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ANALYTIC CAPACITY FOR TWO SEGMENTS
TAKAFUMI MURAI

§1. Introduction

The analytic capacity 7(E) of a compact set E in the complex plane
C is defined by 7(E) = sup|f’(c0)|, where — f/(c0) is the 1/z-coefficient of
f(©) at infinity and the supremum is taken over all bounded analytic
functions f() outside E with supremum norm less than or equal to 1.
Analytic capacity 7(-) plays various important roles in the theory of
bounded analytic functions.

It is known that 7(&) < |E|, where |.| is the (generalized) length
(i.e., the 1-dimension Hausdorff measure [3, CHAP. III]) and that the
inverse relation does not exist, in general. In fact, Vitushkin [14] con-
structs an example of a set with positive length but zero analytic capac-
ity, and Garnett [3, p. 87] also points out that the planar Cantor set
with ratio 1/4

E(1/4) = N E,

satisfies the same property. Here E, is the unit square [0, 1] X [0, 1] and
E, is inductively defined from E,_, with each square @ of E,_; replaced
by four squares with sides 4-" in the four corners of @. The set E, is a
union of 4" squares with sides 4-", and the projections of these 4" squares
to the line %: y = x/2 do not mutually overlap. Hence if we choose %
as a new axis, then E, seems like a discontinuous graph. From this
point of view, the author [8, CHAP. III] defined cranks and studied their
analytic capacities: Cranks are nothing but deformations of sets of
Vitushkin-Garnett type, however, these discontinuous graphs simplify the
computation of analytic capacity and enable us to construct various ex-
amples [8, Theorem F], {9]. Hence clarifying the geometric meaning of
cranks 1s important and would be applicable to study analytic capacities
of general sets. (Cranks are closely related to fractals (Mandelbrot [6]).)
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Here are simple cranks of degree 1:
ri+iy)=[-121210Q0+iy+ [-1/2,12) (y>0).
This is a subclass of
I'z)=[-1/2,121 U(z+ [-1/2,1/2)) (2¢0),
where, in general, (z4 wE) ={z+ w¢; £ e E} (2, weC; EcC C). The
purpose of this note is to study 7(2) = 7(I"(2)) (z e C) and show a role of
cranks I'(1 + iy) (¥ > 0) in an extremum problem.

In fluid dynamics, I'(z) is a model of biplane wing sections, and the
study of flows obstructed by I'(z) is classical (Ferrari [1], Garrick [3]).
As is well known, there exists uniquely an analytic function f,({) outside
I'(2) such that
(1) f,(® is integrable on 3I'(2)? (with respect to the length element

[dC]), f.(©) is real-valued continuous on 3I'(2) and f,(c0) = —1,
(2) |fAp)| exists at the right endpoint p of each component of I'(z)
(Joukowksi’s hypothesis).
Here 9I'(2) is the subboundary of I'(z)° which corresponds to I'(2)-
{endpoints of I'(2)} topologically; 3aI'(z) has two sides. Condition (1) means
that £,(0) is a velocity field obstructed by I'(2) with velocity i at infinity,
and (2) means that vortexes at endpoints of I'(z) are negligible. We
define the lift coefficient for I'(z) by

2@ = 2| [ rerag|(= Sife).

Using Blasius’ theorem [7, p. 173], Kutta-Joukowski shows that 4z.%(2) sin«
gives the lift for I'(z) with respect to the velocity field with density 1
and velocity e’ at infinity (0 < @ < 27) (cf. [7, CHAP. VII], [3]). In the
section 2, we shall give a formula for 7(2) in terms of #(2) and shall show
that £(2) < 7(z) (Theorems 1 and 2). To compute 7(2) practically, it is
necessary to study the so-called modulus-invariant arcs. In the section
2, we shall show two lemmas (with respect to modulus-invariant arcs)
which will be used later. Using our formula along modulus-invariant
arcs, we shall show, in the section 4, that the behaviour of 7(z) near 1
is critical (Theorem 8). In the section 5, we shall show that

g, = min,,, (1 + )/r(1),

where ¢, is defined by the infimum of 7(x + iy)/r(x) over all real numbers

® The condition “limeyo [;_ =, |f21d0|=0 (p==%1/2, 2+1/2)” is required.
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x and y (Theorem 18). Since 7(z) = 1/2, 20, equals the minimum of ana-
lytic capacities of cranks I'(1 + iy) (y > 0). This shows that the com-
putation of 7(1 + iy) (y > 0) is essential in this extremum problem. We
shall also show a practical method to estimate ¢,, Theorem 13 suggests
that E(1/4) is an extreme in a sense. Our method works for unions of
two segments with different length, however, this is not applicable to
unions of three segments.

