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On (2,2)-decomposable genus 4 Jacobians
Nils Bruin and Avinash Kulkarni
Abstract. We consider the question of when a Jacobian of a curve of genus 2g admits a (2, 2)-
isogeny to a product of two polarized dimension g abelian varieties. We find that one of them must
be a Jacobian itself and, if the associated curve is hyperelliptic, so is the other.

For g = 2, this allows us to describe (2, 2)-decomposable genus 4 Jacobians in terms of Prym
varieties. We describe the locus of such genus 4 curves in terms of the geometry of the Igusa quartic
threefold. We also explain how our characterization relates to Prym varieties of unramified double
covers of plane quartic curves, and we describe this Prym map in terms of 6 and 7 points in P3 .

We also investigate which genus 4 Jacobians admit a 2-isogeny to the square of a genus 2 Jacobian
and give a full description of the hyperelliptic ones. While most of the families we find are of the
expected dimension 1, we also find a family of unexpectedly high dimension 2.

1 Introduction

The motivation for our study is to describe genus four curves X such that Jac(X)
is decomposable in a particular way. For a principally polarized abelian variety A
of dimension 2g, we say it is (n, n)-decomposable if it admits a polarized isogeny
ϕ∶ J1 × J2 → A, where J1 , J2 are principally polarized abelian varieties of dimension g
and such that the multiplication-by-n map on J1 × J2 factors through ϕ.

One can make (n, n)-decomposable abelian varieties by gluing J1 and J2 along
their n-torsion: suppose we have two principally polarized abelian varieties J1 , J2 of
dimension g, with an antisymplectic isomorphism τ∶ J1[n] → J2[n]. The graph Δ of
this isomorphism in J1 × J2, which is isomorphic to J1[n] and J2[n] as a group scheme,
is then a maximal isotropic subgroup of (J1 × J2)[n] with respect to the product
Weil pairing. Hence, A = (J1 × J2)/Δ admits a principal polarization, and A is (n, n)-
decomposable by construction.

For g = 1, the study of (n, n)-decomposable abelian surfaces has a long history,
for n = 2, 3, 4 going back to Jacobi, Legendre [22], Goursat [16], and Bolza [1]; mainly
in the language of reducing hyperelliptic integrals to elliptic ones. For more modern
treatment, see [20] for n = 3, [3] for n = 4, and [23] for n = 5, as well as [30] for an
approach that exploits that X has genus 2 and is therefore hyperelliptic.

For g > 1, the picture becomes significantly more complicated. Principally polar-
ized abelian varieties of dimension 4 are not generally Jacobians and, if they are,
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2 N. Bruin and A. Kulkarni
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Figure 1: Diagrams for Theorem 1.1.

not generally Jacobians of hyperelliptic curves. For n = 2, we obtain a description
that identifies the nature of decomposable Jacobians and how hyperellipticity affects
them. The proof uses the Torelli theorem (see Section 3.1). Throughout this article, we
consider base fields of characteristic not equal to 2.

Theorem 1.1 Let X be a curve of genus 2g such that Jac(X) is (2, 2)-decomposable into
factors J1 , J2. Then, possibly after interchanging J1 and J2, the curve X admits a double
cover X → C1 of a genus g curve such that J1 = Jac(C1) and J2 = Prym(X , C1).

If C1 is hyperelliptic then the hyperelliptic quotient is P1 and the tower X → C1 → P1

expresses X as a quartic cover.
(1) If X → P1 is not geometrically Galois with Galois closure X! → X then J2 ≃ Jac(C2)

for some genus g hyperelliptic curve C2 that fits Figure 1a.
(2) If X is hyperelliptic then X → P1 is Galois and there is an intermediate cover X → C2

as in Figure 1b, where C2 is a hyperelliptic curve of genus g and Jac(C2) ≃ J2.
(3) If X is not hyperelliptic and yet X → P1 is geometrically Galois then, possibly over

a quadratic base field extension, we have curves C2 , C3 as in Figure 1c such that
J2 ≃ Jac(C2) × Jac(C3).

Remark 1.2 Isogeny decompositions of abelian varieties are well-known to be related
to idempotents in their endomorphism algebras (see [19]). In the proof of the theorem,
an involution on Jac(X) is derived, which then by the Torelli-theorem induces an
involution on X. This places us in the well-studied framework of Prym varieties, going
back to the work of Wirtinger [33], Schotty–Jung [29], and Mumford [27].

Figure 1a is an instance of Donagi’s bigonal construction [10], which indeed pro-
vides an isogeny (of degree 1 in this case) between Prym(X , C1) and Prym(C2 , Q) =
Jac(C2). It fits in a family of Galois-theoretic constructions based on solvable groups,
with perhaps Recillas’s trigonal construction [28] as the most characteristic example.

There is a rich literature on isogeny decompositions of Jacobians of curves into
lower-dimensional abelian varieties (see, for instance, [5, 6, 11, 12, 18, 21]).

For g = 2, the curve C1 is automatically hyperelliptic. Case 1c would have C2 , C3 of
genus 1, so X would be bielliptic. We ignore that case here, since there are other meth-
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On (2,2)-decomposable genus 4 Jacobians 3

ods of designing genus 4 Jacobians that decompose into elliptic curves. Since 1 ≡ −1
(mod 2), we have that a symplectic (anti)isomorphism Jac(C1)[2] ≃ Δ ≃ Jac(C2)[2]
corresponds to two points a, b in the moduli space M2(Δ) of genus 2 curves with
a full 2-level structure Δ on their Jacobians (see Section 2.3). This moduli space has
a quartic model IΔ ⊂ P4, which we refer to as an Igusa quartic (see Section 2.5). Its
moduli interpretation can be explicitly realized by the fact that the intersection with
the tangent space Ka = TaI

Δ ∩ IΔ yields a Kummer quartic surface isomorphic to
KCa = Jac(Ca)/⟨−1⟩. As observed by Van der Geer [31], Jac(Cb) occurs as a Prym
variety of a double cover X → Ca precisely when b lies on the tangent space at a,
expressed as P(a, b) = 0 (see Section 2). As is mentioned in [31], this can be proved
over C using theta function identities in [13]. We give a synthetic proof that also
holds in positive characteristics other than 2 in Section 4. We summarize below the
conclusions concerning decomposable Jacobians of genus 4 curves.

Theorem 1.3 Let Ca , Cb be genus 2 curves corresponding to distinct points
a, b ∈ I = IΔ. Then, Jac(Cb) = Prym(X , D) for some quadratic twist D of Ca if and only
if P(a, b) = 0. Suppose this is the case.
(1) If P(b, a) ≠ 0 then X is not hyperelliptic and a singular quartic plane model of D is

TaI ∩ TbI ∩ I. The ramification locus of X → D is supported on the singularity of
this model.

(2) If P(b, a) = 0 then TaI ∩ TbI ∩ I is a double-counting conic passing through a, b
and five other points that are singularities of both Ka and Kb .

Remark 1.4 Propositions 4.4 and 4.7 give explicit constructions for Figure (1a) and
(1b) from points a, b ∈ I. We paraphrase them more informally here. In the case where
P(b, a) ≠ 0 then inside TbI ≃ P3, we have two objects: We have a model Da = TaI ∩
TbI ∩ I of Ca with a singularity at b and we have the tangent cone of Kb = TbI ∩ I at b,
with six lines on it corresponding to the tropes of Kb passing through b. Projection
from b yields a double cover Da → La , with La a line, as well as a conic Qb with six
marked points on it, both lying in P2. We get a degree 2 map Qb → La by sending a
point p ∈ Qb to TpQb ∩ La , i.e., the intersection of its tangent line to Qb with La . This
yields Ca → P1 and Cb → Qb → P1, which allows the construction of (1a), where the
twist chosen for Cb corresponds to the twist of X → Ca .

In the case where P(b, a) = 0, we have that TaI ∩ TbI is a trope to both
Ka = TaI ∩ I and Kb = TbI ∩ I and we see that L = TaI ∩ TbI ∩ I is a conic passing
through a, b, as well as five singularities that are common to both Ka and Kb . This
marks exactly the branch loci on a common genus 0 curve L to obtain a diagram of
the form 1b.

In Theorem 1.3 above, we identify Jac(Cb) as the Prym variety associated with a
double cover of a singular plane section D of Kb . This can be seen as a degeneration
of a more general construction: a sufficiently general plane section of Kb yields
a nonsingular plane quartic curve D and the double cover Jac(Cb) → Kb yields
an unramified double cover X → D such that Jac(Cb) = Prym(X , D). Verra [32]
identifies the fiber of the Prym map (i.e., the moduli space of unramified double covers
X → D such that Prym(X , D) = Jac(Cb)) as birational to a quotient of the space of
plane sections of Kb . Over a non-algebraically closed base field, not all such genus
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4 N. Bruin and A. Kulkarni

3 curves D allow a degree 4 model on Kb and the natural question arises of which
ones do.

The unramified double cover π∶ X → D implies there is a filtration of Galois
modules

0 ⊂ V1 ⊂ V5 ⊂ Jac(D)[2] with V5/V1 ≃ Jac(Cb)[2],

where V1 is the kernel of π∗∶ Jac(D) → Jac(X) and V5 is the subspace that pairs trivially
with V1. We prove the following in Section 5.

Proposition 1.5 Let C be a genus 2 curve and suppose that X → D is an unramified
double cover with D of genus 3 such that Jac(C) = Prym(X , D). Then
(1) D admits a model as a plane section of KC if and only if 0 → V1 → V5 →

Jac(C)[2] → 0 is split, so that Jac(C)[2] is a direct symplectic summand of
Jac(D)[2].

(2) D admits a model as a plane section of the projective dual K∨C if and only if D has
even and odd theta characteristics θe , θo over k such that V1 is generated by θe − θo .

