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ABSTRACT. As polar ice descends from the free surface to depth in a large ice sheet, it
undergoes deformations which give rise to the formation and subsequent evolution of a
[abric and associated amsotropy. In this paper two orthotropic models of such strain-in-
duced anisotropy are considered. Model A is based on analysis of the microscopic behaviour
of an individual ice erystal with transversely isotropic response and assumed uniform stress
in a polycrystal. The macroscopic response of the ice aggregate is then derived by applying
the concept of an orientation distribution function, and the resulting viscous law relates the
strain rate to the stress and three structure tensors. In model Bit is assumed that the macro-
scopic response ol ice is determined by the fabric induced entirely by macroscopic deforma-
tions, and all microprocesses taking place at the grain level are ignored. A constitutive
relation is derived from a general frame-indifferent law for orthotropic materials, and ex-
presses the stress in terms of the strain rate, strain and three structure tensors. The two
models are applied to determine the viscous response of ice to continued uniaxial compres-
sion and simple shearing in order to compare the predictions ol both theories.

1. INTRODUCTION

ever, there is still no generally accepted constitutive law de-

) } o o . scribing the anisotropic hehaviour of polar ice. This is partly
Polar ice cores drilled at dillerent sites in Antarctica and

Greenland (Gow and Williamson, 1976; Russell-Head and
Budd, 1979; Herron and Langway, 1982; Lipenkov and

because of the complexity of physical phenomena taking
place on the microscale of single crystals during the fabric
. ik St SR ) formation, but also because of difliculties associated with
others, 1989) reveal strong fabrics, with significant alignment e ; : oy :
. el e ; ‘ . 2 the mathematical modelling of the strain-induced, evolving
of ¢ axes of individual crystals along some preferential direc- P ;"
/ L n tme, anisotropy.
Following Lliboutry and Duval (1985) and Alley (1992),

we distinguish three main regions along the depth of a typ-

tions, induced by strains to which the ice is subject as it des-
cends from the free surface to depth in an ice sheet. The

fabric ereated during the ice deformation gives rise to macro- : : : . . .
: ical polar ice sheet in accordance with the microscopic pro-

scopic anisotropy of the medium which considerably allects
polar ice-sheet dynamie behaviour over long time-scales.
This has been confirmed by numerical simulations carried
out by Mangeney and others (1996), who have applied a
transversely isotropic [low law, with a rotational symmetry
axis assumed to be vertical everywhere, to the ice-sheet flow
problem with a non-evolving ice fabric derived from the
measurements made along the GRIP ice core (Thorsteinsson
and others, 1997). It has been found that for a given, fixed in
time, [rec-surface elevation the assumption of the ice aniso-
tropy results in much faster ice low compared to the isotro-
pic case, and an estimated accumulation rate required to
maintain a steady-state flow exceeds by more than L5 times
the rate for isotropic ice. Similar conclusions have been
drawn by Mangeney and others (1997), who considered a
more realistic problem in which the free-surface elevation
was calculated for a fixed accumulation rate. Their numeri-
cal results showed that the ice anisotropy, as well as leading
to a globally faster flow, significantly increases shear stresses
near the bedrock, makes the free surface flatter in the ice-
divide region, and smooths out the eflects of the bed opog-
raphy. This clearly indicates that the strain-induced aniso-
tropy must be included in any large-scale numerical model
ol polar ice sheets if realistic results are to be obtained. How-
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cesses which dominate the ice-fabric evolution.

(1) In the upper part of a large ice sheet, extending from ap-
proximately 100 m under the free surface to about one-
third of its thickness, shear stresses are negligibly small

compared to normal stresses. Delormation is mainly due
to dislocation glide on basal planes, and ¢ axes of grains
rotate towards compressional axes. The grain-size in-
creases linearly with the age of ice, which is here nearly
proportional to its depth, and no new grains are created.

(2) Between approximately one-third and two-thirds of the
ice cap thickness, the shear stresses gradually increase,
though they are stll smaller than the normal stresses.
With increasing deformation and strain energy stored
in grains, the fabric continues to strengthen and the pro-
cess of polygonisation (also called rotation recrystallisation)
occurs. In this process new grains, with orientations
similar to old grains which are not consumed by new nu-
clei, are produced. The average grain-size changes little

with depth throughout this region.

(3)

In the region directly over the bedrock, the shear stresses
dominate the normal stresses, which combined with
high temperatures initates the process ol migration (or
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dynamic) recrystallisation. New, strain-free, grains with
their ¢ axes at high angles (~15") to compressional axes
are created at the expense of old grains which are con-
sumed by new nuclei. Abrupt changes in the average
grain-size are usually observed in this region, but gener-
ally the grains are much larger than in region 2.