I'(2)

ne

7@ = 1(['(2))

e

—1/2 1/2

§2. A formula for 7(2)

In this section, we give a formula for 7(2) (ze C). Without loss of
generality, we may assume that z is contained in P = {{e C; Re¢ > 0,
Im ¢ > 0}, where Re{ and Im{ are the real part and the imaginary part
of ¢, respectively. A domain I'(z)° is univalently mapped onto a ring
{LeC; r<|g|<r'}. The modulus of I'(2)° is defined by mod (I"(2)?) = r’[r
[12, p.199]. An arc 2 in P is called modulus-invariant, if mod (I'(2)°) is
a constant on 1. For ze P, Imz > 0, A(2) denotes the modulus-invariant
arc in P with endpoints z and a real number; this real number is uniquely
determined by z and larger than 1. In this section, we show the follow-
ing two theorems.

TueoreMm 1. For ze P, Imz > 0,

_ 1, Imz 7€) _ 1 ddmg)
(3) T(Z)_‘z‘Jr 2 M{g(c) 1} (Im¢y ’

where z is chosen as the initial point of this curvilinear integral.

THEOREM 2. Z(2) < 1(2) (ze P). Equality holds if and only if z is
real.

Since z is the initial point of the integral in (8), Theorems 1 and 2
show that 7(2) < 1/2 (ze P, Imz > 0). Here are some lemmas necessary
for the proof. The following lemma is a version of biplane theory to
analytic capacity (Ferrari [1], Garrick [3], Sasaki [13, pp. 208-213)).

LEmMA 3. For 0< k<1 and t > 0, we define
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(4) &) = [2mi + (1 + B¢ — V{2mi + (1 + EHEY — 4(1 + E*)(mi + tz)]“2 ,
’ 2(1 + k)

(5) 7.0 = [2mk + 1+ k) + \/{kaz-({-l (1 —Zzzz))ﬁ}z 40+ B (mt + tz)]l/z

1O = o+ [ (s) — 6@)ds,

where
.;l E®) =2f”* mi, —
¢ KE)® F Ve — 141 ks
, 1 1 — K%t ” ds , —
E(k)=foJ—_1_sf ds, K(¥)— Jm S —
Let
zk(t) = xk(t) + iyk(t)
=14 { =t 2 60ds + E G
Then
(6) 1(z(t) = {1—;—’3¢t2+ AR

Proof. Since this lemma plays an important role in the proof of
Theorems 1 and 2, we give the proof of this lemma, for the sake of
completeness. For 0 < £ < 1 and t > 0, we write & = £,(t) and 7 = 7.(9).
Take a Schwarz-Christoffel transformation

2 2 .
d UL ds — ii¢,

4
f<c>:j°¢s—1¢s+1«/ks—lx/ks—{—l

where we choose a branch of the square root so that the upper half
plane is mapped to the positive orthant. Since

2

1/k s*ds /J’
m;, =
S UV s VS gy <2 Js_1¢1_k2

f(©) univalently maps {[— 1/k, — 1] U [1, 1/k]}* onto {(— a + i[a_, 8.]) U
(@ + i[a,, B.])}° for some a >0, a, < B.. (See [13, pp. 208-213].) Pomme-
renke [11] shows that 7(E) = |E|/4 if E is a compact set on the real line.
Since
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}imf(C)/C = (1/k) —it,
the conformal invariance of 7(-) and Pommerenke’s theorem show that

T((_ a + i[a—’ ‘B—»]) U (a + i[a+’ 18+]))

_ \% —it|r(~ 1k, ~ UL, 1/RD = L

ke
t+ k.
ok Vi +

Legendre’s formula
E(R)K(K) + E(R)K(k) — K(R)K(K) = =/2 [4, p. 291]
shows that

1 2 2
9a = 2R 1=2j mi — 8 ds=_ T .
¢ e/ WIS I EE . BE()

Let

@ = mi — s’ d 1 1E).
Vi) jwsz_wl_w s (1<x<1/R)

Then (4) and (5) show that
1<e<m, y@=t; m<p<1lk, yilp)=—1t.
These inequalities yield that
Bi=1el§) — 16, a,=—lp —tp, a.=—4,,

and hence

ﬁ+ -, = \!’k(v) + ‘Pk(&) '+' t(7) - S) ’
a. — B, =2t — 2, (§) .

Rotating, translating and normalizing (— a + i[e_, 8_]) U (a + i[a,, 8.]), we

obtain
1—F%k —5 1
# — L TR PR ,
M) = g S T @ T 1 =9
%% — 20(6) + inf(FE )}
¥(f) = 1 .
HO =t S @ T g — O
Since

L) - 80 = — 80, NEO) =2,
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we have

(1) i) — 0 = 2 — [ e.00ds.
In the same manner,

(8) et + tlt) = 2+ [ s
Thus

(9) @) + VD) + Hn(®) — &) = L), 2O = 20) .
which yields (6).