In Section 6, we consider the descriptions of M2(2) and M3(2) as birational to
the configurations of 6 and 7 labeled points in P3, respectively, and find a surprising
relation in terms of the Prym map between these two via the expression of an Igusa
quartic as a symmetroid. We prove the following.

Proposition 1.6 Let p1 , . . . , p7 ∈ P3 be seven points in general position. Then, there is a
one-dimensional linear system of quadrics based at these points. There is a unique point
p0 that completes this to a Cayley octad, which determines a curve D of genus 3. Given
p0, the points p6 , p7 determine a pair of odd theta characteristics θ6 , θ7 on D. Let X → D
be the double cover determined by the two-torsion class θ6 − θ7.

Then, Prym(X , D) = Jac(C) for a genus 2 curve C that is a double cover of the
rational normal curve through p0 , . . . , p5, ramified over those points.

Finally, in Section 7, we consider genus 4 curves X such that Jac(X) is
(2, 2)-decomposable into Jac(Ca) × Jac(Ca), so that M2(Z) ⊂ End Jac(X). The key
observation is that an isomorphism Ca → Cb establishes an additional symplectic
isomorphism Jac(Ca)[2] ≃ Jac(Cb)[2] which, together with the gluing identification
Jac(Ca)[2] ≃ Δ ≃ Jac(Cb)[2], yields an automorphism σ ∈ Sp4(F2) ≃ S6 of Δ, which
acts linearly on IΔ . This leads us to consider the loci P(a, σ(a)) = 0, the geometry of
which depends on the conjugacy class of σ .

By Theorem 1.1, we see that for non-hyperelliptic X, we need a quadratic map
μ∶P1 → P1 that maps the branch locus of Cb → P1 onto itself. Not all degree 6 loci
admit such a map, but the relation P(a, σ(a)) = 0 allows us to describe and construct
them (see Example 7.1).

In Section 7.1, we consider the situation where X is hyperelliptic, i.e., P(a, σ(a)) =
P(σ(a), a) = 0. For hyperelliptic X , we need an automorphism μ∶P1 → P1 such that
the branch locus of Ca and its image overlap in five points. We classify all families
based on the conjugacy classes of σ they induce (see Table 1). Surprisingly, for one
conjugacy class of σ , we find that the second relation is automatically satisfied and we
find a two-parameter family, which is of higher dimension than one would expect (see
Example 7.3).
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On (2,2)-decomposable genus 4 Jacobians 5

Type of σ f (x) μ

(1, 2, 3)(6∗) x(x − 1)(x2 − x + 1)(x − u) μ(x) = 1
1−x

(1, 2, 3)(5, 6∗) (x3 − 1)(x2 + ux + u2) μ(x) = ζ3x

(1, 2)(3, 4)(6∗) (x4 + ux2 + v)(x − 1) μ(x) = −x

(1, 2, 3, 4)(6∗) (x4 − 1)(x − u) μ(x) = ζ4x

(3, 4, 5, 6∗) x(x − 1)(x − u)(x − u2)(x − u3) μ(x) = ux

(1, 2, 3, 4)(5, 6∗) x(x − 1)(x + 1)(x − u)(x − u−1
u+1) μ(x) = x−1

x+1

(1, 2, 3, 4, 5)(6∗) (x5 − 1)(x − u) μ(x) = ζ5x

(2, 3, 4, 5, 6∗) (x − 1)(x − u)(x − u2)(x − u3)(x − u4) μ(x) = ux

(1, 2, 3, 4, 5, 6∗) (x − 1)(x − u)(x − u2)(x − u3)(x − u4)(x − u5) μ(x) = ux

Table 1: Curves Ca ∶ y2 = f (x) and Cb ∶ y2 = f (μ(x)) leading to hyperelliptic X with
M2(Z) ⊂ End Jac(X).

2 Notation and preliminaries

We work over a field k, not necessarily algebraically closed, of characteristic distinct
from 2. By a curve, we normally mean a geometrically integral projective one-
dimensional variety defined over k. We do encounter singular models of curves,
mainly as singular plane curves. For these, we will have a nonsingular curve at hand,
together with a birational morphism to the singular model.

2.1 Polarity

Let X ⊂ Pn be a degree d hypersurface, described by the vanishing of a homogeneous
form F. We obtain a form of bidegree (d − 1, 1) on Pn × Pn by considering

PF(a, b) = ∇a F ⋅ b =
n
∑
i=0

∂ i F∣a b i .

We have PF(a, b) = 0 precisely when b lies in the tangent space to X at a. By fixing b,
we get a degree (d − 1) form pb F = ∇F ⋅ b. This and the iterates of the operator define
the polar hypersurfaces of X at b,

p( j)
b ,F = pb ○ ⋅ ⋅ ⋅ ○ pb

���������������������������������������������������������
j times

F .

The degree of p( j)
b ,F is d − j and one can check that p(d−1)

b ,F is the equation of the tangent
space of X at b.
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6 N. Bruin and A. Kulkarni

2.2 Prym varieties

Definition 2.1 (see, for instance, [27, Section 3]) Given a double cover of curves
π∶ X → C, we write Prym(X , C) for the connected component containing the identity
in the kernel of π∗∶ Jac(X) → Jac(C).

Let g be the genus of C and let 2r be the degree of the branch locus of π.
By Riemann–Hurwitz, we have that the genus of X is 2g − 1 + r and hence that
dim Prym(X , C) = g − 1 + r. When r = 0, 1, the principal polarization on Jac(X)
restricts to twice a principal polarization on Prym(X , C) (see [27, Corollary 2]).

When π∶ X → C is unramified, the map π∗∶ Jac(C) → Jac(X) has a kernel of order
2. When π∶ X → C is ramified, the map π∗∶ Jac(C) → Jac(X) is injective. In either case,
Prym(X , C) ∩ π∗ Jac(C) ≃ Prym(X , C)[2].

2.3 2-level structures

We work over a field k of characteristic different from 2. Let C be a curve of genus
2 over k and let Jac(C)[2] be its Jacobian. Then, Δ = Jac(C)[2] is a finite separated
group scheme of degree 16 and exponent 2. It also comes equipped with a Weil
pairing Δ × Δ → μ2, which is non-degenerate and alternating. Here, we write μ2 for the
2-torsion subgroup scheme of the multiplicative group schemeGm . Over kalg, we have
that Δ is isomorphic to the constant group scheme (Z/2Z)2g . Colloquially, by a full
2-level structure, one would mean a choice of symplectic basis, i.e., a specific choice
of an isomorphism (Z/2Z)2g ≃ Δ as symplectic modules.

We generalize this notion so that we can apply it to non-algebraically closed
base fields. Given Δ over k as described, a full 2-level structure Δ on Jac(C′) is an
isomorphism Δ → Jac(C′)[2], compatible with the pairings.

If J1 = Jac(C1) and J2 = Jac(C2) both have the same full 2-level structure then the
(anti)diagonal embedding Δ ⊂ (J1 × J2)[2] has the property that the product pairing
on (J1 × J2)[2] restricts to the trivial pairing on Δ. Hence, Δ is a maximal isotropic
subgroup. It then follows by [25, Proposition 16.8] that A = (J1 × J2)/Δ admits a
principal polarization. The main motivating question for this article is to determine
when A is isomorphic to a Jacobian of a curve X of genus 4 as a principally polarized
abelian variety. We denote this by A ≃ Jac(X).

2.4 Genus 2 curves and their quartic surfaces

In this section, we review the theory of genus 2 curves and their Kummer surfaces.
Let us first fix some terminology. We refer to a quartic surface of degree four in P3

with 16 nodal singularities as a Kummer quartic surface. For such a surface, there are
also 16 planes called tropes that intersect the quartic in a conic with multiplicity 2. Each
singularity lies on six tropes and each trope passes through six singularities, forming a
classic (16)6 Kummer configuration. The projective dual of a Kummer quartic surface
is again a Kummer quartic surface.

For a curve C of genus 2, both Pic0(C/k)/⟨−1⟩ and Pic1(C/k)/⟨ι⟩ admit models
as quartic Kummer surfaces that are projectively dual to each other. We review this
construction below, starting from the latter since its equation arises most readily from
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On (2,2)-decomposable genus 4 Jacobians 7

the equation for C. In Proposition 2.4, we give a description of the Gauss map between
the two. The ideas are largely classical (see, for instance, [17], particularly the chapters
related to Weddle’s surface) and to some degree described in [7, Chapters 4 and 5]. We
include a relatively self-contained account here for the convenience of the reader.

We fix an affine model

C∶ y2 = f (x) = f6x6 + ⋅ ⋅ ⋅ + f0 , where f ∈ k[x] is square-free of degree 5 or 6.

The pull-back of x = ∞ on the x-line to C yields a degree 2 canonical divisor κ.
The divisor 3κ is very ample and provides a degree 6 embedding C̃ in P4 with
coordinates (1 ∶ x ∶ x2 ∶ x3 ∶ y) = (x0 ∶ x1 ∶ x2 ∶ x3 ∶ y3). The image is the base locus of
a linear system Q̃ spanned by the quadrics

Q̃1 = x2
1 − x0x2 ,

Q̃2 = x0x3 − x1x2 ,
Q̃3 = x2

2 − x1x3 ,
Q̃4 = f0x2

0 + f1x0x1 + f2x2
1 + f3x1x2 + f4x2

2 + f5x2x3 + f6x2
3 − y2

3 .

The restriction to y3 = 0 yields a linear system Q = ⟨Q1 , Q2 , Q3 , Q4⟩ of quadrics
in P3. The quadrics Q1 , Q2 , Q3 define a rational normal curve L. Projection onto
(x0 ∶ ⋅ ⋅ ⋅ ∶ x3) expresses C̃ as a double cover of L, branched where Q4 = 0. It is a
classical fact that the locus of singular quadrics in Q yields a Kummer quartic surface

K∨C ∶G = det(η1Q1 + η2Q2 + η3Q3 + η4Q4) = 0.

