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Canals under sediment-based ice sheets
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ABSTRACT. Classical theories of channelized subglacial drainage identify a melting
vs creep balance at the channel-ice boundary that is crucial in determining its steady flow
properties, but this consideration neglects the role of erodible-deformable basal sediments,
especially in controlling channel morphology. Here we present a mathematical model for
channels underneath ice sheets, which incorporates the detailed mechanics of sediment
transport over a mobile till-bed interface, and which allows a variable, wide channel cross
section also. The resulting drainage conditions depend on the sediment flux (g) as well as
the water flux (@) through the channel — these quantities being controlled by the rates at
which sediment and meltwater are captured by the flow. An approximate analytical
solution indicates a “canal”-type drainage law (Walder and Fowler, 1994) of the form
N oc U1Q52¢%2 where N, is the effective channel pressure, 7 is the exponent in
Glen’s flow law for ice, and W is the imposed hydraulic gradient (due to topography). By
solving the downstream problem numerically, the canal characteristic has been confirmed
and found to be insensitive to upstream conditions. Thus, low effective pressures can result
from high basal water flux or melt rates. This supports the contention that canals may be a
central component in fast ice flow over soft beds. The proposed model also establishes a

fundamental link between the plumbing system of a glacier and its sediment budget.

1. INTRODUCTION

The presence of sediments underneath glaciers has far reach-
ing consequences for their dynamics. Where ice overrides a
wet subglacial till, enhanced flow velocities may result from
pervasive till deformation or sliding at the ice—till interface.
Evidence for these mechanisms has been obtained both in
the field (Alley and others, 1986, 1987; Iverson and others,
1995) and in the laboratory (Kamb, 1991). Their operation
generally relies on the water pressure at the base being high,
close to the overburden pressure of the ice above. More par-
ticularly, there have been attempts to explain ice-stream for-
mation and the (possible) surging behaviour of ice sheets in
terms of a feedback instability based on these mechanisms
(Fowler and Johnson, 1995, 1996; Fowler and Schiavi, 1998).
The condition for instability is that the basal-water pressure
increases with water flux. A crucial question is then: can
drainage over a soft bed exhibit this property?

An earlier theory developed by Walder and Fowler (1994)
suggests that this is the case. Given the large size of ice sheets,
water flow through the till or a subglacial aquifer is usually
unable to evacuate all the basal meltwater (Shoemaker, 1986;
Alley, 1989); some kind of flow at the ice—till interface is
therefore necessary. What Walder and Fowler have demon-
strated is that for a soft bed, a network of channels can exist,
each with water pressure, p., increasing with discharge, @), or
equivalently effective pressure, N, decreasing with Q.
(N. = pi — pc is the difference between the overburden ice
pressure and water pressure.) They refer to such channels as
“canals” Overall, the subglacial interface is assumed to
adopt a similar pressure-flux relationship, because of the dis-
tributed nature of the canal network.

Walder and Fowler’s (1994) drainage law N, oc Q7
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B < 0, originates from an equilibrium consideration, much
in the same way as in the classical theory of ice channels
(Rothlisberger, 1972). However, there are two main
problems with their canal model: it lacks a detailed descrip-
tion of how the flow interacts with till sediments and also
neglects the effect of downstream variation.

In this paper, both of these constituents are shown to be
important in governing the channel characteristic, and ac-
cordingly we propose an improved model. In comparison to
Walder and Fowler’s (1994), the theory presented here is
more complete, not only because it places emphasis on sedi-
ment transport, but also because our governing equations
can describe the downstream distribution of effective pres-
sure, as in the classical model. We find that a canal-type
drainage law is still possible, but determination of effective
pressure now requires knowledge of sediment flux as well as
discharge through the channel. This result holds wider im-
plications for the structure of soft-bed drainage systems and
the transport of subglacial sediments, and thus also for the
long-term dynamics of ice sheets.

