 — @iv 2O ,
as .desired.
Proof of (iv). Fix gqe 2. As in the proof of Lemma 3.5.2, we put
g = e« | d() = (@div Z)CAD) -

Then

%(z_t) + d(t)g(t) = (div Y)((q)) -

In order to apply Lemma 3.4.3, note that
lim d(t) = F1,

{—+too

because divZ = +1 on 2. U II,. Furthermore, note that

j: 3, q)dt = j ‘im 3, gdt ,

because g€ 3.
Now, suppose that Y is elementary with stability exponent 1. Then
from Lemmas 3.5.1 and 3.5.4 we see at once that

limg(t) =1.
t—+oo

We contend that

(@iv Y)(Eda) = —sin (e [ o, @)dt)
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This and Lemma 3.4.3 will show that
e = 2 "o, gt ,
T Jo

e” @ cos (e"‘"‘“ J.t a(t, q)dt)
0
at, q)

and hence will prove the former part of (iv). Now, we must prove the
formula above. Let {y»,} be the 1-parameter group generated by Y. Put

g(t) =

b

e(s) = exp { [ @iv V)rands)
Let S(¢) be the function defined by

£(q) = Pse(Q) -

Then using Lemma 3.2.1, we obtain

¢ S (¢8)
‘f o(t, @)dt = e"’“”j‘ e(s)ds .
0 0

On the other hand, by Lemma 3.2.4 we have

1
cosh s

e(s) =

2

because (div Y)(q) = 0. We use the fact

r 1 ds = arcsin tanh s.
o cosh s

(This function is known as the Gudermann function gds.) Then we have
sin (e‘"’“” r i, q)dt) — tanh S(2) .

By Lemma 3.2.4 we have also
tanh s = —(div Y)(v,(q)) .

Consequently we obtain the desired formula.
Conversely, suppose that

% cos (k'l j: at, q)dt)
(¢, q)

ew(tt(q)) —
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for all te R. This is written

k cos (k“ J: B(t)dt)
o(2) ’

8@ =
where
a(f) = exp (j d(t)dt) . k= % j:a(t)dt :
Applying Lemma 3.4.3, we see that g(¢) satisfies

9%%) + d@®)gt) = —sin (k“ j 5(t)dt) .

Hence we conclude that
(@iv Y)C() = —sin (k™ [ a9a) .
0
On the other hand, since Y = ¢*Z, we have

(Y div Y)(Cq) = ewmw»%{(div Y)CAQ)} -

Consequently,

(Y div Y)(¢(@) = e"’““"”—(}'l;{‘sm (k'l f B(t)dt)} ’

Calculating the derivative of the right-hand side yields

(Y div Y)(C() = —g(®)k~'(t) cos (k [ oya)

- - {cos (k‘l j: 5(t)dt)}2

= {(div V)P — 1.

This and (iii) show that YdivY=(divY)* —1 on M, Our lemma is
proved.

Remark. Let the assumption and the notation be as in Lemma 3.5.5.
Fix ge 3. Put

k cos (k‘1 J: a(t, q)dt)

g = 5.
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Then we have

d_figl — —sin (k" j ", q)dt) — (div Z)CL@)g®) -

3.6. Proof of Proposition 3.3.2

Let X be a C* vector field satisfying conditions (a)-(e). We use the
notation in Proposition 3.1.2. Let M= 2 U &£ U M, be the decomposition
induced by X. Let v: M— R be a function of class C* with respect to X.
As in 3.5, put Z = e'X, and let {¢,} be the l-parameter transformation
group generated by Z. By the following two lemmas we may assume that
Z satisfies

divZ = +1 on 2, U I,,

and we see that in order to prove our Proposition, it suffices to prove
our assertion for this vector field Z.

LEmMma 3.6.1. There exists a function v: M— R of class C* with respect
to X such that div (e’X) = £1 on 2. U II,.

This lemma will be proved in 3.7.

LEmMMA 3.6.2. Let v be a function of class C* with respect to X. Put
Z = e'X. If there exists uniquely a function w: M - R of class C* with
respect to Z such that e*Z is elementary with stability exponent 1, then
there exists uniquely a function u: M — R satisfying the conditions (i), (ii)
in Proposition 3.3.2.

Proof. We can check directly that the function v = v + w has the
desired property.

Now, we return to the proof of our proposition. Note that we can
use Lemmas 3.5.4 and 3.5.5, because we have assumed that divZ = +1
on 2, UII,. First, we shall prove the uniqueness of such a function w.

