
Genet. Res., Oamb. (1961), 2, pp. 96-105
Printed in Great Britain

Polygene analysis

BY NEIL GILBERT

John Innes Institute, Bayfordbury, Hertford, Herts.

(Received 15 August 1960)

This paper considers why polygene practice is less successful than polygene theory.
It introduces an alternative approach to the analysis of quantitative inheritance.

DISCUSSION

It is usual to argue from discrete Mendelian genes to discrete polygenes. This is
not strictly valid since Mendelian genes form an extremely unrepresentative sample
of the total genetic material. They are mutants of quite exceptional effect which
do not happen to be lethal and which show good penetrance. In other words, we
select them from the total of all mutants precisely because they have large, inde-
pendent effects. We might nevertheless suppose that the chromosome is one long
graded functional unit which cannot meaningfully be chopped into a series of
discrete non-overlapping functional units. But microbial genetics provide evidence
against this supposition. Pritchard (1955) finds a map-length between functional
units (genes) of the same order as that between mutational sites within genes. Genes
are therefore discrete. But the same evidence shows that recombination within the
gene is at least as frequent as recombination between genes. This may not matter
if the genes are Mendelian, for the products of recombination within a Mendelian
locus can be expected to give roughly the same effects as one or other of the original
alleles, rather than some intermediate effect. This is not true of genes controlling
smaller differences; given two alleles determining two forms (of differing efficiencies)
of the same enzyme, within-gene recombination can and does lead to the formation
of enzymes of intermediate efficiencies. Thus, if polygenes are identified with
functional units, within-gene recombmation (which happens relatively often) can
give quite different alleles from the original pair. If, on the other hand, polygenes
are taken to be the mutational sites, they certainly do not act additively even at
enzyme level, let alone at the level of the complete organism; their interactions
(statistically speaking) are as large as their main effects.

This impasse can be avoided by forgetting about genes and starting at the other
end of the scale. Statistical analysis of progeny means of crosses between various
parents invariably shows that complete genomes have approximately additive
effects; interactions, although they occur, are less important than main effects.
The same is true of the effects of individual (marked) chromosomes. We may
therefore hope that it will also be true of pieces of chromosomes. It must be expected
that (since a genotype is a closely integrated structure) the smaller the pieces, the
more important interactions will be. The trouble is, of course, that (unlike other
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applications of the statistical method of fitting constants) we do not know which
individuals contain which pieces of chromosome.

Mangelsdorf (1952) expects that in any individual, development of a particular
character will be limited by a small subset of all the genes concerned with that
character, and that different individuals will be limited by different subsets.
Mendelian genes are characterized by the peculiarity that the subset is the one gene
for all individuals. Thus Harborne (1960) finds that a gene controlling a particular
flower pigment does so by causing the hydroxylation of a flavonol. There must
obviously be a lot of indispensable genes concerned with the production of the
flavonol in the first place, yet we are pleased to call this hydroxylating gene ' the '
gene for this particular flower colour! Mangelsdorf's quite reasonable idea empha-
sizes the necessity of the pragmatic approach by 'lengths of chromosome'. If
polygene analysis on this basis were found to work, it would be just as rash to argue
from it to conclusions about gene action as to argue from the successful use of main
effects in fertilizer trials to conclusions about nitrogen metabolism inside the plant.
Estimates of polygene 'linkage' or 'unfixable genetic variation' should, I submit,
be taken with a plentiful dose of salt. Fortunately, except perhaps in the case of
heterosis, the breeder is exclusively concerned with phenotypes. Polygene analysis,
regarded in this way as an attempt to analyse chromosomal effects, still offers some
hope as a method of prediction. The question of homozygosity may also be con-
sidered in this light. Although it is unlikely that the mathematical theory of in-
breeding is exactly fulfilled in practice, the remarkable effects of inbreeding on
normally outbreeding organisms leads us to expect that the difference between two
homologous chromosomes of an inbred line will be much less than differences
between two chromosomes taken from different strains, and this is all that is required
to justify the working assumption that inbred parents are homozygous.