The organization of this paper is as follows. We begin by
describing our conceptual model (section 2). The governing
equations are then introduced and analysed, and we con-
duct a numerical simulation relevant for an ice sheet (sec-
tion 3). This is followed by discussion (section 4). Due to the
limited space, only the essentials and preliminary results of
our investigation will be covered. A detailed theory of
canals and further justification of the model will be given
elsewhere (Ng, manuscript in preparation).

2. EQUILIBRIUM SOFT-BED CHANNEL

Consider a single channel located at the ice—till interface,
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carrying a discharge @(s) and sediment volume flux ¢(s),
where s 1s downstream distance (see Fig. 1a). Initially, let us
suppose that the channel cross section is wide and shallow,
with a variable aspect ratio (Fig. 1b). This presumption
greatly simplifies our mathematical model and is consistent
with the solution obtained later. We also impose (in a dis-
tributed sense) an inflow of meltwater and sediment to the
channel; the supply rates are denoted respectively by M(s)
and &£(s). We can therefore mimic the effect of till percola-
tion and adjoining subglacial or englacial tributaries, with-
out having to specify the drainage-network structure.

Our model is based on the condition of equilibrium
drainage, which requires the upper and lower boundaries
of the channel to remain stationary. At the roof, this is
achieved by a dynamic balance between creep closure and
melting of the ice (Réthlisberger, 1972); whereas at the bed, a
greater number of constituent processes are involved. These
include (1) erosion and (2) deposition of sediment, (3) lateral
and (4) downstream sediment transport, and (5) creep
motion of till into the channel. Generally, the till would be
characterized by a heterogeneous grain-size distribution, so
sediment transport may take place as bedload and sus-
pended load as well and this complicates the situation. For
convenience, we assume here a till which consists of suffi-
ciently fine-grained, uniform material, such that under typ-
ical conditions (when the water flux is not too small),
suspension would dominate and bedload may be neglected.
A more complete formulation will be described elsewhere
(Ng, manuscript in preparation).

The crux of the model is how the mobile bed interacts
with the flow and this depends on the relative importance
of the five processes listed above (Fig. 1b) Given a wide
channel cross section, lateral sediment transport will be
negligible because cross-stream gradients are small. The
primary balance is then between sediment erosion and de-
position. Essentially, this balance dictates the amount of sus-
pended-sediment within the flow section. An analogous
situation 1s found in alluvial river channels (Parker, 1978).

More specifically, lateral transport is relevant only in de-
termining the bed position, but not the flow depth (Ng, manu-
script in preparation); and the precise bed-balance is that
between net erosion (i.e. erosion minus deposition) and in-
creep of the till. Under typical drainage conditions, the rates
of erosion and deposition will be roughly equal and far ex-
ceed their difference. Thus, although the creep velocity may
be non-zero, its effect on the suspended-sediment concentra-
tion locally (within the cross section) will be negligible.

Having said this, the cumulative effect of till creep 1s im-
portant in the downstream direction. This is because sus-
pended sediment is carried along by the flow. Consider the
case where tributary supply is absent: £(s) = 0 (Fig. la). At
equilibrium, the observed sediment flux at any station along
the channel must then be equal to the total creep flux inte-
grated over the channel length, measured from its source to
the station. Similarly, the roof is maintained by ice melting
and closure, but the meltwater thus generated is advected
downstream. The implication is that (at equilibrium) the
channel geometry must vary downstream, in such a way
that both the water and sediment phases are conserved, while
local dynamic balance is maintained. As we shall see, these
requirements provide sufficient constraints for determining
the entire channel geometry and also the corresponding
drainage characteristic. We provide a quantitative descrip-
tion of these ideas in the next section.
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Fig. 1. Idealized model of the subglacial channel and mathe-
matical notations used to characterize its (a) downstream
and ('b) cross-sectional properties. In (b ), the channel bound-
artes evolve as a result of (1) erosion, (it) deposition, (1)
lateral transport, (iv) downstream transport of sediment;
(v) creep motion of the ll; (vi) melting; and (vii) viscous
closure of the ice.

