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ON COMPACT PERTURBATIONS OF OPERATORS 

JOEL ANDERSON 

Recently R. G. Douglas showed [4] that if F is a nonunitary isometry and 
U is a unitary operator (both acting on a complex, separable, infinité dimen­
sional Hilbert space 34?), then V — K is unitarily equivalent to V 0 U 
(acting on 3rf? ®34? ) where K is a compact operator of arbitrarily small norm. 
In this note we shall prove a much more general theorem which seems to indi­
cate "why" Douglas' theorem holds (and which yields Douglas' theorem as a 
corollary). Our theorem is based on the Calkin algebra analogue of the follow­
ing well-known fact: If X is an eigenvalue for the operator T which lies in the 
boundary of the numerical range of T, then the eigenspace determined by X 
reduces T. 

If T and S are operators acting on Hilbert spaces 3tif\ and J^2 respectively, 
we shall write T ~ 5 if for each e > 0 there is a compact operator K such 
that T — K is unitarily equivalent to S, and the norm of K is < e. We shall 
show that a large class of operators have the property that T = T 0 N where 
N is any normal operator such that <r(N) the spectrum of N lies in a certain 
set (determined by T). In particular, if Tv is a Toeplitz operator and N is a 
normal operator such that <J(N) lies in the set of extreme points of the convex 
hull of *(Ty) then Tv = T9 © N. 

In what follows & (34? ) will denote the algebra of bounded linear operators 
(henceforth, simply "operators") acting on a fixed complex, separable, infinite 
dimensional Hilbert space Jf7. The Calkin algebra ^ is the C*-algebra which 
results from forming the quotient space: 3) (ffl ) modulo the ideal of compact 
operators. For an operator T we shall let Te denote the coset in *$ which 
contains T. Recall that the spectrum of T is by definition the set a(T) = 
{\:T — XI is not invertible} and the numerical range of T is by definition the 
set W(T) = {(Tf, f ) :/ is a unit vector in 34? }. The analogous objects for *$ 
are the essential spectrum <re(T) = {\:Te — \Ie is not invertible in ^\ and 
the essential numerical range We(T) = {pe(Te):pe is a state on the Calkin 
algebra}. It is well-known that W(T) is convex, bounded and that W(T)~ 
contains a(T). Similarly We(T) is convex, compact, and We(T) contains 
ae(T). Further, it is clear from the definitions that We(T + K) = We(T) and 
(Te(T + K) = <re(T) for all compact operators K. (The reader is referred to 
[5 ; 10] for proofs of these and other basic facts concerning We(T) and <re(T).) 

The main theorem. We begin with the Calkin algebra analogue of the 
result mentioned in the introduction. 
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L E M M A 1. Let T be an operator and suppose that there is a complex number X 
in dWe(T) (dWe(T) denotes the boundary of We(T)) and an infinite rank pro­
jection P such that TP — \P is a compact operator. Then PT — \P is also a 
compact operator. 

Proof. By translat ing and rota t ing we may assume tha t X = 0 and t h a t 
We{T) lies in the closed right half plane. Let T = A + iB where A and B 
are the real and imaginary pa r t s of T. Then PAP = \(PTP + PT*P) is 
compact . Fur ther , since We(T) is contained in the closed r ight half plane Ae 

is a positive element of ^ . Let Ce be the positive square root of Ae in ^ . 
Then for any s ta te pe on ^ 

\pe(AePe)\* S pe(Ce*)pe(PeAePe) = 0 

and it follows t h a t AP is compact . Hence, iBP = TP — AP is compact and, 
therefore, PT is compact . (This a rgument is a slight generalization of a proof 
due to Stampfli [9].) 

T H E O R E M 2. Let T be an operator and let X belong to <re(T) H dWe(T). Then 
T = T\ © X I , where the I is infinite dimensional, We{T\) = We(T), and 
<re(Ti) = <re(T). 

Proof. Since X is in <re(T) by a theorem of Fillmore, Stampfli and Will iams 
[5] there is an infinite rank projection P such t h a t either TP — XP or PT — 
XP is compact . Tak ing adjoints if necessary, we may assume t h a t TP — XP 
is compact . Hence, by L e m m a 1, PT — XP is compact . Now, given e > 0 we 
may replace P by a smaller infinite rank projection so tha t P T — XP and TP — XP 
both have norm less than e/3 and so t h a t the operator T± = (I — P)T(I — P) 
restricted to ( / — P) *%? has the same essential spectrum and essential numer i ­
cal range as T. Let t ing K = TP + PT(I — P) — XP, i t is easy to check t h a t 
the norm of K is less than e and t h a t T — K has the desired form. 