LEMMA 4 (the lift formula). The function #(z) is continuous on P
and

10 L) = {kt + .}:_t}”_(‘z)k%(f)(_‘) O<k<1,t>0).

This lemma is known in fluid dynamics ([1], [3], [13, p. 213]). The
outline of the proof is as follows. For 0 < k<1 and ¢ > 0, let f(¢) be
the Schwarz-Christoffel transformation used in the proof of Lemma 3.
Then if({) univalently maps {[— 1/k, —1]U[1, 1/k]}* onto a domain similar
to I'(z,(?))¢, say R. For real numbers U, V, p, n, we take

—ve—iv[ S om g [ s—n
Q@) = Ut zVJ'M/sz_wkzsz_lds o[ et R

Then —dd—Q(h(w)) is an analytic function in R, where A(w) is the inverse
w

function of if({). Using Joukowski’s hypothesis and (the argument of
d

dw

malizing R, we obtain f,,,({). Computing f/ (o), we obtain (10).

Q(h(0))) = — n/2, we determine U, V, p, n. Translating and nor-

Lema 5. 2 = f: {% — nk(s)}ds - f: Els) —1ids  O<E<1).

Proof. Since

%—mm=owm E() — 1= 00"  (t—> o),

two integrals in the required equalities converge. Equality (8) shows that
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[ {5 —n@)ds =2 — nmy + {5 - n0}.
Letting ¢t tend to infinity, we obtain
I: {]13 - m(S)}ds = ? — (1/R) =

Thus the first equality holds. Analogously, (7) yields the second equality.

In order to prove Theorems 1 and 2, it is necessary to use the fol-
lowing property:

(11) To ze P, Imz > 0, there corresponds uniquely a pair (&, ¢) so that
z2(t) = z and A(2) = {z,(s); s >t} U{(1 + B/ — k)}.

This property will be shown in the next section. Here we give the
proof of Theorems 1 and 2, assuming (11). First we give the proof of
Theorem 1. For ze P, Imz > 0, let (k,¢) be the pair in (11). Equality
(10) shows that

(o) = — = LG _ 2 &)
Yi(s) = BK(E) 1,(s) 1) ¥(8)
= izfzkizgf @)yls)  (>0).

Thus we have, by Lemmas 4, 5, (6) and (10),
7(2) — 1/2 - ;T(zk(t)) —1/2 _ k2K(k )(2) (21(z,(t) — 1}

Imz ¥:()
_ REK®) (1—k g _ _
— BEE) (1R yFFw — o — [ (ls) — eutods)
_EBKE)[1—k[ morae )\ _ N
= S R R s [ -1 -0+ el
_EBKE[(f1 _, _ @ —ks _r_4_
T o ” {% EVA f}ds j {k ! ”k(s)J’S’“(s)}ds]
__ RBEE) (v 2Ks [1—Fk ;urar L4+ RS _
- J 1+ & { 9k WS+ k okis (7:(8) Sk(s))}ds
1 (> 2k's 1
~3). 1% g @) — f(zk(s))}—;(sy ds
= L[ 1)~ LC) O gy L[ (10 4 ddm)
2 t L(z(s)) Yi(8) 2 Jia L0 (Im Q)
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This completes the proof of Theorem 1. Next we give the proof of
Theorem 2. For ze P, Rez2> 0, Imz> 0, let (% ¢t) be the pair in (11).
We write & = £,(f) and 5 = 5,(¢). Equalities (4) and (5) show that

(-8 =748 —2¢

= ﬁ{zmi + (14 B — 2/ F BEXmi + ).

Thus we have, by Lemmas 3 and 4,

12) 1(2) — #(2) = 1@ — Z@)

12 + ZL(2)
= 5 A= R gy gy - QRO ey
(@ + @)L {“ 4%  + Kt) JIxF ( 5)}
— 14 kBt Cen SV
T 412 + LR {@ =Rt — A+ B — &)}
7(2)

{ri + £2())1 — k)t
X [(1 — Ryt — {2m} + (1 + B — 2/ (1 + B (m} + )]

— ZT(Z)Z 2 V) T TvE \ \
T {re) + 2(@)1 — ke (VR + m2) + (kmi — 1% — (kt* + mi)}.

A simple calculation shows that &Zm2 > 1. Thus Z(z2) <71(2) (z¢P,
Rez>0,Imz>0). If Rez=0 and Imz > 0, then we have

1(2)(km; — 1)
r(2) + L)1 — k)>*m:

(13) 12) — £(2) =

’

by (12) and the continuity of 7(z) and #(2). We now show that

C

(14) 7(2) < Z(2) + Tz (ma

(ze P, 0<Imz<1/2)
for some absolute constant C. By (12), we have, with two absolute con-
stants C, and C,,

7(2)"(km;, — 1) < (km2 — 1)
LY — ky(ktt + mi) — (1 — Rkt + m})

1@ — £(2) < TERE

Km ER) C,

= 1 —kPm: (1 —kPK(K) ~ (1 — k) log (1 + (1/k)

and
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_ (km; — 1) _ k(km: — 1)
e Ry 317, ey gl iy 1 g oy
o Em_ omb_ EmKEE
T 1= RPAQ + R 4r(2)*kl (2} 477 (2)*
 E(RIm 2y 2
- BN < oam 2y,

where (k, t) is the pair associated with z. Thus

C
(1 — k¢ log 1+ (k)

If Imz <k, then 7(2) — Z(2) < C,Imz. If Imz> k, then

1(2) — #(2) < min { C(Im z)2/k} .