3. MATHEMATICAL MODEL

Cross-sectional processes

We define a channel of depth h(x, s) symmetrical in z, where
z and s denote respectively its cross-stream and downstream
coordinates (Fig. 1b). Hence, if I(s) is the half-width of the
channel, then h > 0 in |z| < ! and h(z = +I) = 0. In addi-
tion we have h/l < 1, since a “wide” cross section has been
assumed. In this case, suitable equations to describe the local
balances (in z) are

mi

-— = Wi, (1)
pi

v (E — D ~

= @

in which 773 1s the melt rate of ice (mass rate per unit width
per unit length of channel), @; and @5 are respectively the
creep-closure velocities at the roof and the bed, and F and
D are coefficients which describe the erosion and deposition
rates of sediment into/from the flow. Specifically, vs(E — D)
represents the rate of net erosion, where v; is the (constant)
grain-settling velocity. The other constants are density of ice
pi and bed porosity ng. Note that Equations (1) and (2) apply
in the “upward” direction, normal to the x and s axes.
Melting is due to the heat dissipated by the turbulent
flow. Given that the channel is inclined (downstream) at
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an angle, o, and has a water pressure, p,, the hydraulic gra-
dient driving the flow is defined by

do : dp.
— - = PwgSI e —

ds ds’ (3)

where ¢ is the water potential, py is density of water and g is
gravitational acceleration. In the following, we use the abbre-
viation ® = —d¢/ds for the hydraulic gradient, and also we
introduce the effective channel pressure N, (= p; — p.) by re-
writing Equation (3) as

dn,
- 4
ds ’ (4)

in which ¥ is a “basic” hydraulic gradient, imposed externally
by topography. A useful approximation is U = pjgsin oy,
where sinog is the ice-surface slope (Walder and Fowler,
1994). For an ice sheet sin oy ~10 °, 50 ¥ ~10kgm *s *.

Since the flow is wide, the upper and lower boundaries
may be considered to be parallel, and its thermomechanics

may be summarized by the model

d=0+

T = ®h, (5)
1 .

T = ngWUQa (6)

i = 1L (7)

(Fowler and Ng, 1996). Here, 7 is the total shear stress ex-
erted at the roof and the bed, 4 is the depth-averaged flow
velocity, fisa (constant) friction factor, and L is latent heat.
These equations respectively represent a local force balance,
a friction parameterization and local energy balance. Typic-
ally f ~ 0.1, by analogy to rivers (Richards, 1982). Solving
for m; and 4 in these equations, we obtain
_ @2 g,

[8®
i = ;=4 [——h? 8
Lv/pw f pwf ®)

Our prescription for £ and D is based on modelling studies
in river mechanics. For wide channels, Parker (1978) pro-
posed the expressions

T 3/2 )
- D=2
mpgDS) | )

where Ap is the density difference ps — pyw (ps is sediment
density), and Dy is the representative sediment grain-size. ¢
is the total suspended-sediment content— this is the volu-

E =0.092 <

metric sediment concentration (a dimensionless ratio) inte-
grated over the vertical flow column, so it is a length with
unit m. The eddy diffusivity € is a (local, depth-averaged)
measure of the turbulent-flow intensity; under the parallel-
flow formulation as used in Equations (5)—(7), an appropri-
ate expression 1is

Of 3
— 2, 1
She (10)

We assume non-linear rheology for both ice and till. If we
adopt Glen’s law for ice (see Nye, 1953) and the constitutive
law proposed by Boulton and Hindmarsh (1987) for sedi-
ment, then approximate relations for the closure rates are

