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1. Introduction

In this paper we shall discuss infinite capacity storage processes in
which periods of input and output alternate. The length of a period of input
and the length' of the period of output immediately following may be statis-
tically dependent and the change in storage level during an input or output
period may depend on the length of the time interval in a rather general
manner. However, we do not exploit either of these facts in the present
paper.

We shall obtain a generating function for a transform of the storage
level, or content, Wn, at the discrete times tn which denote the beginnings
of periods of input. After giving an example we show how certain asymptotic
results may be obtained.

The investigation of storage processes has been carried on for several
years and the monograph by P. A. P. Moran [1] and the review article by
N. U. Prabhu [2] are recommended surveys of the subject.

2. Notation and basic formulae

The storage systems considered in this paper are those for which periods
of input and output alternate, that is, the storage content is non-decreasing
for an interval of time and is non-increasing for a period of time immediately
there-after. The moments at which periods of input begin will be denoted
by tn (n = 0,. 1, 2). To fix the time scale we shall suppose t0 = 0. We shall
let Ti+1 = ti+1—tt, (j = 0, 1, 2, • • •), and for convenience will refer to the
time interval (tt, tj+1) as the period Ti+1.

The storage content at time tt will be denoted by Wt. The change in
storage content during the input portion of the period Tt will be denoted by
Xs and the change during the output portion will be max [Wt_1+Xt—Yi, 0].
We assume the triples (Xt, Yt, Tt) are independently and identically

* Parts of this paper were written while the author was a consultant to the Directorate of
Research Analysis, Air Force Office of Scientific Research, Holloman Air Force Base, New
Mexico.
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distributed and we shall denote the joint distribution of the random variables
Xjt Y, and T, by F(x, y, t). We let

*(s, v) = E(exp ( _ s ( X , - Y , ) ) - » r , ) .

where E denotes expectation and s and v are complex numbers chosen so
<f>(s, v) is defined. It is clear from the definitions that, prior to the time period
TN in which the content first becomes zero (other than at time /0), the storage
content coincides with the random variable zt defined as follows:

*u = Wo+ 2 {Xt-Yf) (n = 1, 2, • • •).
i-l

We assume Wo is a random variable which is independent of the triples
(Xit Yt, Tt). We shall let N denote the least integer « such that zB ^ 0.
Thus, time period Ty is the first time period in which the content becomes
zero at a time other than t0 = 0.

For a random event A we shall set {4} equal to one if the event A occurs
and zero if A does not occur. Using this notation we define the following
generating functions, with t a complex number, \t\ > 1:

Q(t,s,v\W0) =2tn9n(s,v\W0) where qn(s,v) = E({N>n}exp(-szn-vtn)\W0)
n-0

P(t,s,v\W0) = 2.t»pn(s,v\W0) where pn{s,v) = F{[N=n}exp{-szn-vtn)\W0)
n-0

G(t, s, v\WQ) = 1 t»gn(s, v\W0) where gn(s,v) = £(exp(- sWn-vQ\W0) .
n-0

The basic relationship between these generating functions is the following
(see Kemperman (3)):

(2.1) G(t, s, v\W) = Q(t, s, v\W)+P(t, 0, v\W\)G(t, s, v\0)

or

UWo = 0 this reduces to G{t, s, v\0) =

We see the generating function G(t, s, v\W0) may be found if the generating
functions Q(t, s, v\W0) and P(t, s, v\W0) have been determined. By using a
slight modification of a technique given in Kemperman (3) we can determine
these generating functions from the easily derived relation
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(2.2) [1-Ws, v)]Q(t, s, v\W0) - £(exp (sW0))-P(t, s, v\W0).

The technique is based on the Wiener-Hopf type decomposition

M-{t, s, v)
(2.3) [ l - ^ ( s , v)] = M+(t, s, v)

for Re(s) = 0. Here, and subsequently, M+(t, s, v) is continuous on the
closed half plane Re(s) ^ 0 and analytic on the open half plane Re(s) > 0;
M_(t, s, v) is continuous on the closed half plane Re(s) ^ 0 and analytic
on the open half plane Re(s) < 0. In addition, lim M_(t, s, v) = 1, as
Re(s) -> —oo, M+(t, s, v) and M_(t, s, v) are bounded and bounded away
from zero on their respective half-planes (Kemperman [3], p. 72). Before
using (2.3) to solve Equation (2.2) for the desired generating functions, we
shall define a convenient notation.