C G
7(2) — Z(2) < 1 — kY log (1 + (1) = log (1/Im 2)

for some absolute constant C;, because of 0 < Imz < 1/2. Thus

G,

7(2) — £(2) < max {mz—)y

C, Im z} ,

which gives (14). Since 7(z) and #(2) are continuous on P, (14) shows
that the equality holds for real numbers z. This completes the proof of
Theorem 2.

Inequality (13) yields that
1dy) — Ly) > Cy (0<y<1/2)

for some absolute constant C,, We do not know whether the order
1

Tog (ifim 7 > (14) is best possible or not.

§3. Modulus-invariant arcs

To compute 7(2) practically, it is necessary to study modulus-invari-
ant arcs. To use later, we prepare, in this section, the following two
lemmas; (15) and (16) in Lemma 6 give (11) which was used in the proof
of Theorems 1 and 2.

LEMMA 6.

(15) z,(t) is a continuous homeomorphism from Q = {(k,t); 0 < k< 1,
t >0} to P— [0, o).
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(16)  For (k, ) e Q, (1)) = {z:(s); s >t} U{(1 + A)/(1 — F)}.
(A7) For 0 < k<1, x/t) is strictly increasing, and vy.(t) is strictly de-

creasing with respect to t.

LeMMA 7. Let a > 0. Then, for any k satisfying k, < k<1 (k, =
max {(a — 1)/(e + 1), O)), there exists uniquely t,, > 0 such that x,(t,,) = a.
We have

(18)  y.(t...) is continuous and strictly increasing with respect to k.

(19) lix;l Yilta) = 0.
@) ar = [ — ) + 1 + DEGNds.

Proof of Lemma 6. For 0 < k< 1, we have

%0) =0, limx() = 1—+% :
21) i 1-—

y0) = lim y,(8) = 0.

T
EK(R), t—oo
In fact, (4) and (5) show that

limz,(0) =1k,  lim&(@) =1,
and hence

lim () = 1+ 21im [ &.0)ds /[ (n(6) — £.9)ds
2 1+k

k) -1 1—Fk

I

The other three equalities in (21) are easily seen. We have

(22) limy, (0) =0, lim x,(1/F) = lim y,(1/k') = oo .
k=0 k-1 k-1

In fact, we have

. 2 : 2 e mi - &

T ) s v ey
2t gy — i ) g ( FO) )
= 2 K log m. =l ) "% KGR ~

which gives
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e 1
llm ¥:(0) = 11‘1_{? k2K(k')r ) lklg)lm B

Since lim, , m, = 1, we have, with n, = + 1 — E*m2 [F/,

: i Lo [ ds D A=
lime, — 21 { 2I —k-2j m—d}
prak el K nk¢1—sw1~k'2sz wN 15 &

= 21im (m2 — k9 ds

=0.
k-1 nk\/l—s

Recall that &,(s) > 1, 0 < 5(s) — &,(s) < (1/k) — 1. We have
lim inf x,(1/k) = 1 + lim inf 2 j " e (s)ds / f " 198) — £4(8))ds
k-1 k-1 0 0

" 2 _
21+11111}31an = oo

and

lim inf y,(U/k) = lim inf = / (EK®) [ 0 — £.(6))ds)

— liminf —2¥ __ _ &
=1 (1/k) — 1

Thus (22) holds.
Since

Lt = n(t) — &) >0,
1(t) is strictly increasing, and hence y,(¢) is strictly decreasing. Recall

(7 and (9). Since

() =1+ k(t) = l6:(®) + £},

we have, with & = £,(¢) and 7 = 7.(?),

xi(t) = (t)z 6O — (= 48 + 1)y — £)}

k(t)z 2 (e + 7n©) -

Since () > 0 (1 < t < m,), we have (&) > 0. Since () <0 (m, <t
< 1/k), we have +,(y) > V¥(1/k) = 0. Consequently, x.(f) > 0. Thus (17)
holds. Inequalities (21) show that lim,__ z,(f) = (1 + k)/(1 — k). Thus (17)
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yields (16). Let W, be the compact set bounded by the x, y axes and
A(iy,(0)). Then (16) and (17) show that

ch{x+iy; 0<x< 1+:70£y_<_yk(0)}9

WD {x+iy; 0 < x < x (1K), 0 <y < y.(1/k)},
and hence, by (22),

ka:[O,l]y UWk=P-

0<k<1 0<k<1

This shows that z,(f) is an onto mapping from @ to P — [0, o). Recall
that 2(iy,(0)) is a modulus-invariant arc with modulus mod ({[— 1/k, — 1]
U [1, 1/k]}°). The domain {[— 1/k, — 1] U [1, 1/k]}* is univalently mapped
onto a Grétzsch’s domain G, = {ze C; |z| > 1} — [p;, o0) with

8k 1+ k
=1 1 " k1
P +(1—k)2{+2¢k}

Since mod (G,) is strictly increasing with respect to p [5,p.72] and p,,
1 + B/ — k) (= lim,_.., z,(8) are strictly increasing with respect to k, we
have

(23) W, W,., W,Nay.(0)=0o *<FK).