COROLLARY 3. Let T be an operator and suppose {Xn} is a sequence of complex 
numbers which belongs to <re(T) P\ dWe(T). Then T ~ T' © Z), where Tr is an 
operator and D is the diagonal operator ^XnPn determined by an orthogonal family 
of infinite rank projections {Pn}. 

Proof. By Theorem 2, there is a compact operator Kx of norm less than 
e/2 such t h a t T — Kx is unitari ly equivalent to T\ © XJ., and 7 \ has the same 
essential spectrum and essential numerical range as T. Thus , applying Theorem 
2 to T\ we may find a compact operator K2 of norm less than e/4 and such t h a t 
Ti — K2 is unitari ly equivalent to T2 © X2/ where T2 again preserves the 
essential spectrum and the essential numerical range. Clearly we may now 
proceed inductively to obtain the desired infinite sequence. 

L E M M A 4. Let N be a normal operator and suppose D is a diagonal operator such 
that N — D is a compact operator of norm less than e. Then there exists a diagonal 
operator D\ such that N — Di is a compact operator of norm less than 2e and 
such that <T(DI) is contained in <r(N). 
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Proof. Let {Xn\ be the sequence of eigenvalues associated with D. Let Ek = 
{w:dist(Xw, <r(N)) è l/k}. If any Ek were infinite then N — D would not be 
compact . Now let Dx be a diagonal operator obtained by shifting each \n by 
the smallest length needed to move it into a(N). Clearly D — Di is a compact 
operator of norm less than e and the result follows. 

T H E O R E M 5. Let T be an operator. If N is a normal operator such that a(N) is 
contained in ae(T) P\ dWe(T), then T ~ T ® N. 

Proof. By a theorem of I. D. Berg [2], N = D where D is a diagonal operator. 
Hence, by the lemma, N ~ D\ where v{Di) is contained in <r(N). Thus , i t 
suffices to show T ~ T ® D where D is a diagonal operator whose spectrum 
is contained in ae(T) r\ dWe(T). Now by Corollary 3 

T^T'®D®D®-'=D®T'®D®D®-'-~D®T=T®D. 

A p p l i c a t i o n s . Recall t ha t a convexoid operator is by definition an operator 
such t h a t conv <r(T) = W(T)~. In what follows we shall use the fact (due to 
P u t n a m [8]) t ha t the set irœ(T) U ae(T) contains d<r(T) for each operator 7 \ 
where TT^ÇT) denotes the set of isolated eigenvalues of finite multiplicity 
i n c r ( r ) . 

In wThat follows the convex hull of a set and the extreme points of a set shall 
be denoted by conv( • ) and ext( • ) respectively. 

COROLLARY 6. Let T be a convexoid operator and let 8 denote the set 
ext(conv a(T))\irœ(T). If N is a normal operator such that <r(N) is contained in 
Ô then T « T ®N. 

Proof. If X is in 8 then X is in da(T) and, hence, by P u t n a m ' s theorem X is 
in (Te(T). Thus , X is in We(T). But since T is convexoid X is in dW(T)~ and, 
hence, X is in dWe(T). 

Note t ha t if 8 contained only a finite number of points, it would follow tha t 
<ie(T) contained only a finite number of points. Thus , if o-e(T) is infinite we are 
assured tha t 8 is an infinite set. 

Let L°° and L2 denote the sets of all (equivalence classes) of essentially 
bounded functions and square integrable functions on the uni t circle respective­
ly and let H2 denote the Hardy space of functions analytic in the uni t disk with 
square integrable boundary values. Then H2 may be viewed as being contained 
in L2 so we may let P denote the projection from L2 to H2. If <p is an element 
of L°° the Toeplitz operator induced by <p is the operator acting on H2 deter­
mined by the equation Tvg = P(<pg). We shall use the following facts about 
Toeplitz operators: 

(i) T9 is convexoid [3, p. 99]. 
(ii) T œ ( r , ) H dconv a(TJ = 0 [3, Theorem 10]. 

(iii) conv <r(T9) = conv R(<p) where R(<p) is the essential range of <p [3; 6] . 

COROLLARY 7. Let Tv be a Toeplitz operator and let ext(Tv) be the set of 
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extreme points of conv a(Tip)(= the set of extreme points of conv R(<p)). If N 
is a normal operator such that <r(N) is contained in ext(T^), then T ~ T ® N. 

Proof. This follows from Corollary 6 and (i), (ii) and (iii) above. 

COROLLARY 8 [4]. Let Tzdenotethe (simple) unilateral shift. Then Tz ~ TZ@U 
for all unitary operators U. 

Proof. The extreme points of conv <r(Tz) are the points on the unit circle. 
The corollary now follows from the fact that a normal operator is unitary if 
and only if its spectrum is contained in the unit circle. 

In closing we remark that Pearcy and Salinas [7] have (independently) 
obtained results similar to those given here for a different class of operators. 
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