This particular surface has a distinguished trope η4 = 0.
We consider its ambient space as dual to P3, with dual coordinates (ξ1 ∶ ⋅ ⋅ ⋅ ∶ ξ4).

Under the Gauss map γ∶ (P3)∨ ⇢ P3 defined by p ↦ ∇p(G), we have that
KC = γ(K∨C) is again a quartic Kummer surface with 16 nodal singularities. The
distinguished trope on K∨C corresponds to the distinguished singularity (0 ∶ 0 ∶ 0 ∶ 1)
on KC . This surface is isomorphic to the Kummer surface Jac(C)/⟨−1⟩.

Note that by Riemann–Roch, any degree 3 divisor class d ∈ Pic3(C) is represented
by a one-dimensional linear system of effective divisors on C. The hyperelliptic invo-
lution ι∶C → C corresponding to (x , y) ↦ (x ,−y) induces an involution d ↦ 3κ − d

on Pic3(C).

Proposition 2.2 With the notation above, we have a Galois-covariant bijection

Pic3(C/ksep)/⟨ι⟩ → K∨C(ksep); {D, ιD} ↦ QD .

Under this bijection, the plane section with η4 = 0 corresponds to the image of divisor
classes represented by p + κ, with p a degree 1 point on C.

Proof Any degree 3 divisor class d admits an effective divisor D with separated sup-
port. This support spans a plane VD . Furthermore, since D + ιD is linearly equivalent
to 3κ, we see that VD ∪ VιD spans a hyperplane that intersects C̃ in D + ιD.

The linear system Q̃ restricted to VD has a base locus of degree at least 3 and
therefore restricts to a system of dimension at most 2 on VD . Hence, there is a quadric
QD ∈ Q̃ that contains VD . The hyperelliptic involution has trivial action on Q̃, so the
plane VιD is also contained in QD . The hyperplane associated with the divisor D + ιD
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8 N. Bruin and A. Kulkarni

intersects QD in a quadric of rank at most 2, so QD itself is of rank at most 4, and
hence singular.

Furthermore, Q̃ contains no quadrics of rank less than 3, since that would imply
that C̃ lies in the union of two hyperplanes, which it does not.

We have that

det(η1Q̃1 + η2Q̃2 + η3Q̃3 + η4Q̃4) = −η4G .

We show that VD must lie on a quadric Q̃ = QD for which G = 0. Suppose it does not.
Then, η4 = 0, so Q̃ is a cone over a quadric Q ∈ ⟨Q1 , Q2 , Q3⟩. The rational normal
curve L is consequently contained in Q. If Q is of rank 4, then the two systems of lines
on Q intersect L with multiplicity 2 and 1. But then the intersections VD ∩ C , VιD ∩ C
are pull-backs of divisors on L and they have degree 4 and 2, respectively. But this
contradicts that both D and ιD of degree 3 are contained in these intersections,
respectively.

The intersection of K∨C with η4 = 0 as a locus in Q̃ consists of quadrics of rank 3,
with the singular locus intersecting C̃. This corresponds to divisors of the form
D = P + κ, for which the complete linear system has a base point P. The plane VD
intersects in P + ιP + κ, and VD = VιD : in this case, D and ιD can be distinguished by
the base point.

Indeed, a quadric Q in P4 of rank 4 has two rulings of planes on it, adding up to the
hyperplane sections. These rulings cut out one-dimensional linear systems of divisors
on C̃, adding up to 3κ.

For a quadric of rank 3, there is just one ruling. As we saw above, for those with
η4 = 0, the planes actually cut out a one-dimensional linear system of degree 4 divisors
with a base locus of degree 2: choosing one of the two base points gives us a linear
system of degree 3 divisors.

The argument above indeed establishes a bijection {D, ιD} ↦ QD which is easily
checked to be Galois-covariant. ∎

The bijection Pic1(C/ksep) → Pic3(C/ksep) induced by d ↦ d + κ yields the
following.

Corollary 2.3 We have Pic1(C/ksep)/⟨ι⟩ ≃ K∨C(ksep) and the image of the natural
embedding C → Pic1(C), consisting of the degree 1 classes that admit an effective
representative, lies in η4 = 0.

For a degree 1 class d ∈ Pic1(C), we obtain an Abel–Jacobi map

jd∶C → Jac(C); p ↦ p − d.

When we compose this with Jac(C) → KC , then we obtain a map that only depends
on the class d̄ modulo ι. denoted by

ȷ̄d̄∶C → KC ; p ↦ p − d.

It is well-known that the image of jd gives a theta divisor in Jac(C). Over a non-
algebraically closed field k, there may be no such divisors over k, but there is a divisor
2ΘC over k, for instance, from the map p ↦ 2p − κ. We have ∣2ΘC ∣ = P3 and this linear
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On (2,2)-decomposable genus 4 Jacobians 9

system yields the map Jac(C) → KC . Since the inverse image of ȷ̄d̄ is jd(C) + jιd(C),
which is linearly equivalent to 2ΘC , we see that ȷ̄d̄(C) is a plane section Hd̄ ∩KC .

We see that two distinct points p, q ∈ C have the same image under C → ȷ̄d̄(C)
if [p] − d = d − [q], i.e., if 2d = [p + q]. Hence, if 2d ≠ κ then the map is birational
and the fiber over the singular point consists of the effective divisor representing 2d.
If 2d = κ then the map is two-to-one.

By Corollary 2.3, we can identify d̄ with a point on K∨C . This point is nonsingular
unless 2d = κ. For nonsingular d̄, projective duality associates to d̄ a tangent plane
Ta(KC) with a = γ(d̄). The following well-known result (see [32, pp. 435–436] or [8])
establishes that this plane agrees with Hd̄. We include a proof here that avoids direct
use of theta function identities.

Proposition 2.4 Let d̄ ∈ K∨C be a nonsingular point. Then,

Ta(KC) ∩KC = ȷ̄d̄(C) for a = γ(d̄).

Proof Note that the result is stable under base field extension, so it is sufficient to
check over algebraically closed base fields. As discussed above, the map C → ȷ̄d̄(C)
has a singular image and the two points p, q mapping to the singularity satisfy
2d = [p + q]. Let a = [p] − d and −a = d − [q] be the two points on jd(C) that map to
the singularity. Then, a = ā is the singularity of ȷd̄(C) and hence the image is indeed
Ta(KC) ∩KC .

This means exactly that [p] = d + a and [q] = d − a, i.e., that d + a and d − a admit
effective representatives. By Corollary 2.3, this means that

η4(d + a) = η4(d − a) = 0.(2.1)

The pair {a,−a}, and therefore a, is fully determined by this property.
Over an algebraically closed base field, C has a rational Weierstrass point θ and

we can change coordinates so that f6 = 0, f5 = 1, and x(θ) = ∞. Then, K∨C has a
node at (1 ∶ 0 ∶ 0 ∶ 0), and the map d̄ ↦ d − θ defines an isomorphism K∨C → KC
given by (ξ1 ∶ ξ2 ∶ ξ3 ∶ ξ4) = (η4 ∶ −η3 ∶ η2 ∶ −η1). Let b = d − [θ]. Then, (2.1) becomes
ξ1(b + a) = ξ1(b − a) = 0. Let us write b = b̄.

The group law on Jac(C) yields biquadratic forms B i j(a, b) (see [14]), character-
ized by the property that for a, b ∈ Jac(C) and a = ā and b = b̄, we have

B i j(a, b) = ξ i(b + a)ξ j(b − a) + ξ i(b − a)ξ j(b + a).

These forms correspond to theta function relations upon identification of the coordi-
nates ξ i with the appropriate theta functions, but the relations can be checked directly
algebraically.

Now, we take a generic point d̄ on K∨C of the generic curve over Q( f0 , f1 , f2 , f3 , f4)
and take b = d − θ ∈ KC via the isomorphism and a = γ(d̄). Computation reveals that
B1 j(a, b) = B i1(a, b) = 0 for i , j = 1, . . . , 4, which implies that (2.1) holds. See [4] for a
transcript of such a check using a computer algebra system, but a very persistent reader
could perform these computations by hand. It follows that for a = γ(d̄), we indeed get
the desired plane section.
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In fact, careful consideration shows this result holds over Z[ 1
2 ], so that the general

result follows by specialization for any curve over a field of characteristic other
than 2. ∎
Corollary 2.5 If K is a Kummer quartic surface over a field k with a nonsingular
k-rational point then K = KC for some genus 2 curve C over k.

Proof First, suppose that a ∈ K(k) does not lie on a trope. Then, Proposition 2.4
shows that Ta(K) ∩K gives a singular model for C, defined over the base field.
Otherwise, Ta(K) ∩K gives a double-counting conic. But this conic has a rational
point a, so it is isomorphic to P1. The six nodes the conic passes through mark a locus
B and we get a model for C by taking a double cover of P1 branched over B. ∎

2.5 Castelnuovo–Igusa–Richmond quartic threefolds

The Castelnuovo–Igusa–Richmond quartic1 or Igusa quartic is a quartic threefold in P5

defined by

I4∶
5
∑
j=0

x j = 0,
⎛
⎝

5
∑
j=0

x2
j
⎞
⎠

2

− 4
5
∑
j=0

x4
j = 0.

Note that the first equation is linear, so I4 is also a quartic hypersurface in P4.
The singular locus of I4 consists of 15 lines corresponding to the different ways of

splitting a set of six into three pairs, called synthemes. These form an orbit under the
permutation action of S6 on the coordinates. One representative is cut out on I4 by

x0 − x1 = x2 − x3 = x4 − x5 = 0.