Notice that z,(f) is continuous on @ (with respect to (k). Since
1+ R/ — k) (= lim,_, 2,(f) is continuous with respect to k, we have
Mi<pcs W, = W,. Thus (15) holds. This completes the proof of Lemma 6.

Proof of Lemma 7. Let pula) = {{c C; Re{ = a} (@ > 0). Then Lemma
6 shows that

ua@) N A(iyx(0)) = @ 0<Ek<Ek),
w@) N A3y, (0) is a singleton (k, < k<1).

Hence, if &2 > k,, then, by (17), there exists uniquely ¢,, > 0 such that
z,(t,) is the unique element of u(a) N A(iy,(0)). Evidently, x.(t,,) = a.
By (15) and (23), y,(t,,;) is continuous and strictly increasing with respect
to k. If a > 1, then &k, = (a — 1)/(@ + 1), and hence (16) gives (19). If
0 <a <1, then k2, = 0, and hence

lim sup yi(t.,,) < limy,(0) = 0.
k—ka k-0

Since
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a=xt) =1+ {—a+2[ " ads|o,

we have (20). This completes the proof of Lemma 7.

§4. Asymptotic behaviour of 7(2)
In this section, we show
THEOREM 8.

249 71,000 =+ o,

@) 1r@) = logl (>0 (0O<a<?),
4 a

@) 1:(1)<0,
@2n r(e) =0,

1 a+1 (2@‘) ¢ —1 (247)2
= — E — K
(@) 8 a—l{ a+1 a+1 a+1 }

(<0 (a>1),
where 1i(a) = lim, , {7(a + iy) — 1(a)}/y, 1, = ar/dy and 7,, = *7[3y".

Equalities (25)-(27) show that 7;(a) is discontinuous at ¢ =1. We
see that 7,(1) = 1/{2zv/c* — 1} = 0.662- - - /27, where ¢ is the number satis-
fying c/v/¢ — 1 = log (c + +/c* — 1) (cf. Lemma 10). Since

() =1/2, lim7(1 + &y) = 1/2,
Y—roo

(26) shows that 7(1 + iy) has the minimum in (0, ). If 0<q, <1 is
sufficiently near to 1, the behaviour of 7(e, + iy) (y > 0) is more com-
plicated. Let y, >0 be a point such that r(1 + iy,) = min, ., 7(1 + iy).
Since 7(1 + iy,) < 1/2, we can choose 0 < a, < 1 so that max,,.,., (e + iy,
(= 7o, say) is less than 1/2. If we choose q, so that max{a,, 1 — 2(1 — 21,)}
< @y < 1, then 7(a, + iy,) < r(a,), and hence (25) shows that 7(a, + iy) has
a local maximum in (0,y,). Since 7(a, + iy,) < 7(a;) and lim,_., 7(a, + iy)
= 1/2, 7(a, + iy) has the minimum in (0, c0). Thus 7(a, + iy) has at least
two extrema. A calculation shows that lim,,,7,,(¢) = — o and

(1) = 2Hm (1L + i) — 70 — 3 = + oo

Thus 7;,(a) (¢ > 1) is also discontinuous at ¢ = 1.
Here are some lemmas necessary for the proof.
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LEmma 9. limkt, , = T%F_ 0<a<l).

k—0 —a

Proof. Equalities (4) and (5) show that, with &, , = &(t,,:) and 73, =

vk(ta.k)’
1—&,m:* ¢
28 a, kg == ta m 2’
29 VTV
2,2
(29) 1— My Na,x = ta,kn;}k *

V-9 V1—-Fkg,
Equality (20) shows that

0= —ar, + f 0 {1 — a)ls) + (A + a)&(s)}ds

=(1- a){% + [ n@ds) + @+ o - 2+ [ esras)

= (1 - a){‘l"k(’?a,k) + ta,kﬂa.k} + (1 + a){"‘ ‘I"k(fa,k) + ta,k‘Sa,k} ’

and hence

(30) ,7;1{(1 + a) f m; — s ds
’ 1 48 —141—FS

1/k 2 2
-1 - I s —m} d}
( ) rad/ ¢ — 1 4/ 1 — &7 s

= 7];,%:{(1 + a)y&,) — 1 — a)‘!’k(’]a.k)}
= ool — @) + (1 + a)éo,ai} -

Let (k;);., be a sequence tending to 0 such that lim,., k), ., (= d, say)
exists. Evidently, 0 <d < 1. If 0 < d < 1, then (29) shows that