Let <f>(s) denote the Laplace transform of a regular, complex valued,
finite Borel measure on the real line, say,

where <f>(s) is defined for each complex number s = a-\-ir, (i = y/—l), for
which <f>{a) < oo. Then we let

= f°~ exp (sx)f*(dx).
J —OO

Considered as a function of s,
(i) [<£(s)]+ is continuous and bounded for Re(s) ^ 0 and is analytic

for Re(s) > 0.
(ii) [<f>(s)]~ is continuous and bounded for Re(s) £j 0 and is analytic

for Re(s) < 0, lim [<f>(s)]~ = 0 and Re (s) -+ — oo.
(iii) the decomposition of <f>(s) into the sum of two such functions is

unique.
We are now ready to prove

THEOREM 1. For P(t, s, v\W0) and Q(t, s, v\W0) as previously defined
and t, v chosen so \t<f>(0, Re(v))| < 1, we have

(2.4) P(t, s, v\W0) = M_(t, s, v)

(2.5) Q{t, s, v\W0) = M_(t, s, v) r ^ l ^ T ^ ^ r , Re (s) ^ 0.
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PROOF. Using (2.3) and the + and — operators we write (2.2) as follows
for Re(s) = 0:

Q(t, s, v\W0) r£(exp (-sJT,))-|+ r£(exp {-sW,))y P(t. s, v\W0)

M+(t,s,v) I M.(t,s,v) J L M_(t,s,v) J M_(t,s,v)
:p(—sW0))"|

+ r£(exp (—spr,,))"!"
"_(*, s, v) J ^ L M_(<,s,w) J

The theorem follows easily from Liouville's Theorem. For the special case
I we have

Q{t, s, v\0) = M+(t, s, v) and P(t, s, v\0) = 1-M_(t, s, v).

Wo — 0 we have

3. Infinite capacity storage systems, discrete time

Using Theorem 1 we may write the fundamental relation (2.1) in the
following form:

For many particular cases, the various terms in this expression are
easy to determine. To illustrate the methods, we shall give various examples.

Suppose that Xt, Yt and Tt are independently distributed with Tt=\,
Yt = M (positive constant) and Xt distributed according to a type III
distribution, say

Then

so that

dF(x) = - £ - x*-leri*dx, ft > 0, p > 0, x ^ 0.
" (P)

n (s-st)

where s< = «<(<) (i• = 1, 2, • • •, />) are the roots (by Rouches theorem) in
the half plane Re(s) ^ 0 of the equation

t/t* exp (—v-\-sM)

For Wo = 0 we have
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n (-«,)
n (*-««)

For the special case -p = 1 we have

G(t, s, v\0) =

4. Asymptotic results

The results of Spitzer [4] may be used to show that the storage level
Wn will converge in distribution to a random variable W^ if and only if the
series

converges; moreover, if a limiting distribution exists, it is independent
of Wo. Assuming the existence of a limiting distribution, we can find this
distribution from our previous results. From Abel's Theorem we have

lim £(exp (-uW)) = lim (1-/)G(*, u, 0\W0 = 0)
t

M_(t, 0,0)

Thus, in our preceding examples, we have the following results:
(i) When Xt is exponentially distributed, with parameter /i,

where s0 is the positive root of /i exp (sM) = s+fi. This yields results of Gani
and Prabhu [5].

For a gamma-type distribution, say Y, has the distribution
(&)*exp (—M)/k\, and arbitrary Xjt say with transform denoted by
^ ( M ) , we have

£ ((exp (uWJ) = lim ^ i ( u ) A ^

where the st axe the roots of (A—s)* = <A*9P1(s). As t tends to one, one of the
roots tends to zero. Suppose sx is the root; then
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Hence, for k = 1

E(exp(-uWJ) =
u—
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