Suppose that there is a function w of class C* with respect to Z such
that e“Z is elementary with stability exponent 1. From Lemmas 3.5.1 and
3.5.4, we have

1 for pe 2 U IT,

0
ew(p) — I a(t’ p)dt fOI‘ p € ‘E’+ ’

r ot p)dt for pe .,
0
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where
ot, p) = exp {[| @iv Z)c.o)at}

Furthermore, by Lemma 3.5.5 we have

k cos (k“ j; a(t, q)dt)
oz, @)

ev» —

for p =¢(q)e M,,

where

qu:{peMo

I:ﬁ(t, p)dt = fo_w a(t, p)dt} , =_72r_ f:,;(t, q)dt .

Since M = 2 U £ U M,, these expressions show that w is uniquely deter-
mined (provided it exists).

We shall now prove its existence. Define w: M — R by the expres-
sions obtained above. It is well-defined, because if pe I, (or II_), then
by our assumption divZ = +1 on II,, we have

Jig ot p)dt = 1 (or J: 8, p)dt = 1) .

If we knew that this function w is of class C* with respect to Z, then
again by Lemmas 3.5.1, 3.5.4, and 3.5.5 we could conclude that the vector
field Y = e*Z satisfies (Y — div Y)div Y = —1 on M, in other words, Y is
elementary with stability exponent 1. Therefore, to prove our proposition
it suffices to prove that w is of class C* with respect to Z. For this it
suffices to prove that it is true for e®.

First, we must verify the continuity of e¥. From the continuity of
the function div Z, it follows at once that

t, @) = exo {[ @iv Z)¢(@)at)

is a continuous function of #, g. By (1), Lemma 3.5.5 we know that & =
Jw o(t, g)dt is also a continuous function of ge X¥. Consequently, we see
0

that

k cos <k“‘ I: a(t, q)dt)
o, @)
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is a continuous function of #, ¢, in other words, the function e* is con-
tinuous on the open set M,. Let pef2_ U .. To prove the continuity
of e” at p, let {p,} be any sequence convergent to p. We shall prove
lim,_. e*®» = ¢*»®, Note that a sufficiently small neighborhood of p is
contained in 2_U &_ U M,, because 2, U Z, is closed. Therefore to prove
lim,_., e*®» = ¢*»® it suffices to prove this in the case where either the
sequence {p,} is contained in 2_ U Z_, or {p,} is contained in M, Note
that we can write

PP — r ot, p)dt for p’el_U &._
0

because ‘r o(t,p)dt = 1 for p’e 2_. On the other hand, from the proof
0
of (i), Lemma 3.5.5 we have:

LeMMA 3.6.3. The function 4,:2_ U E_. U M,— R defined by

4,0 = | ott, p)dt

18 continuous.

frd

Hence, if the sequence {p,} is contained in £_ U 5_, then we have
lim e**» = lim 4,(p,) = 4.(p) = e*?,

n-roo n-roo

as desired. Suppose now that {p,} is contained in M, Then by (iii),
Lemma 3.5.,5 we can write

Dn = C..(q,) with ¢,€ 3 .

Note that r, — oo as n— oo, because p ¢ M,. Consider the inequality

w(pn) __ pw(D)
le e P <

evom _ r i, pn)dt‘ ¥ ] I " at, p)dt — f“ a, p)dt! .

From Lemma 3.6.3 it follows that the second term in the right-hand side
converges to zero as p,—p. By the following lemma, we see that the
first term in the right-hand side also converges to zero as p, —p, and
hence we conclude that e” is continuous at any point in 2_ U & _.

LemMmA 3.6.4. There exist two positive numbers ¢, T such that

@U@ _ j: at, C,(q))dt’ < c]1 _ j o, @)t / r o, gt
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for any ge X and any > T.

Proof. From the relation é(z + ¢, @) = é(z, q)i(¢, £.(q)), we have

TE T
Tk f 3(t, q)dt
¥z, @)

|7 ot et =

Hence

ew(c;—(q)) —_ J:o 6(t’ Cr(q))dt‘

cos (k“ L at, q)dt) - (-’21 o L at, q)dt)‘.

¥z, 9)

Using the estimate

‘cos x — (—”— — )’ < const. <x — £>2 for x close to -~ R
2 2 2

we obtain

we@ _ | const. (_ﬂ___ -1IT )2
e J, 36 cande] < SRTR(Z — e [ ot @)t

if

nf2 — k! I o(t, q)dtl is small. From (i), Lemma 3.5.5 and the compact-
0

ness of X, it follows that n/2 — k! f o(t, @)dt converges to zero uniformly
0

for ¢ in 2 as 7 — oo. The right-hand side of the inequality obtained
above is written

v [ o, gt [ o, @at
const. <§) kl1— ———f ” q)dt' 1-— J: o ot (5 (i q)) .