. _ 1

ey = g
and hence

. d

llm k ta e ———— )

jow M T T dP

By (28)’ we haVe
1 =d?
lim &, , k; log (1/k)) = ﬂ_&_ﬁi_
joo

By (30), we have
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1 R l1—a
?{(14'0')—(1—0’)«/1-—(12}:71:*:'72:,
which gives d =2/ a /(1 + a). We show that d #0, 1. Let w(k) and
v(k) be the first quantity and the last quantity in (30), respectively. It
holds that w(k) =v(k) (0< k<1). If d=1, then (29) shows that
lim, .., v(k;) = . We have
lim sup w(k;) < lim sup (1 + a)y,%,mi, K(R) = (1 + @),
oo oo
which contradicts (30). If d = 0, then (29) shows that lim sup,_., v(k;) <
oco. By (28) and (29), we have
lim &, .k, log (1/k;) = 1.
jam
Hence
lim w(k;) = lim 9;5 {(1 + a)ymi, log &,,., — (1 — a)k;?}

J—roo J—oo

= 2alim 5,5 k;* = oo,
Jreo

which contradicts (30). Thus d s 0, 1. Since (k,);., is arbitrary as long
as (kjy,.,)7-1 converges, we obtain lim,_, ky,, = d = 2/ a /(1 + a). Thus

. 2/ a1+ a) 2/ a
limkt,, = X 1 = .
klf? L {4a/(1 + @)%} 1—a
LemMma 10. We have
. 1
lim ¢, L.
klf? KM =1

where ¢ > 0 is the number satisfying
e/t —1 =logc+ V& —1).

Proof. Equalities (4) and (20) show that, with & , = &.(t..),

& met
@ Ve, 1~ 1 il/k;nk— e, i
: V& 1;32?{ LR
= mi* {Yul61n) — babie} = m;z{iz"_ — j:l'k Sk(s)ds} -0,
and hence
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{1 — gg,kmiz}EI,k — Lk 1 — s’m;?
VE,—14/1—Fk%&, 1 /88— 141 —Fs

Thus (31) yields the required equality.

This shows that lim,_, &, = c.

LEmMMA 11. Let

Ar(z,(1) = UEAQ) _y(}t)"' % ()/4 O<Ek<1,t>0).

Then

1) = L [ — -2 as
_ kK)o
2r

Proof. We have
Ar(z () = 2 @) — ;f( tgl — x,(8)/2
1 1—k 277 _
2yk(t)lk(t) { R’ VI+EE L) + J ‘fk(s)ds}
BKE) (1 —Fk 7 .
{ 7 V14 R —T_L%(S)ds}

2r
L o

- #E R -
_ kKik') JITEE
= FE (1 5 - L [ (L - p0)as)

— FEE) TEe
2r

SRt e [ -

2 E - Jit R
Sy —
2r
kZK(k’) s _ K
j {""() ¢1+k2 }ds o VITRE.

| M he©d @)

1
L . =39
EMMA 12. 7(2) 5 + ¢, Im 1w LN Q) + 2©)} (ze P)
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where k, is the first number in the pair associated with z in (11),

1
47k

h(©) = 1OV TEF F GdmOF + 7 + c/m O,
i = (L = RPER{(hm, — 1 + 2(km, — 1)),
T

{E(R) — RK(F)Y,

C, =

o = 1 (1~ RRREY(km: — 1).
47’

Proof. Let £eA(2). Then k, = k, (= k, say). By (12), we have
10 _,_ 10— 20

20 70
— 2r ¢y FE 71z Emi — 1 — (kt? 2
ZO00 + 2T — fye ¥ B T mi o+ (km — 7 — (k" - )}
_ orQrCems — 1y ] |
7000 + 2ON — VR T T =D + e+ )
Since

VRE + mi) + (kmi — 10 + (kt* + m3)
= %[4{(1 + B0 + (kmZ — DY + (kmZ — 1’0 + F) — (kmi — 1)

+ (1 + B0 + (kmi — 1))
= %m FTRESA + B & (e — 17 + 2kmi — 1)

+ (1 + #F) + (kmi — 1)]
4K, (1) [(1 — V14 B

TR — kY 2K°1,(8)
x 4= f]zg( :)r FE) | 0- ky{(kmiz;;*zﬁ;j 2mi = 1)}
i
T ORI = k);[lg(zk')zam 2 {rQOVICF + clIm &) + 7€) + c/(Im )%}
Ar*

= W WRE Iy O

we have
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% J 22 { ,‘Z;(CC)) - 1} ((iI(rInmC)CZ)

_ kK(E)(km; — 1)° J ey
4z* w LENQ) + 2@}

— T(C)z h d(I
JN 72000 + 2@) OIm.

which gives the required equality.
We now give the proof of Theorem 8. Since

h(©)d(Im ¢)

_ 1=z0) —1/4 _ EKFE)[1—-Fk _ T
4r(2,(0)) v.(0) = - { E 4}

we have (24). Let 0 < a < 1. Then
KK (k) .
27 tak{k() x/l-l—kzz}ds

where

* — 1 2 2
77k(u) :/—2(1—_'_—5[2k m; + (1 + kHu?