In the simplest case of hypothetical strains of Drosophih, with exactly one
crossover per chromosome in the female (and none in the male) we would be dealing
in the F2 and first backcross generations with chromosomes, each derived as one
length from one parent joined to one length from the other parent. These lengths
will of course differ in different individuals. Chromosomes composed of four shorter
lengths (of the parental chromosomes) would appear in the F3. It would be better
to use means, rather than variances, when comparing different generations; for the
chromosome pieces are of different lengths in different individuals and in different
generations, and this will affect the variances but not, so much, the means. It may
also be noted that the number of ' effective factors' will be at least twice or thrice
the haploid chromosome number. As long as estimates of this number of effective
factors take impossibly low values, little confidence can be placed in the other results
of polygene analysis. The more complicated an analysis, the more desirable it is to
be able to check on the plausibility of the model employed. The number of effective
factors is the only criterion available here, so that it is very dangerous to gloss over
the unfortunate estimates actually obtained.

In polygene algebra it is usual to assume that any gene substitution has a particu-
lar effect on the phenotype irrespective of the composition of the rest of the genotype.
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Any deviation from this is treated as gene interaction. However, it seems reasonable
to suppose that the effect of a ' good' gene may be less in a' good' genotype than in a
' bad' one; in other words, that a law of diminishing returns will operate. (The word
'gene' here means ' chromosome length' as above.) Rasmusson (1933) explores one
aspect of this idea. Such curvature of the gene response-curve may certainly be
described in terms of interaction between additive genes, but only as a combination
of many small interactions of all orders, so that in practice the additive way of
thinking is very poorly adapted to the situation. It appears that polygene analysis
is peculiarly sensitive to this type of interaction. As an example, we may consider
a case of eight fully dominant genes, each with effect +1, in an experiment involving
F2 and backcrosses. The genes all act in the same direction in each parent, so that
if the value for the smaller parent is 100, that for the larger is 108. An 8% difference
between parents seems reasonable in breeding material. The linear and non-linear
gene response curves are taken to be:

A
B
C

f

0

100
100
100

1

101
102-
100-

1
97

2

102
103-8
101-94

Number of genes
A

3 4
Phenotype

103 104
1051 1061
102-93 103-92

5

105
106-9
104-93

6

106
107
105

•4
•94

7

107
107
106

•8
•97

8

108
108
108

Here A is the additive case, B a case of 'diminishing returns', and C a purely
multiplicative system where each successive gene multiplies the phenotypic value
by 1-00967. Since we know that the genes all act in the same direction in each
parent, we are entitled to estimate the number of effective factors. The means,
variances, and estimates of D, H and k are:

C

Parent
Parent
F j

B i
F 2

B2

D
H
k

1
2

Mean

100
108
108
104
106
108

2
2
8

Variance

0
0
0
2
1.5
0

Mean

100
108
108
105-8
107-3
108

- 1
5

- 8

Variance

0
0
0
1-816
0-451
0

•83
•46
•7

Mean

100
108
108
103-93
105-95
108

2
1
7

Variance

•21
•79
•2

0
0
0
2000
1-553
0

Example A of course fulfils the assumptions of the analysis perfectly, and so
the estimates are correct. Example B is quite severe, but not at all unreasonable.
As may be expected, a local flattening or steepening of the gene response curve
alters the variances considerably, but the means only slightly. The estimates of D

https://doi.org/10.1017/S0016672300000586 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300000586


Polygene analysis 99

and H, obtained as differences between multiples of the variances, are affected even
worse. In example C there is a very slight deviation from the additive model in any
individual phenotype, amounting to at most 0-08% (or 1% of the difference between
the two parents). The means are affected to a similar extent, but one of the vari-
ances is increased by 3-5% and the estimates of D, H and k have consequently
altered by 10%. This hardly bears out the opinion of Mather (1949) that 'a small
departure from additiveness is not in any case likely to engender serious difficulties
or errors'. Small but systematic departures can cause big trouble. A similar con-
clusion applies to other estimates of the number of effective factors, for such
estimates are usually the square of a statistic of order n divided by another statistic
of order 2n.