In order to construct a macroscopic constitutive law for
anisotropic polyerystalline ice, a basic and physically moti-
vated approach is to derive an average response of ice aggre-
gate [rom the propertics of individual grains and
assumptions on crystal interactions. 1o date, most of the ex-
isting anisotropic models include only the mechanism of the
grain c-axis rotation, which dominates the fabric formation
and evolution in the upper part of an ice sheet, although
some attempts to incorporate the recrystallisation process,
prevailing in deeper regions of ice sheets, have already been
made. Azuma (1994) and Azuma and Goto-Azuma (1996)
assume that individual crystals deform only by basal glide,
the glide direction is determined by that of the maximum
macroscopic shear stress in the polycrystal, and the erystal
(microscopic)
which may be diflerent in this model, are related by a geo-

and polycrystal  (macroscopic)  stresses,
metric tensor associated with the c-axis and glide directions.
Lliboutry (1993) assumes that the microscopic stress acting
on cach individual grain is equal to the bulk macroscopic
stress applied to the polyerystal, and formulates a flow law
for a transversely isotropic aggregate. Castelnau and Duval
(1994) and Van der Veen and Whillans (1994) extended Lli-
boutry’s homogeneous stress model (also called the static
model) to any type of evolving anisotropy by considering a
polyerystal consisting of a finite number of grains. Van der
Veen and Whillans (1994) are the first to include the recrys-
tallisation mechanism in their model, and consider two al-
ternative criteria to determine the onset of recrystallisation
in terms of threshold accumulated strains of crystals. An-
other, more general, approach is the visco-plastic self-con-
sistent (VPSC) model developed by Castelnau and others
(1996). In this formulation, the single crystal is treated as
an embedded idealised geometric inclusion in an infinite
medium with properties of an assumed form supposed to
represent the macroscopic behaviour. In contrast to the
models discussed above, in which individual crystals can
glide only on basal planes, in the VPSC model erystal slips
on basal, prismatic and pyramidal planes are considered,
and stresses and strain rates are assumed to depend on the
crystallographic orientation.

In all the above theories, which can be called discrete
grain models, usually about 200—400 grains are needed to
properly describe the ice fabric at a given point. Since in typ-
ical large-scale numerical models for ice-sheet flows the num-
ber of mesh nodes can exceed 1(]"—', it is obvious that discrete
grain models are not suitable for simulations run on currently
available computers. Therefore, in order to significantly re-
duce the number of variables involved in the description of
ice fabric, another approach, in which the polyerystalline ag-
gregate is treated as a continnum, has been adopted. In this
approach a so-called orientation distribution  function
(ODF), defining continuous weightings to the grain c-axis
orientation, has been applied. Although the concept of the
ODF is already well established in material science (Bunge,
1982}, it was first introduced to the field of theoretical glaciol-
ogy only recently by Lliboutry (1993), Meyssonnier and Philip
(1996) and Svendsen and Hutter (1996). Meyssonnier and
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Philip (1996) formulated a transversely isotropic flow law for
a polycrystalline ice using the ODF concept and the VPSC
model by adopting some simplifying assumptions on the
single grain behaviour, namely, that the crystal is transverscly
isotropic and offers small resistance to shearing parallel to its
basal planes, and the response is governed by a lincarly vis-
cous law. Svendsen and Hutter (1996) employed the ODF ap-
proach to derive analytically a frame-indifferent viscous law
which incorporates the fabric through a single structure ten-
sor defined by an axis of assumed transverse isotropy. This
theory has been considerably extended by Gadert and Hutter
(1998, in press). However, the complicated calculations
required to follow the evolving properties of individual ice
elements will add considerably to numerical treatments of
large ice-sheet flows. A transversely isotropic flow law that
avoids the use ol an orientation distribution function has been
proposed by Van der Veen and Whillans (1990). They modify
Johnson’s (1977) law for a transversely isotropic viscoelastic
solid by replacing material measures of stress and strain rate
by spatial measures. However, they include the vertical
(gravity) direction in the material structure, so this model
cannot be treated as a valid constitutive relation for the re-
sponse to general loading,

Dependence of the fabric on ice deformation implies that
transverse isotropy of the medium can occur only if the flow
in the ice sheet induces uniform stretches in some plane, say a
horizontal plane in a gravity-dominated flow under a central
dome, in which case a transversely isotropic fabric with the
vertical as its rotational symmetry axis develops. Elsewhere
in the ice sheet, however, such particular symmetry of the ice
low does not take place in general, and consequently the ice
deformation, and hence the ice fabrie, does not have rota-
tional symmetry about any axis. Therefore, in order to more
realistically describe the strain-induced ice fabric, a more
general form of anisotropy is needed. Such increased gener-
ality is offered by orthotropic models. Although, strictly, the
orthotropy does not occur for any arbitrary loading because
of the fabric evolution which destroys any (already devel-
oped) orthotropic symmetries in the material, the assump-
tion of orthotropy is strongly supported by observational
data showing that the fabric in ice sheets does, in fact, usually
reveal this type of material symmetry (this is in part due to
the dynamic recrystallisation, not considered here, which
helps to sustain the earlier created orthotropy despite the
changes in the strain configuration ).