+ Vi2B'mE + (1 + PP — 4(B'mi + )1 + W)~
Let d, = B*m? 4 R(m: — 1)1 — B*'m3)(1 — k*)~'. Then we can write

() = [2F*m: + (1 + B)u?

V(1 + + u’)
+ V(A — Bt + ABPmi(1 + B — (B + E'mi)ui]”?

T Vitu

+ L= «/1 ¥ 4R (m: — DA — FPmi)(1 — kZ)-zu_z]m
=i + 1+ dau {1 + diok, W)
__u d,
= Vv w Ty at T ekl
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with two functions w,(k, u) (j = 1, 2) satisfying sup|w,(k, ©)] < oo, where
the supremum is taken over all pairs (k, u) such that 0 < k2 < 1/2 and
u >4/ a/(1 —a). Notice that lim, ,d, = 0 and lim,_, d . K(¥') = 2. Thus
Lemmas 9 and 11 show that

(4 (a) = 1}}}? Ar(zk(ta.k))

KK (k) EK () _—]
= 1i [ s) — - _ =
e R I 1 R

1 K(k) = {* . u
= lim 5[ — e
— lim & K(k')f w{l + dyoyk, u))du
k-0 kta,x udl
du 1 1
1 _I B
Py 2% Jrvaraco uy/ 1 + 2 4n o8 a

Thus (25) holds. Lemma 10 shows that lim,_, k¢, , = oo, and hence

lim sz(kr) {m( s) — «/'17752 }ds
. d K(k) -
= lim S8 j kw{1 + dyagk, wdu = 0.

By Lemmas 10 and 11, it follows that
/ S
1(1) = lim 41z, (t,.0) = — lim REE) 7
k=0 k=0 2

=—_1_hmtl,cm L

D R 0 .
27 k-0 T o/ —1 <
Thus (26) holds. Let ¢ > 1. Theorem 2 shows that

I 1)’ B (0) = &
c%?clez’ LO© + 2©)} A

Thus Lemmas 7 and 12 yield that

ria+iy) =lim 7@t W =12 1o (" ds =0
Y10 y 4 yi0 Jo
and
ri(a) = 2lim 7@ £ ) — 12 _ —c,ca lim L ' ds
) y? yio Y
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1 1

=— —¢, = — —{E(k) — k,K(E)P
5 Cre 87r2ka{ (k%) (k2)Y

__ 1 a+1{E(2¢7)_a—1K<2¢a‘)}2
822 a —1 a+1 a+1 a+1/)"

which shows (27). This completes the proof of Theorem 8.

§5. The constant g,

In this section, we study the following extremum problem: ¢, =
inf7(x + iy)/r(x), where the infimum is taken over all real numbers x
and y. We show

THEOREM 13. Let p(a) = min,., 7(a + iy)/7(a) (@ > 0). Then g, = p(1)
and g, < p(a) (@ # 1).

Here is a lemma necessary for the proof.

LEmMMA 14. For each 0 < B < 1,
(32) 7(2,(t)) is strictly increasing,
33)  4r(z, @)/ + x,(¢)) is strictly decreasing.

Proof. Theorem 1 shows that

_ 1y [ 1) q) s
e I {,‘?(zk(s)) 1} ¥i(s)? as.

and hence

d _ YD) (7 [ 1) 1) yils)
2 ram) = 2 j{ 1} ds

L(2,(s)) Yi(8)*
Y ECONRECN
2 L 2(z) Yu(®)*

Thus Theorem 2 and (17) yield (32). Since

: +4xk(t) = ZZj(t) {l"(t) -5 J : Sk(s)ds}

— 1 (1 ¢ _ 1
= 2L {7 + j . ”k(s)ds} = s O + ),

we have, by (6),
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(34) _ﬁi_ 4T(zk(t)) — 1-k i_ */ 1+ k't -
& T+ a0 K d @ + o]
1—%k
kz{‘!fk(%(t)) + t’?k(t)}z
X | @) + ) — ¥ THFE 7400
1—k

= Bty () — 7u(8)} .
BT RE (@) @ el = 0ul0)

Since m, > 1, we have, with 5 = 7,(),

Etyri(n) = Et{y(y) — ¥i(1/R)}
B — m2) 1/k st —m ds
NP =171 —=Fkg s ¥/ =141 —Fk

<

Ey Jq/k s ds —
ViR yicke o T

Hence the first quantity in (34) is negative, which gives (33).
We now give the proof of Theorem 13. Let a > 1. Since
lim, ... 7(a + iy)/7(a) = 1, there exists y, > 0 such that

p(a) = 1(a + iy,)/1(a) = 2r(a + 1y,) .