A(N" ArN®
wi=—12 CVE a2, = Zjvbc Va2, (11)
o0

where Ny, 1s the effective pore-water pressure in the till, far
from the channel (see Ng, 1997; Ng and Fowler, submitted).
We use the flow-law constants A; = 2 x10 **Pa *s | n =3,
Apr =3x10°Pa"*s ! a =133 and b = 1.8.
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Various authors have recently questioned the validity of
Boulton and Hindmarsh’s (1987) viscous law for till (e.g
Kamb, 1991; Iverson and others, 1998). However, the precise
form for Ws is of minor importance in our model. Notably
our concept of downstream sediment conservation (see later)
1s unaltered so long as the till can deform; also, we argue here
that creep effects are generally negligible in the bed balance.
To do this, we use conservative estimates together with the fact
that Equation (11), is already an upper-bound expression,
based on an infinitely deep till (Ng and Fowler, submitted).
Suppose Ny 1s not too small, say, 20.1 bar. Then taking
Dy = 005mm, vy = 005ms ' and the prospective values
N.~ 5bar, h= 0Ilm, [ = 10m, it is easy to show that
Ws <K vsE. Thus henceforth, we neglect the creep term from
Equation (2), writing

E=D. (12)
(This approximation is justified by our solution later,) Substi-
tution of Equations (5), (8)}, (9), (10) and (11), into Equations
(1) and (12) leads to
(20h)*? AN
pilv/ pw f 2
_ 0.092®2h3 f
8u,(ApgD,)** | o

22, (13)

(14)

These equations provide the equilibrium depth and sedi-
ment distribution across the channel cross section, given @,
N, and [ (which are functions of s only).

Downstream processes

Following our description in section 2, the downstream in-
crement of discharge @ is due to ice-melting and tributary
input; similarly, the increment of suspended-sediment flux,
g, 1s due to sediment entering the channel via creep motion
of the till and from tributaries. The corresponding mass-
conservation equations are

aQ 1 ('

g_pjllmi da + M(s), (15)
d l

de-n) /ﬂ dz + £(s), (16)

in which M and € denote the distributed supply rates (to be
prescribed). The appropriate flux definitions are

! !
Q:/_lhudm, q:/_lcjudx. (17)

Our model is now completed by substituting for 1, 4, Ws, h
and ¢ from Equations (8), (11),, (13) and (14). At this point, it
1s algebraically convenient also to scale the model. This is
described next.

Non-dimensionalization

The head of our channel is taken at s = 0, and its down-
stream (snout) end at s = sp, where s is the total channel
length. By choosing the distance scale to be [s] = sy, we can
define a suitable dimensionless distance variable

s =s/[s]. (18)
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Similarly, let us re-scale the other variables in the model by
assigning

(] = ho, [l =[] =1, [(] =G,

[@] = [W] = Wy,  [Ne] = [No] = No, Q] = Qu,

ld =, [M]=0Qu/s0, [E]=a/s. (19)

If we impose the scale relations

NG 3/2
\/_(\I/()h[)) :14[]\7(7)1,107
pilvpw |
_o0o92wing [ f
vi(28pgDg)** \ o’
WU 8Wyh
Qo = pW](ihB/?lo’ qQ = p;foColo, (20)

then, on non-dimensionalizing Equations (4) and (13)—(17),
we obtain (dropping the asterisks *)

dN,
21
o (21)
NCQn/S
h=—g—(—a")" (22)
C _ (I)2h3 [: NCZ7),(Z2 _ xQ):| (23)
2v/2 2v2¢ ]
l
dQ erd>/? / R*? dx 4+ M, (24)
-1
dq fm(1 — ng) NOIP?
B S S Al 2
ds 2N, +& (25)
l
Q=o' / ] R dz, (26)
l
q= @1/2/ RY2¢ da. (27)
-1
The parameters are given by
- NQ E o \I/()So
5oV - pL
pi - ATNgfbl%SO
=—, = 28
" Pw " 2% ( )

In the following, we assume the constants p; = 900 kgm *,

pw = 10°kgm ?, p, = 265x10°kgm °, g=98ms % L =
3335k kg ) f =01, ng =03, Dy =5 x10 > m (coarse silt)
and vs = 0.05ms .