Now, as Mather (1952) points out, scaling tests are an essential part of the
analysis. The means in examples B and C fail two of the three possible scaling tests
and consequently it is not permissible to make the estimates of D, H and k until the
data have been transformed. Unfortunately, the above examples show that, since
the means are so much more stable than the variances, scaling tests may be satisfied
to within the limits of experimental error while the variances remain quite mis-
leading. Examples in the next section, using real data, show that genuine (and
recognizable) departures from additivity can occur which the scaling tests are too
insensitive to pick up. In practice the means must be estimated more accurately
than they are at present if scaling tests are to be of any use. A further objection
is that a particular scale may appear to suit a given set of data, but might have
failed to satisfy scaling tests on further crosses (involving the same material) which
have not in fact been grown. This objection, trivial until the extreme importance
of scaling tests is realized, appears to be insuperable. There is of course no guarantee
that a scale that suits the genes on average will suit each individual gene. This
objection is minimized if we consider only the means, not the variances.

It is obviously important, in any type of statistical analysis, to use a method that
not merely gives the right answer if the assumptions involved are exactly fulfilled,
but is not ruined by reasonable deviations from these assumptions. Such methods
are called 'robust' by Box & Andersen (1955), who discuss the robustness of various
commonly-used statistics. We see that polygene analysis, which uses the means to
provide a check and the variances as sources of estimates, is not robust since the
variances are considerably more sensitive than the means. It is in fact well known
to professional statisticians that the variance-ratio and Bartlett's test, concerned
with variances per se, are more sensitive to deviations from Normality than is the
<-test. Once again, it would be better to estimate from the means and use the vari-
ances as a check. As in normal statistical practice, transformations would then be
used only if demanded by the error structure (or as an aid in solving maximum
likelihood equations). Since the situation is sensitive to curvature of the gene
response curve, it seems reasonable to allow for such curvature in the analysis. Of
course, it cannot be expected that such an analysis will more than approximate to
the true situation, but it may be sufficiently robust to permit useful estimation of
possible short-term selection results. On the other hand, it may not. The matter is
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explored further in the next section, but it is clear that little confidence can be
placed in the detailed results of polygene analysis in its present form. ' If you get on
the wrong track with the Mathematics for your guide, the only result is that you
get to the Valley of Mare's Nests much quicker; get there so smoothly and easily
that you do not realize where you are and it may be hard to unbeguile you' (Yule,
1920).

ALGEBRA

This section explores a way of increasing the robustness of polygene analysis. It
appeared above that it would be preferable to use family means, rather than vari-
ances, for estimation. This is impossible as long as the additive hypothesis is
adopted, since this hypothesis imposes certain constraints on the means. If the
means actually observed do not satisfy these constraints ('scaling tests') the only
thing to do is to transform the data as directed by these scaling tests. Unfortunately,
these tests have to be very precisely satisfied before we can have much confidence
in estimates derived from the variances. An alternative approach is to loosen the
constrictions imposed by the additive hypothesis. I shall consider here the substi-
tution of a gene response curve of the type (a + x) 0x instead of the additive (a + x).
This new function, by combining additive and multiplicative gene action, can give
a wide range of curves of different types, including (1) a ' diminishing returns' curve
(6 < 1) where the effect of any one gene decreases as the phenotype departs from
the origin a, (2) the additive system (8 = 1), and (3) a multiplicative type of action
(0 > 1, x/a small). It leads to tractable—even elegant—algebra and can, of course,
be extended to include sines and cosines by taking imaginary values of 6. It may
turn out that, by fitting such a flexible hypothesis to the observed means, a suffici-
ently good approximation to the true situation can be made. Extreme caution is
necessary since, the more complicated a statistical analysis, the less trustworthy
are its results (and conversely, the simpler an explanation of a biological pheno-
menon, the more superficial it is likely to be). All the same, it is worth while attempt-
ing direct estimation from the means. The advantages include the statistical
robustness discussed in the previous section, the fact that we can average over the
effects of chromosomes broken by different numbers of crossovers and at different
places (whereas the variances must be inflated as a consequence of the variability
of crossover positions) and the consideration (since we are interested in predicting
genetic advance under selection) that prediction from means to means is likely to
be safer than from variances to means when the assumptions on which the analysis
is based go wrong.