By (27), we have y, > 0. Hence there exists a pair (%, ¢°) such that
a + iy, = 2,(t). Let # > 0 be the number such that x,(:) =1. Then
i < t°. Hence, by (32), it follows that

p(D) < 1@(EN/T(1) = 21(2(t) < 21(zl(?) = p(a) .

Inequality (26) shows that p(1) < 1. Let 0 < a < 1. Then there exists
¥, > 0 such that

e+ iy,) _ 41(a + iy.)
7(a) 1+a

p(a) =

If y, =0, then p(1) <1 = p(a). If y, > 0, then there exists a pair (%°, %)
such that a + iy, = 2,,(¢). Let ¢* > 0 be the number such that x,,(¢) = 1.
Then ' > #. Hence, by (33), it follows that
p(1) < 41(2(@N/(1 + x4(t))
< A1(2())/(1 + %)) = p(a) .

Thus
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o) =minp(a),  p(1) <pl@) (a+1).

which gives the required inequalities in Theorem 13. This completes the
proof of Theorem 13.

From the point of view of Vitushkin-Garnett’s example, it is inter-
esting to estimate ¢,, A rough estimate is given as follows. The
Garabedian function [2, p. 19] of an interval [— 1/2,1/2] is given by

WO = {1+ el s

VT —(1/4)
in fact,
1 1 e ds _ 1
21 Jor-iam v©llae] = Az ) «76/4) - 4

Since WO -+ 1 4+ iy) is analytic outside I'(1 + iy) and equal to 1 at
infinity, we have

M+ <[ OuWE T+ il (e 2 p 19D

T

Thus Theorem 13 shows that

(35) o < inf = [HOWE + 1 + iy)]|dE].

v20 7 Jara+in
We can easily compute the right-hand side of (35). The estimate by this
method is rough, however, this method gives a new approach to the
construction of sets of Vitushkin-Garnett type (cf. [8, p. 81]). In order to
get a better estimate, it is necessary to study, in detail, incomplete ellip-
tic integrals. Recall that

o, = min 27(2,(t,,)) ,
0<k<1

a®) = {4 - LAVE -y b,

L@ = ‘l’k(’?k(t» + ‘!fk(fk(t)) + t{?k(t) - gk(t)} ’
mi — 8 ds

"’”(x)zjl¢sz—1 N

I<x<1/k).

Since

@) = = W + ) = [T s,
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we have, by making the substitution 1 — k*s* = k*u*

v@ [T R »(2) du
V(@) = & J hﬁudu’—mk 0o /1 —wtd1— KW

= k'K (arcsm v(x), k') — miF (arcsin v(x), k'),

where v(x) = v/1 — E*x*/k’. Thus +,(x) can be computed with the aid of
Landen’s transformation [4, p. 250] or Jacobian theta functions [4, p. 292].
(As is well known, Landen’s transformation yields that

, 1 1—k
Flo, ¥) = 1+kF<"” 1+k>’

B #) = — BLER po ) ¢ LEEp(y, 1Ry = bginy,

where + is defined by tan (¢ — ¢) = ktang. Since (1 — k)/(1 + k) < K/,
we can compute E(p, k') and F(p, k') by repeating this formula.) Equality
(20) for @ = 1 can be rewritten as

0= —;i - J‘:l"‘ &x(s)ds = \l’k(Sk(tl,k)) — tl.kek(ti,k) y

and hence

mty, = & dm, — Ek(tl,lc)} + P&ty )

We now inductively define a sequence (¢{);., by t{% = 0,

mt(} =t {my, — ST} + ) (n>1).

Since
tme — &0} + () = 2 + [ {me — &.@0Nds,
we have
(ﬂ 1)
mk|t1(n) . t(n l)' — II (n 2) —_ Ek(S)}ds‘
< (m — DY —85? (n>2),
and hence

b — 2] < 50 (1 — me) |40 = 1 —m) (n20).
I=n
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This shows that (¢@)s., converges to ¢, ,. (In the case where k is small,
the speed of the convergence of (¢")7_, is slow. Hence, by using (¢™)q_,,
we choose first 7, , sufficiently near to f,, and define next (%), by

z{?;c = z'l,ln
i o= {1 — &0} + el &) (> 1),

where ¢, > 0 is chosen so that the convergence of (™)., is rapid.
Notice that ¢, = lim,_., £{.) Thus we can compute 27(2,(¢,,.)) (0 < k < 1).
The author expresses his thanks to Prof. Yonezawa and Mr. Sakurai
who practiced our program. Prof. Yonezawa shows that 0.95 < g, < 0.97.
(o, is attained when k is near to 0.1.)
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