Another special locus, which we denote by E, consists of the orbit under S6 of the
hyperplane section x0 + x1 + x2 = 0. Note that x3 + x4 + x5 = 0 cuts out the same
hyperplane section, so there are ten components to E.

The open part I4/E is isomorphic to the moduli space M2(Δ) of genus 2 curves
with full 2-level structure Δ = (Z/2Z)4 on their Jacobians. This moduli interpretation
is surprisingly concrete and, as we will describe below, applies to any quartic threefold
I that is isomorphic to I4 over the algebraic closure of the base field k. For a point
a ∈ I/E, the intersection TaI ∩ I yields a quartic surface with 16 singularities: 15 from
the intersection with the singular locus of I and one distinguished singularity from
the point of tangency a. This is a Kummer quartic surface Ka . Indeed, it is no surprise
we recover only Ka and not a genus 2 curve or its Jacobian directly: 2-level structure
is invariant under quadratic twists.

The space M2(Δ) has automorphism group Sp4(F2) ≃ S6. Indeed, I has an action
of S6 via permutation on the coordinates x0 , . . . , x5.

Suppose we have a curve Ca such that Ka = Jac(Ca)/⟨−1⟩. Then, Sp4(F2) acts
through S6 on the Weierstrass points of Ca as well. The singularities on Ka are the
images of Jac(Ca)[2], so the 15 singularities can be labeled by pairs of Weierstrass
points of Ca .

1See [9, p. 545] for a discussion on the naming.
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Remark 2.6 It follows that the permutation action of Sp4(F2) action on the
coordinates, which corresponds to labeling the singularities with synthemes, is not
conjugate to the permutation action of Sp4(F2) on the Weierstrass points of Ca . The
outer automorphisms of S6 exchange the two representations.

Remark 2.7 For nonsingular points in E that lie in the component x0 + x1 + x2 = 0,
the tangent space is actually just x0 + x1 + x2 = 0, which intersects I in a double-
counting quadric. These points correspond to abelian surfaces that are products of
elliptic curves (see [31]).

The possible 2-level structures Δ for principally polarized abelian surfaces over k
are parameterized by the Galois cohomology set H1(k, Sp4(F2)). Since the automor-
phism group of I4 comes from a faithful representation Sp4(F2) → GL6(k), we have
that the corresponding twist IΔ also admits a model inside a hyperplane in P5, with
again a singular locus consisting of 15 lines. It follows that the moduli interpretation
of IΔ can be obtained in exactly the same way.

Definition 2.8 Let I ⊂ P4 be a quartic threefold over k that is isomorphic to I4
over ksep. We say that I is an Igusa quartic. We write E ⊂ I for the locus that gets
mapped to the locusE ⊂ I4 under an isomorphism. This is the locus where the tangent
plane fails to cut out a normal quartic surface.

The projective dual of I4 is the Segre cubic threefold (see [9, Section 9.4.4]) which
in P5 can be described as

S3∶
5
∑
i=0

y i =
5
∑
i=0

y3
i = 0.

Over an algebraically closed base field, it can be characterized as the unique cubic
threefold in P4 with ten nodal singularities. For each twist IΔ , the projective dual is
again a Segre cubic SΔ .

3 Galois-theoretic characterization of curves with
(2, 2)-decomposable Jacobian

Lemma 3.1 Let k be a field of characteristic different from 2. Suppose A1 , A2 are
principally polarized abelian varieties of dimension g and that A1[2] ≃ A2[2] as
Sp2g(F2)-modules, with Δ ⊂ A1 × A2 as graph. Suppose that (A1 × A2)/Δ ≃ Jac(X) for
a genus 2g curve X, as polarized abelian varieties. Then
(a) If X is hyperelliptic then X has two involutions τ1 , τ2 and Jac(X/τ1) ≃ A1 and

Jac(X/τ2) ≃ A2.
(b) If X is not hyperelliptic, then X has an involution τ and Jac(X/τ) ≃ A1 (up to

relabeling).
In either case, we have that Prym(X , X/τ) ≃ A2.

Proof First note that A1 × A2 has the involutions [1]A1 × [−1]A2 and [−1]A1 × [1]A2 ,
which respect the polarization and restrict to the identity on Δ, so these induce invo-
lutions on Jac(X) as well. The Torelli theorem (see, for instance, [26, Theorem 12.1])
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12 N. Bruin and A. Kulkarni

says that when X is hyperelliptic, both of these induce involutions on X, and on
non-hyperelliptic X, exactly one of these induces an involution on X.

We check that if [1]A1 × [−1]A2 induces an involution τ on X, then Jac(X/τ) ≃ A1.
Let C ∶= X/τ, and let π∶ X → C denote the quotient morphism. It is well-known that
π∗π∗ = (1 + τ) ∈ End(Jac(X)). From this and surjectivity of π∗, we have

(Jac(X)(τ=1))○ = π∗ Jac(C),

where ○ denotes taking the connected component of the identity. Let ψ∶ A1 ×
A2 → Jac(X) denote the isogeny with kernel Δ, and notice that the intersection
Δ ∩ (A1 × {0}) is trivial. In particular, the restriction ψ∶ A1 × {0} → Jac(X) is an
injection whose image is both connected and fixed by τ. Thus, dim Jac(C) =
dim(A1) = g, so it follows by Riemann–Hurwitz that π is ramified (at two points).
In particular, π∗ is injective, so A1 ≃ Jac(X/τ).

Let us now prove that Prym(X , X/τ) ≃ A2. The restriction ψ∶ {0} × A2 → Jac(X)
is an injection and τ acts by [−1] on the image. In particular, it is contained in
ker(1 + τ)○ = Prym(X , X/τ). Comparing dimensions gives the result. ∎

Remark 3.2 The converse also holds. Namely, if X admits an involution τ with
two fixed points, then A2 ∶= Prym(X , X/τ) is principally polarized, and putting
A1 ∶= Jac(X/τ), there are isomorphisms A1[2] ≃ A2[2] and (A1 × A2)/Δ ≃ Jac(X).
This result is due to Mumford [27].

3.1 Proof of Theorem 1.1

The assumptions match those of Lemma 3.1, which gives us that J1 = Jac(C1) and
J2 = Prym(X , C1). It remains to establish the additional characterizations of J2 in case
C1 is hyperelliptic.

We start with case (2). Suppose that X is hyperelliptic, say with hyperelliptic
involution ι. Then, X has three involutions, say τ, τι, ι, with C1 = X/τ and C2 = X/(τι)
of genus g, the hyperelliptic quotient X/ι, and the degree four cover X → X/⟨τ, ι⟩
that factors through each of the other three. This yields the diamond Figure 1b.
Furthermore, since X is a hyperelliptic curve of even genus, we have that X/ι ≃ P1, and
therefore X/⟨τ, ι⟩ ≃ P1 as well. The maps C1 → P1 and C2 → P1 give an identification of
2g + 1 of the 2g + 2 Weierstrass points of each of C1 , C2. This induces an isomorphism
λ∶ Jac(C1)[2] → Jac(C2)[2]. Writing ϕ∶ X → C1 and ψ∶ X → C2, it remains to check
that the sum of the pull-back maps ϕ∗ + ψ∗∶ Jac(C1) × Jac(C2) → Jac(X) is an isogeny,
with kernel equal to the graph of λ. This check is straightforward.

For cases (1) and (3), we consider X not hyperelliptic. We write τ for the involution
of X over C1. Let C1 → L be the hyperelliptic cover. We consider the tower of double
covers X → C1 → L. From Riemann–Hurwitz, we see that the ramification locus of X
over C1 is of degree 2.

We classify the possibilities for the geometric Galois group of the quartic cover
X → L: it is one of V4, C4, or D4, where the last one occurs exactly when X → L is
not Galois itself. We will see that V4 corresponds to case (3) and D4 corresponds to
case (1), while C4 cannot actually occur.
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On (2,2)-decomposable genus 4 Jacobians 13

First suppose that Autksep(X , L) = V4. Then, possibly over a quadratic base field
extension, X → L admits three subcovers, as pictured in Figure 1c. Since X is assumed
to be non-hyperelliptic, the genera of all three curves C1 , C2 , C3 are positive. It is
straightforward to check that Prym(X , C1) ≃ Jac(C2) × Jac(C3). It remains to verify
that L ≃ P1. We have that g(C1) = g(C2) + g(C3), so at least one genus is even. If
C2 , C3 are both defined over k then this implies L is covered by an even genus
hyperelliptic curve and hence L ≃ P1. If C2 , C3 are not defined over k, then they are
quadratic conjugate and therefore g(C2) = g(C3). It follows that g(C1) is even, so we
obtain the same result.

Now suppose, for the purpose of contradiction, that Autksep(X , L) = C4. In that
case, C1 → L is the unique quadratic subcover. Let us write R ∈ Div(C1) for the branch
locus of X over C1. By Riemann–Hurwitz, R is an effective, separated, degree 2 divisor
on C1. Let ι be the hyperelliptic involution on C1. We must have ιR = R.

If R is simply the pull-back of a degree 1 divisor on L, we would have
Autksep(X , L) ≃ V4, so R is the sum of two distinct branch points of C1/L. In this case,
R is not equivalent to the fiber class of C1 → P1 as g(C1) ≥ 1. We have that X is obtained
by adjoining the square root of a function f with divisor div( f ) = R − 2α, where α is
a divisor of degree 1, but not necessarily an effective one. Under our assumptions,
adjoining the square roots of f or ι( f ) yields the same result, so ι( f ) f is a square. Its
divisor is 2R − 2(α + ια), so we would need that R − (α + ια) is principal. However,
note that α + ια lies in the fiber class, so R − (α + ια) is not a principal divisor. Hence,
we see that a cyclic order 4 Galois group cannot occur.

We are left with the remaining situation where X → L is not Galois. Since it is a
tower of quadratic extensions, this means its Galois closure X! is of degree 8 with a
dihedral Galois group. We name the curves and maps as follows.