I shall consider a simple experiment consisting of two (homozygous) parents,
their F1; F2 and two backcrosses Bx and B2. Of the (f+g) loci at which the parental
genotypes differ, / ( > g) are homozygous for 'good' alleles in P r The phenotype
of an individual homozygous for I 'good' alleles, n 'bad', and heterozygous at m
loci is
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Then the generation means are:

Pi
+ (f+g)h

[ 8-1

P2 and B2 are obtained by exchanging/ and g in the expressions for Pj and Bx.
At first sight, we may hope to omit the dominance term; apparent dominance

might be explained by curvature of the gene response curve. But we shall see below
that published data require the retention of a term for dominance. The means may
then be written (approximately) as:

(b + 2d2)x
2

P 2

B2 (b + d1-d2 + h1-h2)x~
F2

F3

where 2d1 =
 (^zA(f+g)d, 2d2 = (f-g)d,

2h1 = (f+g)h, 2h2 = ^ ( f -

x — and I I is approximated by 8.

These expressions are symmetric in the sense that Px and P2 can be interchanged
by reversing the signs d2 and h2 and reciprocating x. Evidently dx, d2,h1, h2 represent
average genetic effects. At first sight it seems that if 8 = 1, x = 1 and dx = h2 = 0.
Further consideration of these formulae shows, however, that x represents a general
curvature of the scale of measurement while dx is a kind of interaction between
(6—1) and d; it is in fact concerned with the possibility that the size of the contri-
bution ±d may be different for 'positively' and 'negatively' homozygous loci.
Incidentally, it should be noted that dx becomes more important in later generations
with greater scatter of the genotypes. Thus x, dx and h2 each measure their own
characteristic kind of departure from additivity; it is quite possible to have x = 1
and yet find non-zero values for dx, h2. On the face of things we would expect h2

(a second-order interaction) to be less important than x or dx. If we regard x and
dt as independent entities in their own right, we are freed of the assumption (made
above implicitly) that all genes have the same numerical effect.

Now
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so that negative values of dY permit the F2 mean to be significantly less than the
geometric mean of the two backcrosses. It may be that these cases arise in practice
only for artificial characters like average fruit weight where the natural direction
of increase of the denominator (fruit number) is reversed. For clearly, if

F | > B ^ , then

None the less, we still want to be able to analyse artificial characters as they stand,
at any rate until it transpires that separate analyses of numerator and denominator
are obligatory. Now, such cases are impossible in additive polygene analysis, for
the scaling equalities

2BX = P! + F1; 2B2 =
4F2 = 21

lead immediately to 16(F1-B1B2) = 4 ^ -B 2 ) 2 = (P1-'P2)
2. There are four pub-

lished cases (Mather, 1949; and Smith, 1952) which satisfy these scaling tests and
also permit us to compare these three quantities.