The sizes of sg, ho, Lo, Co, Yo, No, Qo and go have yet to be
specified in the model. For an ice sheet, we can suppose
Ty = 10kgm *s and that a typical drainage length scale
is 100 km, i.e. so = 10°m. (It follows that € < 1) As there
are four relations in Equation (20) it is necessary to pre-
scribe two other scales in order to determine the remaining
ones. We put Ny = 1bar, based on borehole measurements
on Ice Stream B, Antarctica (Engelhardt and Kamb, 1997).
And since € < 1, it is natural to ensure in Equation (24) that
M =0O(1), by choosing an appropriate value of [M].
Strictly speaking, this scale can be estimated from the
basal-ice-melt rate and channel spacing, but the specifica-
tion of these is difficult (particularly for ice sheets). Alterna-
tively, one can simply prescribe Qo to be the (expected)
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outlet discharge. Here we use the nominal value Qo =
1m®s '; then, the remaining scales are

ho =0.335 m, lo = 5771117

A 29
G =2336x10"2m, ¢y =0.100m3s7?, (29)

and the corresponding parameters are
vr0.1, é~333x107°, r=0.9, &~223. (30)

Evidently, discharge contribution from roof melting is going
to be negligible (since € < 1, independent of the choice of
Ny and Q), whereas the effect of till creep can be quite sig-
nificant (since £ ~ 1 in Equation (25); remember however,
that £ is an upper bound estimate and depends on Ny and
Qo). These inferences are unaffected if we had chosen sg ac-
cording to the ice-sheet length scale (e.g. 10° km) instead.

The reduced model

By eliminating h and ¢ from Equations (21)—(27), we obtain,
after some algebra,

1= (”_\/5‘1 >3/4N”, (31)

1Q ¢
Pk
P = CQ5/2 - (32)
and the following coupled model for @), ¢ and N :
d 3 3/2
d—g =& C(é) No"4 M, (33)
dg &1 —n)C [q\**
d_(S] _ K,( ans) (%) Ng—Zn + &, (34)
dN, Cq*?

Here the constants are I f X2)7/6dX ~ 1.275 (by
numerical integration) and C' = 775/2/21/413/2 ~ 10.2.

Equation (35) describes the effective pressure distribu-
tion N¢(s) and is our drainage equation for a soft bed. This
1s supplemented by Equations (33) and (34) which provide
recipes for @ and ¢. Note that, if in our derivation we had
neglected the sediment processes and imposed a cylindrical
channel geometry (by putting h = I, dimensionally), then
we would obtain

dNC? n
I

which is essentially the classical result (cf. Rothlisberger,
1972; equation (11)).

Given suitable boundary conditions, Equations (33)—(35)
may be solved. We put ¥ = 1, and for simplicity we assume

M and € to be constants. These supply rates can be estimated
from the typical discharge values expected at the snout. For
instance, setting M =1 (which gives Q(snout) =~ 1m®s ) is
consistent with our current model scaling, and as a first esti-
mate, we can choose & = 0.1, such that the £/ M ratio corres-
ponds to a (influx) suspended-sediment concentration of tens
of grams per litre, typical of glacier-fed streams (Lawson,
1993). In general, the actual concentration in the channel
would increase with downstream distance and exceed this,
due to the effect of till creep (since K ~ 1). Our simulation
results later confirm this, with the outflow-sediment load pre-
dicted at roughly 100 g L, which is still within the plausible
range.

We also specify a nominal (dimensional) value Ny, =
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I bar. The parameters in Equations (33) and (34) are then
érC ~0.03 and &(1 —ns)CNZ’ ~ 16 (an upper bound
estimate). These values indicate that () is an increasing func-
tion of s, with dQ/ds = M, whereas ¢(s) also increases
monotonically, but not necessarily linearly.