X!

X C2

C1 Q

L

ϕ ψ

π z

x1 x2

Under the Galois correspondence, X and C2 correspond to the conjugacy classes of
non-normal order 2 subgroups. Tracking ramification yields that g(C2) = g(C1) and
that Q , L are of genus 0. Since L has a genus 0 double cover, we must have L ≃ P1.

In order to check that Jac(X) indeed decomposes as expected, we observe that the
covers x1∶C1 → L and x2 ○ z∶C2 → L give an identification between the Weierstrass
points of C1 and C2 and therefore induce an isomorphism λ∶ Jac(C1)[2] → Jac(C2)[2].

Through pull-back and push-forward of divisor classes, we obtain a morphism

π∗ + ϕ∗ψ∗∶ Jac(C1) × Jac(C2) → Jac(X).

Downloaded from https://www.cambridge.org/core. 12 Oct 2025 at 17:33:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 N. Bruin and A. Kulkarni

We claim this is a polarized isogeny whose kernel is the graph of λ and whose dual,
composed with self-duality of domain and codomain, is

(π∗ , ψ∗ϕ∗)∶ Jac(X) → Jac(C1) × Jac(C2).

First, we check that the composition μ = (π∗ , ψ∗ϕ∗) ○ (π∗ + ϕ∗ψ∗) is multiplication-
by-two. Indeed, it is straightforward to check that π∗ϕ∗ψ∗ = x∗1 (x2)∗z∗. That map
factors through Pic0(Q) = Pic0(L) = 0, so it is constant 0. Similarly, we have
ψ∗ϕ∗π∗ = z∗x∗2 (x1)∗ = 0. Hence, we see μ = (π∗π∗ , ψ∗ϕ∗ϕ∗ψ∗) = (2, 2).

We now determine the kernel of π∗ + ϕ∗ψ∗. Note that ker(π∗ + ϕ∗ψ∗) ⊆
Jac(C1)[2] × Jac(C2)[2]. It is easy to see that if P is a Weierstrass point of C2, then
ϕ∗ψ∗(P) is the fiber over the corresponding Weierstrass point of C1 (considered as
a divisor of degree 2). In particular, ϕ∗ψ∗(Jac(C2)[2]) = π∗(Jac(C1)[2]), and the
kernel is indeed the graph of λ. This completes the proof of Theorem 1.1.
Remark 3.3 Geometrically, the data in Figure 1b are determined by a degree 2g + 1
locus on P1 together with two points a, b ∈ P1. Then, C1 , C2 are the double covers of
P1 ramified over B ∪ {a} and B ∪ {b}, respectively, and Q ≃ P1 is the double cover of
P1 ramified over {a, b}.

If we choose a coordinate on P1 such that a = ∞, we get models

C1∶y2
1 = d1 f (x),

C2∶y2
2 = d2 (x − b) f (x),

Q∶y2
0 = d1d2 (x − b),

X∶y2
1 = d1 f ( 1

d1d2
y2

0 + b),

where f is a square-free polynomial of degree 2g + 1 and b ∈ k with f (b) ≠ 0. The
factors d1 , d2 ∈ k× represent classes in k×/k×2.
Remark 3.4 The data in Figure 1a are determined by a genus g hyperelliptic curve C1
together with a degree 1 divisor α on C1 such that 2α admits an effective representative.
If 2α is hyperelliptic, we are back to Figure 1b, where X is hyperelliptic.

Alternatively, we can also specify a hyperelliptic curve C2 as a double cover of a
genus 0 curve Q, together with a double cover Q → P1 such that the image of the
branch locus of C2 → Q remains separated. This latter description shows that the
relevant moduli space is actually rational.
Remark 3.5 By tracing ramification in Figure 1a, we find that in the general case,
the genera of Y , Z , X! are g + 1, 2g + 1, 4g + 1, respectively. These genera drop with
overlap between the branch locus of C2 → Q and the ramification locus of Q → P1.
Equivalently, this corresponds with an overlap between the branch locus of X → C1
and the Weierstrass points of C1.

Let us take Q ≃ P1 with affine coordinate x and double cover to P1 given by x = u2.
For C2∶ v2 = h(u) and f (x) = resu(h(u), u2 − x), the resultant taken with respect to
u, we obtain a model C1∶ y2 = f (x).

If f is of degree 2g + 2 and f (0) ≠ 0, then we find that Y ∶w2 = x f (x) is of genus
g + 1. If C2 → P1 is ramified over x = ∞ then f is of degree 2g + 1; in this case, Y admits
a model of the same form, but now has genus g.
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If f (x) = x f̃ (x) then we find Y ∶w2 = f̃ (x) has genus g − 1. Note that in the latter
case, the degree 2 effective divisor on C2 supported at x = 0,∞ is twice the degree 1
divisor α. This means that Jac(C1) has a rational 4-torsion point.

4 The Prym locus on Igusa quartics

Let I be an Igusa quartic. For a point a ∈ I/E, the moduli interpretation, in the form
of a Kummer surface, can be obtained by Ka = TaI ∩ I. As is observed in [31], the fact
that Ka occurs as a subvariety of I suggests that Ka ⊂ I has a moduli interpretation as
well. This is indeed the case: for a point b ∈ Ka ⊂ I, we have that Jac(Cb) is the Prym
variety of a double cover Xa ,b of Ca , branched over the degree-2 divisor marked by the
point b on Ka . In [31], this is proved using a theta function identity, verified in [13].

The relevance for us is that a pair of points a, b ∈ I determines a pair of
abelian surfaces Jac(Ca), Jac(Cb) with compatible 2-level structure and hence an
isomorphism between the 2-torsion subgroups with graph, say Δ. Hence, there is a
(2, 2)-decomposable abelian fourfold (Jac(Ca) × Jac(Cb))/Δ. By Theorem 1.1, this
is exactly a Jacobian if one is a Prym variety for a cover of the other curve. In
the notation of Section 2.1 with F the quartic form in P4 defining I, this holds if
P(a, b) = PF(a, b) = 0.

We give a synthetic construction for Xa ,b given such a, b. This yields the result
directly in arbitrary characteristics other than 2. It also provides insight into possible
obstructions to realizing this moduli interpretation over algebraically non-closed base
fields.

Let a, b ∈ Iwith P(a, b) = 0. Then, b lies on the tangent space of I at a and hence lies
onKa = I ∩ TaI. The tangent plane toKa at b yields a point on the projective dualK∨a ,
which by Corollary 2.3 represents Pic1(Ca)/⟨ι⟩, where ι is the involution on divisor
classes induced by the hyperelliptic involution on Ca . By adjusting the quadratic twist
of Ca that we consider, we can make sure that b lifts to a pair of degree 1 divisor classes
on Ca , say d and ι(d).

By Proposition 2.4, the images of the Abel–Jacobi maps jd(Ca), jιd(Ca) ⊂ Jac(Ca)
map to the tangent plane section Da = TbKa ∩Ka , which provides a singular quartic
plane model of Ca . Using that both Ka and Kb occur as hyperplane sections of I, we
see that

Da = TaI ∩ TbI ∩ I = Ka ∩Kb

occurs as a section of Kb by a plane passing through b. This configuration allows us
to explicitly construct a diagram as in Figure 1a and Theorem 1.1. In what follows, we
use the notation from Section 2.1.
Proposition 4.1 Let Kb ⊂ P3 be a quartic Kummer surface with distinguished node b.
Denote the quartic form defining Kb by G.
(1) p(2)b ,G = 0 describes the tangent cone of Kb at b.
(2) The locus p(1)b ,G = 0 intersected with Kb consists of the six conics cut out by the six

tropes on Kb passing through b.
(3) The locus p(1)b ,G = p(2)b ,G = 0 consists of six lines: each line is the locus where a relevant

trope through b is tangent to the cone.
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(4) Under the projection from b, the image of p(2)b ,G = 0 is a plane conic Qb and the
image of p(1)b ,G = p(2)b ,G = 0 is a degree 6 locus B such that, for any curve Cb with
Kb ≃ Jac(Cb)/⟨−1⟩, we have that Cb is a double cover of Qb branched at B. (The
curve Cb is unique up to quadratic twists.)

Proof

(1) This is immediate from the definition of the second polar.
(2) Recall that the intersection of p(1)b ,G = 0 with Kb consists of points a, where TaKb

contains b. Since a trope T intersects Kb in a double-counting conic, we see that
T is contained in the tangent space of any point a ∈ T ∩Kb . Hence, for any trope
T passing through b, this conic lies in p(1)b ,G = 0. There are six such tropes. The
intersection itself is of degree 4 ⋅ 3, so these six conics make up the entire locus.

(3) Each trope T passing through b is tangent to the cone at a ray through b. That
ray is the tangent line at b to the conic T ∩Kb , so it is part of the indicated locus.
Degree considerations show there are no other components.

(4) The projective dual K∨b is again a quartic Kummer surface. Under duality, tropes
correspond to nodes on the dual. Thus, the trope of K∨b dual to the node b passes
through the six nodes dual to the tropes passing through b. Under duality, b
corresponds to Qb together with a degree 6 locus B.

Over an algebraically closed field, we have that Kb = Jac(Cb)/⟨−1⟩ for some
curve Cb of genus 2. For the dual, we have K∨b = Pic1(Cb)/⟨ι⟩, where ι is the
morphism that hyperelliptic involution induces on divisor classes, and Qb ⊂ Kb
is the image of the embedding Cb ⊂ Pic1(Cb), where the nodes are the images of
the Weierstrass points, i.e., the branch points of the hyperelliptic cover Cb → Qb .
This proves the statement. ∎

Remark 4.2 Proposition 4.1(3) yields a very direct way of realizing the moduli
interpretation in the form of a degree 6 locus on a curve of genus 0. If I is defined
by F = 0 and b is a point on I then p(1)b ,F = p(2)b ,F = p(3)b ,F = 0 projected away from b yields
the intersection of a plane cubic and conic.