16(F2-B1B2)
4(B1-B2)s
(Pi-P2)2

Mather,

DxJ 1938

26-90
14-82
13-32

p. 44

D x J 1939

52-47
8-36
809

Smith,

Plant height

-1022-4
492-8
364-8

p. 164

Leaf length

- 3 2 0 0
400
1-21

I t appears that these three estimates of the same genetic trait can be quite
contradictory even when the scaling tests are satisfied to within sampling error.
(P1 —P2)

2 is used in estimating the number of effective factors. Since from the
genetical point of view we could equally well use either of the other expressions (or
a combination of all three), it appears that the estimate is to a large extent at the
choice of the experimenter. The trouble is, of course, that F | — Bx B2 is the relatively
small difference between two large quantities, so that an insignificant change in
F2, 31 or B2 can convulse F | — Bx B2. As may be expected, 4(BX — B2)

2 comes out
similar to (P1 — P2)2, but sometimes so much bigger as to alter seriously the estimate
of the number of effective factors.

The negative values of F | — ̂ B± B2, although not significant, suggest that Smith's
acceptance of an additive genetic system needs re-examination. Putting non-
significant parameters zero, we find that for plant height b = 37-5, hx = 3-1,
x = 1-140, and for leaf length b = 11-15, x = 1-032. These figures give expectations:

P i

F i

F 2

B i
B 2

Plant height

Observed

47-8
28-7
43-2
40-6
47-3
36-2

Expected

48-8
28-8
43-7
40-6
46-3
35-6

Leaf length

Observed

11-6
10-5
1 1 1
11-2
11-8
10-8

Expected
11-87
10-47
1115
1115
11-51
10-80
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In the case of plant height the additive dominance term could be replaced by a
multiplicative type, so that it appears that a multiplicative genetic system would
be more appropriate to these sets of means than an additive system. The scaling
tests are not good enough to guarantee additivity. The D x J 1938 data used by Mather
provide a further example. In the following analysis I have pooled the errors of the
six means and have consequently used unweighted least squares. Fitting the
additive model (i.e. setting dx = h2 = 0, x = 1), the goodness-of-fit x2 is 5-207
(3 d.f.), which bears out the result of the individual scaling tests that no departure
from additivity is apparent. However, closer investigation shows that a non-
additive model fitting dx but keeping h2 = 0 and x = 1 reduces this value of \2

to 0-760 (2 d.f.), i.e. the x2 due to fitting dx is 4-447 (1 d.f.). This procedure certainly
involves an element of selection, but nevertheless it again appears that the new
analysis is capable of picking up deviations from additivity that pass unnoticed by
the scaling tests, i.e. is more sensitive than the additive analysis.

Now it can be seen that as long as we restrict ourselves to the first and second
generations, it will be difficult to separate the effects dx and h± accurately. This
means that any practicable polygene experiment restricted to F2 and first back-
cross will, however analysed, be rather insensitive to interactions of the type
epitomized by dv Such interactions are precisely the sort best calculated to ruin
predictions of genetic advance. To avoid this impasse, further generations must be
included even though the parental chromosomes are further broken up by recom-
bination and there is now the possibility of selection. Comparison of F1; F2 and F 3

means gives a direct test of the existence of dv independent of x.
It may be objected that, with the curved gene response, an arbitrary change of

origin is no longer entirely absorbed by a corresponding change in 6. This difficulty
will not be very serious if x — 1, and in any case there is usually a natural origin.
Another point is that where F | significantly exceeds Bx B2, two solutions are possible.
This difficulty, which again can be removed by including the F3, is unimportant
since the alternative solution is an improbable one wherein x is considerably
different from 1.

CONCLUSION

There are two possible ways of meeting the difficulties. One is to retain the usual
polygene analysis of second-degree statistics, but paying much more attention to
the question of scale. The scale should be tailored to fit the observed means, rather
than be taken ready-made from a book of mathematical tables. It is clear that
once the curved model has been fitted to a set of means, a back transformation can
be used to return to an additive model. If, from the infinity of possible transforma-
tions we choose the one that restores our curved model to linearity everywhere, the
additive analysis of the transformed data will correspond exactly to the curved
analysis of the original data. This reverse transformation cannot (in general) be
expressed as an explicit algebraic function. Now it is generally understood that the
method of unweighted least squares, formerly advocated for the estimation of
polygene components of variance, is inefficient (and therefore misleading) and must
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be replaced by weighted least squares or maximum likelihood. I submit that the
arbitrary selection of scale must also be replaced by more accurate methods.