From the continuity of the function & on 2, it follows that % is bounded.
Therefore, to prove our lemma it suffices to prove that the function

B f;é(t,q)dt .
1 J’: at, q)dt (5(2', q))

is bounded on {(z,qQ)|z > 0, g€ 2}. Note that this function is equal to
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4,)
r a(t, g)dt

Since 4, is continuous on 2_ U &_ U M, (Lemma 3.6.3), it is obvious that
4, is bounded on the subset {{,(q)|t > 0,9 2}. From this and the fact
that the function % is positive and bounded below, we see that the function

A,,(C,(q))(f: a(t, q)dt)—l is bounded on {(r,q)|z >0, ge 2}. This proves our

lemma.

Similarly, we see that e* is continuous at any point in 2,6 U &,.
Consequently we know that e” is continuous on the whole M.

Next, to study Z(e*) we use Remarks following Lemmas 3.5.3 and 3.5.5.
Then, noting that divZ = +1, e =1 on £2,, we have

+1 — (div Z)(p)e*® for pe 2, U &, ,

_sin (k" j a, q)dt) — (div Z)(p)e®
for p =Cl(@)e M, g ¥ .

(Ze*)(p) =

Note that div Z is continuous on M. Furthermore we know already the
continuity of e®. Therefore to prove the continuity of the function Z(e®)
on M, it suffices to prove that the function S defined by

+1 for pe 2, U &,,

S(p) = {—sin (k“ .[0 a(t, q)dt) for p =@ eM,qe,

is continuous on M. This is an immediate consequence of the fact that
k“.r o(t, @)dt converges to =z/2 uniformly for ¢ in ¥ as r —> + . Con-
0

sequently, the continuity of Z(e*) is proved.

Finally, to study Z%e®), note that the function (div Z)e“ is of class
C' with respect to Z, because it is true for div Z, e*. Therefore, to prove
that Z(e*) is of class C' with respect to Z, it suffices to prove that the
function S given above is of class C' with respect to Z. It is obvious that

0 for peQ U &,

(Z3)(p) = {—k“&(r, q) cos (k“ JO a(t, q)dt) for p=¢(@Q)e M, qec 2 .

This function ZS is certainly continuous, because d(z, ) converges to zero
uniformly for ¢ in 2 as 7 — +oo (Lemma 3.5.5, (i)). Consequently, the
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function Z(e*) is of class C' with respect to Z, and hence our function
€e* is of class C® with respect to Z. This completes the proof of our
proposition.

3.7. Proof of Lemma 3.6.1

Let X be a C® vector field satisfying conditions (a)-(e). Let {¢,} be
the 1-parameter transformation group generated by X. Using Remark 2
in 3.1 and Lemma 3.5.2, we obtain easily a function v: M — R of class C?
such that div(e’X) = +1 on £,. Because £ consists of a finite number
of points and a finite number of circles (Proposition 3.1.2). Using Lemma
3.5.3, we can modify the function v so that

(1) v is continuous on M.

(ii) v is of class C* on M — U, where U is a neighborhood of IT N
{saddle points}.

(iil)) Xv, X% exist on II N U and are continuous on it.

(iv) div(e’X) = +1lon £, U II,.

Furthermore, we must modify v so that v is of class C* with respect to
X. For this purpose we need a lemma. Note that for each saddle point
p of X, there exists a local coordinate system (x,y) of class C?% in a co-
ordinate neighborhood V of p, such that X|, is written in the form

Xy = a(x, )x-2- + b(x, y)y-- ,
ox oy

where a(x, y), b(x,y) are of class C' and satisfy a(x, y) > 0, b(x,y) < 0.
LEMMA 3.7.1. Let X be a C* vector field on a neighborhood of the
origin of R, and assume that X is written in the form

X = a(x, y)x—a— + b(x, y)yj— ,
ox oy

where a(x, y), b(x, y) are of class C' and nonzero. Let f(x), g(y) be functions
of x, y respectively. Assume that f(x), g(y) are of class C* with respect to
a(x, 0)xd/ox, b(0, y)yd[dy respectively, and assume that f(0) = g(0). Put

h(x, y) = f(x) + g(y) — £(0) .

Then the function h(x,y) is of class C* with respect to X, and its restric-
tions to the x-axis, y-axis coincide with f(x), g(y) respectively. Furthermore
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h(x,y) is of class C* on {(x,y)|x + 0, y # O}
Proof. This can be directly checked.

Using this lemma, we obtain at once a function v having the desired
property. Lemma 3.6.1 is proved.

3.8. Proof of Theorem 1.1.2

Suppose that a C* vector field X is structurally stable. Then the
characterization theorem of Peixoto ([10]) asserts that X satisfies condi-
tions (a), (¢), (d), (¢) in 3.1. Suppose that X satisfies condition (b) be-
sides. Then we can apply Theorem 3.3.1. Hence we find a function
u: M — R satisfying the conditions (i)-(iii) in Theorem 3.3.1. Since e*X
is elementary with stability exponent 1, from Lemma 3.2.2 it follows that
u satisfies equation (E) in Theorem 1.1.2. Our theorem is proved.
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