The solution for N, is more complicated. v < 1 suggests
that Equation (35) may be approximated as

N Cq3/2

¢ ‘I’Q5/2 ’
which indicates a canal-type characteristic, 1.e. IV, Q°,
where f = —5/2n < 0 (and 3 = —5/6 with n = 3). However,
this is a singular approximation because v multiplies into a
first-order derivative. There will be a boundary layer (of thick-

ness O(v) corresponding to a distance of 10 km) in which effec-
tive pressure gradients are significant, and this occurs at the

(37)

head of the stream. Nevertheless, the canal drainage law
(Equation (37)) is applicable outside this boundary layer, suffi-
ciently far downstream that pressure gradients are negligible.

Last, we discuss the form of the boundary conditions at
s = 0. Care is required here in order to avoid the righthand
terms in Equations (33)—(35) becoming singular, which will
occur if N. = 0 or @ = 0 there. Our prescription is based on
the following consideration. Although the channel has its
top end defined at s = 0, we envisage that it is connected to
(Darcy) drainage in the till via some kind of channel fila-
ments, in which the water flux is small but non-zero; hence,
@ should not vanish there, or Q(0) > 0. On the other hand
we specify ¢(0) =0, by assuming that the incipient dis-
charge would be too small to sustain sediment transport,
i.e. the flow stress at the bed (& 7/2) there is below its criti-
cal value for sediment entrainment. As a result, we can also
expect these incipient channels to behave essentially like
hard-bed channels, with N, directly related to @ (Rothlis-
berger, 1972). Therefore N.(0) should be relatively small
(but non-zero, since that would imply flotation of the ice),
and a natural choice is N (0) = N. Given these boundary
conditions, a local analysis of the model shows that the solu-
tions are well-behaved, and in particular neither N, nor @
would vanishin 0 < s < 1.

Numerical solution

Equations (33)—(35) have been solved by using a simple Euler
predictor—corrector algorithm. This algorithm uses finite dif-
ference and steps forwards in s from s = 0, where we specify
the dimensionless initial conditions Q(0) = 1072 (corres-
ponding to 0.01 m? s~! ~ Q(snout)/100), ¢(0) =0, and
N(0) =1 (corresponding to 1 bar). As a trial simulation, we
employ the scales and parameters given in Equations (29) and
(30), and also the model constants M =1, £ = 0.1, ¥ = 1.

Figure 2 shows the computed results plotted in dimen-
sioned units. As expected, we see the downstream increase
of @ and ¢ (Fig. 2a) and the boundary-layer behaviour in
N, (Fig. 2b). The canal solution in Equation (37) has been
included for comparison, and is found to be a good approxi-
mation in s 2 30 km, where the predicted effective pressure is
N, =~ 1.5 bar. We have also investigated the effect of varying
N.(0) in the simulation. Downstream in the “canal” region,
N, is insensitive to its boundary value at the stream head
(Fig. 2¢).

Figure 3 shows other results derived from Figure 2a and
b. The suspended-sediment load in gL ' is calculated by
evaluating psq/@ (Fig. 3a), and is found to be of the order of
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Fig. 2. (a) Computed discharge, Q, and sediment flux, q, and
(b) computed effective channel pressure, N, as functions of
downstream distance, s. Dashed line represents N as given
by Equation (37). (c) Sensitivity of the simulated N.(s) to
its upstream boundary condition. Test values are N(0) =

0251 (asin (b)), and 2.5 bar.

100 ¢ L, rather high in the plausible range of values. This is
due to the large (upper-bound) value of £ used in the simu-
lation. For example, reducing & by a factor of ten would re-
duce the sediment load at the outlet to about 50gL . In
addition, we have calculated the depth and width variations
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Fig. 3. Downstream variations of (a) sediment load, (b)
channel depth h(x =0, ) and (c) total channel width
2 x (), corresponding to the simulation in Figure 2a and b.
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of the channel h(x = 0,s) and I(s) via Equations (22) and
(31) (see Fig. 3b and c). In general h < 2[, so the channel
adopts a wide cross section, consistent with model assump-
tions. (h appears to blow up close to s = 0. This spurious fea-
ture is due to the neglect of bedload transport in the model,
and does not affect the canal approximation downstream.
Further examination of this is given by Ng (manuscript in
preparation)) At the snout, the channel cross section is ap-
proximately 5 m across by 0.45 m deep.