Remark 4.3 From this construction, one can also see in a fairly elementary way that
the isomorphism class of the locus B only depends on the twist I: the 15 singularities
on the tangent planes arise from the 15 lines that make up the singular locus of I. The
six tropes through the distinguished node correspond to the odd theta characteristics
of Cb . We know that the divisor classes of order 2 on Cb can be expressed uniquely
as a difference of two distinct odd theta characteristics. Hence, we can label each odd
theta characteristic with the cardinality 5 set of two-torsion classes that have the given
characteristic in their representation. But that means we can label them with 5-tuples
of components of the singular locus of I, which is discrete data. Since I/E is connected,
we see that this labeling must be constant.

Proposition 4.4 Suppose P(a, b) = 0 and P(b, a) ≠ 0, and that a, b ∉ E.

(1) The curve model Da = Ta(I) ∩ Tb(I) ∩ I is a quartic plane section of Ka with a
singularity at b. We have that Ka ≃ Jac(Da)/⟨−1⟩.
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(2) Projection from the point b yields a double cover Da ⇢ La ≃ P1 defined outside
of b. The ramification points of this cover lie in the locus defined by p(1)b , i.e., they
are the points of intersection of Da with the tropes of Kb that pass through b.2

(3) If b admits a genus 2 curve Cb , then Ca → P1 and Cb → Qb → P1 fit in Figure 1a,
so there is a double cover X → Ca such that Prym(X , Ca) = Jac(Cb).

Proof
(1) From Proposition 2.4, we know that plane sections of Ka are of this type.
(2) Since Da is a plane quartic curve with a singularity at b, we see that projection

from b indeed yields a degree 2 map Da → P1. Outside of b, this cover is ramified
where the tangent line to Da passes through b, i.e., points where p(1)b vanishes.
Since Da ⊂ Kb , Proposition 4.1(2) shows this happens on the tropes passing
through b.

(3) We use Proposition 4.1(4) to get a description of Cb as a double cover of Qb , with
branch locus B marked by the six tropes passing through b. We use that Da lies on
Kb . Thus, projection from b puts the line La (defined in part (2)) and the conic
Qb in the same plane, with La ∩ Qb being the image of the tangent cone of Da
at b. The images of the six tropes to Kb through b yield tangent lines to Qb ; each
tangent at a point in B. Each of those lines also passes through a branch point of
Da ⇢ La .

We define the degree 2 map Qb → La by sending a point p on Qb to
Tp(Qb) ∩ La . If p ∈ B, then the tangent line to Qb is the image of the correspond-
ing trope. The intersection of that trope with Da is a ramification point, so this
map sends B onto the branch locus of Da → La .

We see that the branch locus of Qb → La consists of La ∩ Qb , which corre-
sponds to the tangent cone of Da at b. ∎

Remark 4.5 The condition in Proposition 4.4(3) regarding whether b admits a genus
2 curve Cb is entirely arithmetic; over an algebraically closed field, it is automatically
fulfilled. The problem here is that while for any Igusa quartic I one can construct
for a sufficiently general point a on I a Kummer quartic surface Kb = I ∩ TbI, the
construction from Proposition 4.1(3) may lead to a degree 6 locus on a nonsingular
conic that is not isomorphic to P1. In that case, we have the moduli of a Galois-
invariant isomorphism class of genus 2 curves that does not contain a Galois-invariant
representative. The fact that the field of definition of genus 2 moduli may differ from
the field of definition of any representative is well-known.

Note that by Corollary 2.5, this problem does not arise for Ka , because b provides a
nonsingular point on it. The obstruction for Kb is visible on Ca in the form that while
b specifies a Galois-invariant divisor class on Ca , this class may fail to contain a Galois-
invariant representative divisor. In that case, the cover X → Ca cannot be defined over
k either.

2Let X be a hypersurface described by F = 0 in Pn and H ⊂ Pn be a hyperplane. Choose coordinates
on H and let G be a form that describes X ∩ H. Let b ∈ X ∩ H. Then, p(1)b ,G = 0 describes the same locus
as p(1)b ,F = 0 intersected with H. Hence, taking the first polar at b of I or Kb will give the same result here.
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18 N. Bruin and A. Kulkarni

For I = I4, we see that the six lines in Proposition 4.1(3) are defined over the ground
field, so the conic they project to has rational points. Hence, none of these obstructions
occurs in this case.

Remark 4.6 In the proof of Proposition 4.4(3), it perhaps seems more natural to
obtain the double cover Qb → P1 by projection from a point in P2 not on Qb . Indeed,
the chord La intersects in Qb in two points. The tangent lines at those points intersect
in a point y not on Qb . Projection from y yields a double cover Qb → P1 that is ramified
at Qb ∩ La .

As we remarked, if P(a, b) = P(b, a) = 0 then X covers both C1 and C2 and X
is hyperelliptic. We conclude this section by showing how, in that case, the data
determining Figure 1b can be obtained from an Igusa quartic.

Proposition 4.7 Suppose a, b ∈ I/E are distinct points and that P(a, b) = P(b, a) = 0.
Then, TaI ∩ TbI is a trope to both Ka and Kb . The intersection Ka ∩Kb is a double-
counting conic through a, b, and five common singularities of Ka ,Kb .

Proof Writing F for the defining equation of I. The condition P(a, b) = P(b, a) = 0
implies that a lies on p(1)b ,F = p(3)b ,F = 0. But Proposition 4.1(2) identifies this as one of
the six tropes of Kb through b. By symmetry, we see this is also one of the six tropes
of Ka through a. Intersecting with I hence yields a double-counting conic that lies on
both Ka and Kb . On Ka , the conic passes through six singularities – specifically, the
point a as well as the five other intersection points of TaI with the singular locus of I.
By symmetry, those five are also singularities on Kb . ∎

5 Prym varieties of curves of genus 3

The description in the previous chapter describes all the ways in which Jac(Cb) can
arise as a Prym variety of a ramified double cover X → Ca with Ca of genus 2. We also
saw that the curve Ca can be recovered as a plane section of Kb passing through the
distinguished node.

A general plane section of Kb yields a quartic plane curve D, i.e., a curve of genus
3, and pull-back under the double cover Jac(Cb) → Kb yields an unramified double
cover X → D such that Prym(X , D) = Jac(Cb). As Verra [32] describes, these models
can be understood in terms of Abel–Prym maps. Over a non-algebraically closed base
field, not all curves D for which Prym(X , D) = Jac(Cb) can be obtained as a plane
section of Kb . With a little bit of Galois cohomology, we can describe the situation.

Let π∶ X → D be an unramified double cover of a non-hyperelliptic curve D
of genus 3 and let ι be the corresponding fixed-point-free involution on X. The
kernel of π∗ is not connected, but consists of two disjoint components that we
denote by ker(π∗) = Prym(X , D) ⊔ ker(π∗)′. There is a natural map X → ker(π∗) by
P ↦ [P − ι(P)]. The image does not lie in Prym(X , D) (see [2, Remark 6.3]), but in
the other component. That component is a principal homogeneous space of the Prym
variety, so its isomorphism class corresponds to a class in the Galois cohomology
group H1(k, Prym(X , D)). It is easy to see it is of period dividing two, so writing
Δ = Prym(X , D)[2], the class is the image of some ξ ∈ H1(k, Δ). The involution ι∗
acts on ker(π∗)′ and the quotient is some twist K(ξ) of the Kummer surface of
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Prym(X , D). The embedding X ⊂ ker(π∗)′ yields a model D ⊂ K(ξ) which, if K(ξ)

admits a quartic model in P3, is a plane section.
When Prym(X , D) = Jac(C) for some curve C of genus 2, the Kummer surfaceKC

admits a quartic model in P3. There are two twists of particular interest: the surface
KC itself and its dual K∨C .

The twistK(ξ) can be understood in terms of the relation between Δ and Jac(D)[2],
so we are led to consider various subgroups of the automorphism group Sp6(F2)
of Jac(D)[2]. A computer algebra package like GAP [15] or Magma [24] can easily
compute the conjugacy classes of the subgroups and verify the various facts and
characterizations of subgroups that we need (see [4] for a transcript).

The unramified double cover X → D marks a 2-torsion point on Jac(D)[2] and the
self-duality implies a filtration of group schemes

0 ⊂ V1 ⊂ V5 ⊂ Jac(D)[2], with Δ ≃ V5/V1 .

We need to consider the subgroup H ⊂ Sp6(F2) of the automorphism group that
stabilizes such a decomposition. This is the point stabilizer of a single non-trivial
2-torsion point, so it must be a subgroup of index 63, and there is a unique conjugacy
class of those. Indeed, H acts on V5/V1 through the full Sp4(F2), with kernel an
elementary 2-group of order 32. The action of H on the 28 bitangents marks orbits
of lengths 12 and 16. Viewing the odd theta characteristics of D as quadratic forms
on Jac(D)[2], the orbit of size 16 is the collection {θ ∶ θ(ε) = 1 ∈ F2}, where ε is the
kernel of π∗∶ Jac(D)[2] → Jac(X)[2].

If K(ξ) admits a quartic model in P3 then it has 16 tropes that intersect it in
double-counting conics, with Δ acting simply transitively on them. In other words,
the collection of tropes Δ′ is a torsor for Δ, and we have the equality of classes [Δ′] = ξ
in H1(k, Δ). On a plane section D of K(ξ), these tropes cut out bitangents. These
must be the bitangents in the orbit of length 16 under the stabilizer H. Conversely,
the Galois action on the Abel–Prym image of D → K(ξ) determines a Galois action
on the bitangents, and therefore on Δ′. In particular, the Galois action on Jac(D)[2]
determines ξ. On the specific quartic surfaces KC and K∨C , we see that the possible
group actions are further restricted, as we discuss below.