But in my opinion it is asking for trouble to subject second-degree statistics to
any more searching analysis than, say, division into genetic and environmental
components (and even this gives unsatisfactory results only too often). I consider
that the more complicated analysis into components for dominance, epistacy and
the like leads in practice only to self-deception or frustration. This certainly seems
to be true at the present time, and the considerations mentioned above suggest that
it will go on being true. If, as seems advisable, we restrict ourselves to a more modest
analysis of means (using variances only as indicators of accuracy), it will be simpler
to work in terms of the curved model. It may also make better biological sense,
for the curved gene response curve is a combination of additive and multiplicative
effects, whereas the reverse transformation must usually appear somewhat arbit-
rary. The data of Giesbrecht (1959), published in sufficient detail for us to try the
effect of transformations, illustrate this point.

The estimates are:

X

b
d1

d2

K
h.

Days

1954

0-93
9 3 0

- 1 0
13-6

- 6 - 5
0

to silking

1955

1065
77-8

- 0 - 3
1-8

- 2 - 8
0-6

Days to pollen

1954

0-88
93-7

- 1 - 8
17-8

-7 -7
- 0 1

shedding

1955

1 0 5
74-2

- 0 - 5
2-3

- 2 1
0-6

It again appears that the analysis is capable of quite credible results, in that d1

and h2 do not come to much. Indeed, we might profitably set h2 permanently zero.
On the other hand, quite similar sets of data give rise to dissimilar estimates. The
present situation is perhaps as over-flexible as the additive analysis is inflexible, so
that inclusion of the F3 is essential to steady the estimation. Now, as Giesbrecht
points out, it is difficult to find a satisfactory transformation to linearity. In the
case of 1954 'days to silking', for example, only one of the scaling tests fails. All
would be well if the lower parental mean were l£ days earlier. It appears, therefore,
that the required scale will be roughly linear except for a sharp drop at the lower
end. When constants are fitted to this lower end, however, we find from the distri-
butions quoted by Giesbrecht (p. 333) that a suitable scale would replace 1, 2, 3, 4,
5, 6, etc., by 0, 17, —6, 7, 5, 6, etc. The simplest polynomial transformation is
equally unsatisfactory, for it rises and then falls again with time instead of steadily
increasing. I have no doubt that a more sensible scale could be found; but it will
not be found easily. Similar difficulties arise with Giesbrecht's other data, and
indeed are likely to be common once the necessity for precise scaling is accepted.
This new type of analysis therefore seems to offer some advantage in flexibility—
and credibility—over the usual linear model. It is clear that a large experiment is
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essential for the investigation of any polygenetic situation; no satisfactory approxi-
mation to reality can be obtained from half a dozen family means. This conclusion—
scarcely surprising—suggests that such sophisticated analysis will always be too
expensive for practical breeding work. The curvilinear analysis does, however, show
some promise for strictly genetical purposes. Even if it turns out to be still insuf-
ficient to describe the complexities of real life, it can at least keep the mathematicians
occupied.

SUMMARY

The usual conventions are relaxed to permit the introduction of a curved genetic
model that shows some attractive features. Linear polygene analysis is examined
in the light of this more flexible model. It is shown that great care is necessary in
the choice of scale, since variances are more sensitive than means to small deviations
from additivity. Inclusion of the F3 is necessary for successful prediction by extra-
polation. The genetical validity of any type of polygene analysis is discussed. The
new model is quite promising for the analysis of means; but I think that the (more
ambitious) analysis of variances is likely to remain intractable, for both genetical
and statistical reasons.
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