Finally, our solution (and Equation (37)) indicates a non-
zero value of N¢ at s = 100 km. This is significant because if
the ice thickness (H;) vanishes at the snout then the channel
water pressure (p.) would become negative (!) there. In
practice, we suppose open-channel flow occurs when
P = 0, so our model predicts that pressurized flow would
terminate some distance back from the snout. The position
of this transition s = 5., 1is given approximately by the
relation

Ne(8co) = pigHi(co)- (38)

For our model ice sheet, H;(s,) is about 20 m.

4. DISCUSSION

The present work furthers our understanding of soft-bed
subglacial channels and exposes some of the limitations of
previous models. Where ice overrides till, the coupled flow
of water and sediment is inevitable, and any realistic theory
of soft-bed drainage must take this into account. We have
developed a model which supersedes that of Walder and
Fowler (1994) and our findings support their conclusion that
sediment-floored channels can exhibit canal-type character-
istics, with effective pressure inversely related to discharge;
the exact relation depends on the channel sediment flux.
This behaviour, summarized by Equation (37), occurs
where effective pressure gradients are small and is indepen-
dent of the value assumed for the constant n in Glen’s flow
law, as long as n > 0.

Regarding downstream variation, it is interesting to
compare the predictions of our theory and the classical the-
ory (Rothlisberger, 1972), where sediment processes are ruled
out altogether and restriction of a cylindrical-channel cross
section is enforced. The main difference lies in the form of the
respective drainage equations. Written in the form of Equa-
tion (35) (which applies for a canal), Equation (36) (for an R
channel) would have a positive power of N, appearing in the
numerator of the first righthand term. The implication is
that N. can decrease to a small value only with negative
slope (dN./ds < 0). For instance, taking N.(snout) =0
(the boundary condition used by Rothlisberger) and a line-
arly increasing distribution for @), it is straightforward to
confirm this by integrating Equation (36) numerically. In
this case, the boundary layer in N, occurs near the channel
outlet, with N, reaching a near-constant (high) value up-
stream. This 1s essentially the opposite result to that for the
canal, where IV, may assume any non-zero (but presumably
low) till value at the stream head because the boundary layer
occurs there (see Fig. 2b and ¢); in this case however, N, can-
not vanish at the outlet, so the canal model actually predicts
the position of the closed/open-channel flow transition near
the snout. (Although Réthlisberger’s (1972) model does allow
the possibility of open-channel flow under some conditions,
he defined the channel outlet to be situated where the flow
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transition takes place, without specifying its position relative
to the snout; see p. 178 and 185)

Our theory can be extended to a more general descrip-
tion for soft-bed drainage. Notably, it provides a starting
point for investigating how the canals would couple to each
other and to other forms of drainage. Currently, the quanti-
ties N.(0), Q(0), M(s) and &(s) are poorly constrained in
the model. The question of how to specify these is intimately
related to the problem of determining the architecture of the
drainage network.

For instance, one can consider a network in which the
tributary channels feeding our main channel are themselves
sustained by finer tributaries, and so on; each level of the
hierarchy may be described by our ingredient model. In
building a model for the entire drainage system, the four
quantities in question would then appear as unknowns, in-
stead of being externally prescribed. In particular, N,(0)
and Q(0) would describe how the canals are connected to
the till via incipient channels, and in isolated cases, to en-
glacial sources; M and £ would describe the network struc-
ture (channel spacing and order of linkage). Model solution
determines the system architecture, the basal-water-pres-
sure distribution, and in addition, the rate at which till sedi-
ments are depleted by drainage. The last of these is relevant
to the sediment budget and is clearly important in the long
term, as changes of till thickness could have a drastic effect
on the nature of basal-ice dynamics. This generalized model
awaits further investigation.
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