On KC , the tropes are partitioned into a set of six that pass through the distin-
guished node and 10 that do not. Indeed, there is an index 16 subgroup H′ ⊂ H that
stabilizes such a partition. If Galois acts through H then K(ξ) has a Galois-stable node
and hence ξ is trivial. The conjugacy class of H′ can also be characterized in a different
way: it is the class of the stabilizer of a direct sum decomposition

Jac(D)[2] ≃ V2 × Prym(X , D)[2],

where V2 admits a filtration 0 ⊂ V1 ⊂ V2.
Turning to the dual K∨C , we have a unique distinguished trope, dual to the distin-

guished node onKC . This leads us to the stabilizer H′′ ⊂ H of a bitangent in the length
16 orbit, which is also of index 16 in H. In fact, we have H′ ≃ H′′ ≃ (Z/2) × Sp4(F2),
but they are non-conjugate in Sp6(F2). Conversely, if D has a distinguished bitangent,
then there is a distinguished hyperplane section of K(ξ), so in particular K(ξ) ⊂ P3.
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The group H′′ also arises as the intersection of the stabilizers of two theta char-
acteristics, one odd and one even, which are groups whose conjugacy classes are
uniquely determined by their indices 28 and 36, respectively. We summarize the
characterizations above in the proposition below.

Proposition 5.1 Let π∶ X → D be an unramified double cover with D a non-
hyperelliptic curve of genus 3. Let C be a curve of genus 2 such that Jac(C) =
Prym(X , D).
(a) A model of D can be obtained as a plane section of KC if and only if Jac(C)[2]

occurs as a direct symplectic summand of Jac(D)[2].
(b) A model of D can be obtained as a plane section of K∨C if and only if D has an even

and odd theta characteristic θe , θo over the ground field such that θe − θo generates
the kernel of π∗∶ Jac(D) → Jac(X).

Corollary 5.2 Let IΔ be an Igusa quartic with projective dual a Segre cubic SΔ. Let
W ⊂ P4 be a plane. Suppose that D = W ∩ IΔ is a smooth plane quartic curve and that
the intersection L = SΔ ∩ W∨ of the line W∨ dual to W with the dual SΔ of IΔ is reduced.
Then,

Jac(D)[2] = E[2] × Δ,

where E[2] is the exponent 2 group scheme whose non-trivial part is isomorphic to L as
a zero-dimensional variety.

Proof The curve D already lies on IΔ , so for any point b ∈ IΔ such that D lies
on TbI

Δ , we have that D = W ∩Kb and hence a plane section. But those tangent
planes correspond exactly to L, which is the intersection of a line W∨ with a cubic
hypersurface SΔ , so we find three such points b1 , b2 , b3 over the algebraic closure.

Hence, over k(b i), we see that D occurs as a plane section of Kb i . Even though
Kb i is a quartic Kummer surface with a distinguished node, one may need to make
a quadratic extension in order to find an abelian surface A such that Kb i = A/⟨−1⟩.
However, over such an extension, Proposition 5.1 yields that Δ is a direct summand of
Jac(D)[2], at least over k(b i). Symmetry in b i and Galois-invariance yields that Δ is
also a direct summand over the base field.

Note that marking a cyclic subgroup in the cofactor E[2] amounts to choosing one
of the three non-identity elements in it, which must pair up with our choice of b i . This
will yield a Galois-stable 2-torsion class on D. If this class does not admit a representing
divisor over k(b i), then the corresponding cover X → D cannot be realized over the
base field either, explaining how Kb i may fail to be a Kummer surface of an abelian
surface Prym(X , D) over its field of definition. ∎
Remark 5.3 We explain how the situation of Theorem 1.3 arises as a limit case of
the general construction discussed in this section. Corollary 5.2 shows that a plane
quartic section D = W ∩ I generally lies in TbI for three different points b, giving rise
to three Prym varieties of D. This corresponds to the three different choices of filtration
0 ⊂ V1 ⊂ V2 for a fixed isotropic V2 ⊂ Jac(D)[2].

We write γ∶ I → S for the Gauss map that sends a point on I to its tangent space (as a
point in dual space). The map is birational, so outside of the singular loci on either side
we have PI(a, b) = 0 if and only if PS(γ(b), γ(a)) = 0. Hence, if PI(a, b) = 0 then
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γ(a) ∈ Tγ(b)S. In particular, the line W∨ dual to the plane W = TaI ∩ TbI is tangent
to γ(b) and hence W∨ ∩ S = γ(a) + 2γ(b).

If we now consider a family of points at such that b ∈ Ta0I then we get a family of
curves Dt = Ta tI ∩ TbI ∩ I, where the general member is a genus 3 curve Dt together
with an unramified double cover Xt → Dt and Prym(Xt , Dt) = Jac(Cb). For t = 0, we
have a ramified double cover X0 → D0 such that Prym(X0 , D0) = Jac(Cb).

6 The Igusa quartic as a symmetroid

A particularly interesting picture emerges if we restrict to Δ for which Kb and K∨b are
isomorphic, i.e., such that Cb has a rational Weierstrass point. In that situation, IΔ can
be expressed as a symmetroid: as the locus of singular members of a linear system of
quadrics or, equivalently, as a determinant of a symmetric matrix of linear forms.

We shall fix points p1 , p2 , . . . , p5 ∈ P3 in general position. For ease of exposition,
we take them individually defined over the base field and assign them coordinates

p1 ∶= (1 ∶ 0 ∶ 0 ∶ 0), p2 ∶= (0 ∶ 1 ∶ 0 ∶ 0), p3 ∶= (0 ∶ 0 ∶ 1 ∶ 0), p4 ∶= (0 ∶ 0 ∶ 0 ∶ 1), p5 ∶= (1 ∶ 1 ∶ 1 ∶ 1).

This yields a symmetroid expression for the classical Igusa quartic I4, but we only need
the points to be Galois-stable as a set. We denote by L the linear system of quadrics in
P3 vanishing at p1 , . . . , p5. It is of projective dimension 9 − 5 = 4 and is spanned by

y0 y1 − y2 y3 , y0 y2 − y2 y3 , y0 y3 − y2 y3 , y1 y2 − y2 y3 , y1 y3 − y2 y3 .

We write x0 , . . . , x4 for coordinates relative to this basis and set x5 = −x0 − ⋅ ⋅ ⋅ − x4.
Then, the Gram matrix of a member of L with coordinates (x0 ∶ ⋅ ⋅ ⋅ ∶ x4) is

A(x) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 x0 x1 x2
x0 0 x3 x4
x1 x3 0 x5
x2 x4 x5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

To a point p ∈ P3 with p ∉ {p1 , . . . , p5}, we can associate the linear subsystem Lp ⊂ L

of quadrics that vanish at p. This yields the rational map ψ∶P3 ⇢ L∨, defined outside
p1 , . . . , p5.

ψ(y0 , . . . , y3) = (y0 y1 − y2 y3 ∶ y0 y2 − y2 y3 ∶ y0 y3 − y2 y3 ∶ y1 y2 − y2 y3 ∶ y1 y3 − y2 y3).

Proposition 6.1 The image Ssym of ψ is isomorphic to the Segre cubic S3. As a
consequence, I4 is isomorphic to the quartic hypersurface defined by

Isym∶det(A) = 0.

Proof It is straightforward to verify that the image of ψ is defined by the equation

x0x2x3 − x1x2x3 − x0x1x4 + x1x2x4 + x1x3x4 − x2x3x4 .

This is a cubic threefold in P4 with ten nodal singularities, defined over the base field.
This property characterizes the Segre cubic. The variety Isym is defined by a symmetric
determinantal equation, so the image of ψ is the dual of X. Since the Segre cubic and
Igusa quartic are projectively dual, we find that Isym ≃ I4. ∎
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For a pair of sufficiently general points p6 , p7 ∈ P3, we consider the linear system
Lp6 , p7 = (Lp6 ∩Lp7) ⊂ L. Its base locus is a complete intersection of three quadrics
in P3, so it contains an eighth point p8. Indeed, the line spanned by ψ(p6), ψ(p7)
intersects S in a third point, which is ψ(p8). Thus, the points {p1 , . . . , p8} ⊂ P3 form
the base locus of a net of quadrics Lp7 , p8 . Such a configuration of points is classically
known as a Cayley octad. A Cayley octad determines a curve of genus 3 with an even
theta characteristic. The curve can be obtained as the locus of singular quadrics in the
net. If the points are labeled, they determine 2-level structure on the curve. In our case,
the distinguished role of {p6 , p7} marks a 2-torsion class on the curve.

Proposition 6.2 With the notation above, let p6 , p7 ∈ P3 be points such that p1 , . . . , p7
are in general position. Let p8 be the eighth point in the base locus of Lp6 , p7 and let
D = Lp6 , p7 ∩ Isym be the locus of singular quadrics. Then, the hyperplane Lp8 contains
D and is tangent to Isym.

Proof Since ψ(p8) ∈ Ssym, we have that Lp8 is tangent to Isym by duality. Further-
more, since Lp6 , p7 has p8 in its base locus, we have Lp6 , p7 ⊂ Lp8 . ∎

Remark 6.3 Note that a sufficiently general plane section D = W ∩ Isym is a smooth
plane quartic. The plane W ⊂ L yields a line in L∨, which generally has three
intersection points p6 , p7 , p8 ∈ Ssym. We see that D lies in three tangent hyperplanes to
Isym:Lp6 ,Lp7 ,Lp8 and the intersection of any pair of them yields W. By the discussion
above, we see that p1 , . . . , p8 forms a Cayley octad.

Corollary 6.4 Let p1 , . . . , p5 , p6 , p7 , p8 be the points of a Cayley octad. Then, the plane
quartic D ∶= Isym ∩Lp6 , p7 is contained in the Kummer surface Lp8 ∩ Isym.

In other words, the genus 3 curve D determined by the Cayley octad p1 , . . . , p8 with
the 2-torsion point represented by the differences of the theta characteristics marked
by p6 , p7 yield an unramified double cover X → D such that Prym(X , D) = Jac(C),
where C is a genus 2 curve that is a double cover of the rational normal curve through
p1 , . . . , p5 , p8, and ramification locus at those points.

7 Constructing genus 4 Jacobians isogenous to a square

We return to the construction of Section 4, with an Igusa quartic I and points a, b ∈ I
with P(a, b) = 0. If we take Ca ≃ Cb then Jac(X) is (2,2)-isogenous to Jac(Ca)2, and
hence has a copy of M2(Z) in its endomorphism ring.

There are several ways of enforcing such an isomorphism, and we can track them
in the following way. If Ca ≃ Cb then we have two ways of identifying Jac(Ca)[2]
with Jac(Cb)[2]: we have the isomorphism Jac(Cb) → Jac(Ca) restricted to the
2-torsion and we have the identification Jac(Ca)[2] ≃ Jac(Cb)[2] used for the gluing.
The composition yields an automorphism σ ∈ Sp4(F2) ≃ S6. The group S6 acts by per-
mutation on the coordinates I ⊂ P5 although its permutation action is not conjugate
to the action on the odd theta characteristics (see Remark 2.6). For each of the finitely
many choices for σ , we can consider the corresponding locus P(a, σ(a)) = 0 on I.
The geometry of this locus depends on the conjugacy class of σ , i.e., the cycle type as
a permutation on six elements. We stick with I = I4 here.
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Note that if σ(a) = a, then the induced isogeny is just Jac(Ca)2 → Jac(Ca)2 defined
by (d1 , d2) ↦ (d1 + d2 , d1 − d2), and hence we do not get a codomain that is the
Jacobian of a genus 4 curve. We also discard the elliptic locus E: there are other ways
of constructing genus 4 curves X with a Jacobian isogenous to a product of elliptic
curves.

In what follows, we list representatives of the conjugacy classes as they act on the
coordinates of I, so with σ = (0, 1, 2), we mean the automorphism

σ ∶ (x0 ∶ x1 ∶ x2 ∶ x3 ∶ x4 ∶ x5) ↦ (x1 ∶ x2 ∶ x0 ∶ x3 ∶ x4 ∶ x5).

For σ = (0), (0, 1), (0, 1)(2, 3)(4, 5), we find that the locus P(a, σ(a)) = 0 on I is
entirely supported on the fixed and elliptic loci. For σ = (0, 1)(2, 3), we find two
irreducible surfaces, interchanged by (4, 5) (see Example 7.3 for a parametrization).
For the other conjugacy classes, after removing the elliptic loci, we find a single
irreducible surface with nonsingular Q-rational points (see [4] for a transcript of
our computations). Note that the existence of a nonsingular Q-rational point on an
irreducible variety implies that the variety is also irreducible over the algebraic closure.

Example 7.1 As a fairly representative example, let us take σ = (0, 1, 2) and the
two points a = (−55 ∶ −29 ∶ 49 ∶ 36 ∶ 20 ∶ −21) and b = σ(a) = (−29 ∶ 49 ∶ −55 ∶ 36 ∶
20 ∶ −21). We follow the procedure outlined in Proposition 4.4. We choose the twist of
Cb that makes it agree with Ca and after changing coordinates to reduce coefficients
and such that the models for Ca and Cb are identical, we find

Cb = Ca ∶ y2 = 2(x − 7)x(x + 2)(x + 1)(x − 4) with the map μ∶ x ↦ 7x2 − 37x − 84
x2 + 11x

.

The map μ∶P1 → P1 is branched over 121x2 + 478x + 3721 = 0 and one can check
that it maps −2 ↦ −1 ↦ −4 ↦ −2 and ∞ ↦ 7 ↦ 0 ↦ ∞, i.e., the map μ induces a
permutation on the branch points of Cb of cycle type (1, 2, 3)(4, 5, 6). We now have

Cb

Ca P1

P1
μ

which we can complete with the fiber product X! = Cb ×P1 Ca and the double covers
X! → X → Ca that are induced. We find

X∶
⎧⎪⎪⎨⎪⎪⎩

y2 = 2(x − 7)x(x + 2)(x + 1)(x − 4)
z2 = −9828y − 5577x3 − 13914x2 + 131121x + 125538

.

It follows that Jac(X) is isogenous to Jac(Ca)2. Furthermore, one can check that
Jac(Ca) is absolutely simple and has minimal endomorphism ring, so End(Jac(X)) =
M2(Z).

Downloaded from https://www.cambridge.org/core. 12 Oct 2025 at 17:33:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


24 N. Bruin and A. Kulkarni

7.1 Hyperelliptic genus 4 curves with Jacobians isogenous to a square

If we insist that X is hyperelliptic, we get the condition P(a, σ(a)) = P(σ(a), a) = 0.
The expected dimension of this locus is one-dimensional, and it indeed contains
several components of this dimension. However, as it turns out, for σ = (1, 2)(3, 4),
the equation P(a, σ(a)) = 0 implies P(σ(a), a) as well, so for that conjugacy class of
σ , the curve X is automatically hyperelliptic.

Recall from Figure 1b that a hyperelliptic X is a double cover of both Ca and
Cb , with Ca , Cb both covering the same P1. Let us write α1 , . . . , α6 ∈ P1(kalg) for
the support of the branch locus of Ca over P1 and similarly β1 , . . . , β6 for Cb . Let
us assume that α i = β i for i = 1, . . . , 5; one has that α6 ≠ β6 when X is irreducible.
The isomorphism Jac(Ca)[2] ≃ Jac(Cb)[2] whose graph is the kernel of the isogeny
Jac(Ca) × Jac(Cb) → Jac(X) is induced by the identification α i ↦ β i .

An isomorphism Ca → Cb induces an automorphism μ of P1 that sends
{α1 , . . . , α6} to {β1 , . . . , β6}. It induces a permutation σ ∈ S6 such that μ(α i) = βσ(i).

We see that any cycle of σ that does not include 6 corresponds to a full orbit of μ of
the same length, whereas the cycle that does contain 6 corresponds to a partial orbit
of μ. The data that over an algebraically closed field k specifies hyperelliptic curves
C , X of genera 2, 4, respectively, with a 2-isogeny Jac(C)2 → Jac(X) thus consists of
a degree 6 locus B on P1 together with an automorphism μ such that B ∩ μ(B) has
degree 5.

The discrete data involved in this diagram involves the cycle type of σ , where
we mark the cycle containing 6. To indicate this, we decorate it with a star: 6∗. The
singleton (6∗) denotes the identity permutation, with the cycle containing 6 marked.
For our purposes, the cycle types of (1, 2, 3, 4)(5, 6∗) and (1, 2)(3, 4, 5, 6∗) are distinct.

The finite orbits of automorphisms of P1 are rather restricted, which constrains the
cycle types for σ that can be realized. In particular:

• If μ is not the identity then μ has one or two fixed points.
• If μ has a finite orbit of length larger than 1, then μ has two fixed points and is of

finite order and, outside of the fixed points, all orbits are of the same length.

This rules out various cycle types. For σ = (6∗), (4, 5)(6∗), (5, 6∗), (4, 5, 6∗), we
would need at least three fixed points and hence μ = id, which is inadmissible since
then α6 is fixed too. For σ = (1, 2)(4, 5, 6∗), (1, 2)(3, 4, 5, 6∗), we get that μ is of
order 2, so we cannot find an orbit of μ large enough to accommodate α6. For
σ = (1, 2)(5, 6∗), (1, 2)(3, 4)(5, 6∗), (1, 2, 3)(4, 5, 6∗), we get that the order of μ would
be equal to the cycle length of 6∗, which would make the cycle of 6∗ a full orbit under μ.

For the remaining cycle types, we can choose coordinates, mostly by choosing 0,∞
as fixed points and setting one cycle to the orbit of 1, but in some cases, we get a nicer
model by making different choices.

Remark 7.2 Note that for σ = (2, 3, 4, 5, 6∗), we also have f (x) = x(x − 1)(x − 2)
(x − 3)(x − 4) and μ(x) = x + 1. With a change of model, this is obtained from the
limit u → 1 for the listed family. A similar degeneration occurs for σ = (1, 2, 3, 4, 5, 6∗).

Of particular interest is that σ = (1, 2)(3, 4)(6∗) admits a 2-parameter family.
Indeed, P(a, σ(a)) and P(σ(a), a) cut out the same locus.
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Type of σ μ′(x)

(1, 2, 3)(6∗) 1
x

(1, 2, 3, 4)(6∗) 1
x

(3, 4, 5, 6∗) u2

x

(1, 2, 3, 4, 5)(6∗) 1
x

(2, 3, 4, 5, 6∗) u4

x

(1, 2, 3, 4, 5, 6∗) u4

x

Table 2: Cycle types with an additional automorphism μ′ of type (1, 2)(3, 4)(6∗).

Peculiarly, for several of the other σ , there is an involution μ′ of P1 that yields σ ′ of
cycle type (1, 2)(3, 4)(6∗). We tabulate them in Table 2.

Example 7.3 For σ = (1, 2)(3, 4)(6∗), we have

Cu ,v ∶ y2 = (x4 + ux2 + v)(x + 1).

The fiber product with the double cover y2
2 = x2 − 1 yields a hyperelliptic curve of

genus 4 with a model

X∶ y2 = (x2 + 1)(v1x8 + 4(u + v)x6 + (8u + 6v + 16)x4 + 4(u + v)x2 + v).

We have that Jac(X) is (2, 2)-isogenous to Jac(Cu ,v)2.
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