In the paper, two orthotropic viscous models are pre-
sented. The first model, formulated by Gagliardini and Meys-
sonnier (in press), stems {rom analysis of the behaviour of a
single ice grain in a polycrystal under the assumption of stress
homogeneity, [ollowing Lliboutry (1993) and Van der Veen
and Whillans (1994). Assuming transverse isotropy for cach
individual crystal and a linear response to deviatoric stresses,
the macroscopic strain rate of the aggregate is derived by ap-
plving the ODF concept. Compared to Meyssonnier and
Philip (1996), Svendsen and Hutter (1996) and Godert and
Hutter (1998), additional parameters are introduced into the
ODF. Owing to the extra parameters, the derivation of a
macroscopically orthotropic (instead of transversely isotro-
pic) viscous law relating the strain rate to the deviatoric stress
and three structure tensors is possible.

The second orthotropic model considered here has been
formulated by Morland and Staroszczyk (1998) and further
extended by Staroszezyk and Morland (in press). In this ap-
proach it is assumed that the macroscopic mechanical re-
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sponse of ice can be described in terms of the fabric induced
purely by macroscopic deformation, and all microscopic
processes occurring at the grain level are ignored. The
assumption that the induced anisotropy depends only on
the current strains and not on the deformation history is a
considerable simplification since, in general, the fabric evo-
lution is a path-dependent process. It is believed, however,
that this approximation is the simplest approach to an evol-
ving anisotropic viscous law that could be tractable in large-
scale sheet dynamics, since it requires that only current de-
formation gradients are calculated in addition to the velocity
and pressure ficlds. The constitutive relation is derived from
the general frame-indifferent orthotropic representation
(Boehler, 1987), and expresses the deviatorie stress in terms
of the current strain rate, deformation and three structure
tensors. The relation is separable in the isotropic dependence
on strain rate and fabric dependence on deformation, and in
its simplified form has only one independent fabric function
that fully describes the orthotropic viscous response of ice.
Although in this approach local interactions between indivi-
dual crystals are excluded from the analysis, this method
allows good qualitative agreement with observations, and
lexibility to correlate with detailed experimental results.

The two orthotropic models are used to determine the
viscous response of ice to simple stress and strain configura-
tions, corresponding to those occurring in the uniaxial
compression and simple shear tests carried out in a labora-
tory. The predictions of both theories are compared, and the
influence of some model parameters on calculated responses
1s investigated. Additionally, the results for simple shear
given by the micro- macroscopic model are compared with
the results obtained from a discrete grain model (in which
no assumptions are made about material symmetries) in
order to verify the validity of the assumed orthotropic beha-
viour of polycrystalline ice.

2. MICRO-MACROSCOPIC MODEL

T'his model, formulated by Gagliardini and Meyssonnier (in
press), incorporates the basic micromechanism taking place
on the grain level during the ice deformation, namely, the ro-
tation of crystal ¢ axes towards the axes of compression and
away from the axes of extension. The macroscopic viscous-
flow law which expresses the strain rates in terms of the de-
viatoric stresses 15 derived from the behaviour of individual
grains by applying the homogenisation method based on the
ODF approach.

In the following, three Cartesian reference frames are
used to describe the behaviour of ice on the microscale of a
single grain and the macroscale of a polycrystal:

{R} with axes x; is a fixed global reference frame;

{R"} is a privileged frame of an orthotropic polycrystal,
whose axes x¢ coincide with the orthogonal privileged
directions in the material;

{R®} with axes 2% is a local [rame associated with an indi-
vidual grain, whose % axis coincides with the ¢ axis of
this grain.

Microscopic quantities associated with an individual grain

are indicated by a tilde, and superscripts “g” and “o” are used

to denote non-scalar quantities expressed, respectively, in the
local {R*} and the privileged orthotropic {R°} frames.

Where no superscript is applied, respective symbols refer to
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macroscopic quantities expressed in the global coordinate
system { R}. Since the individual ice grain is assumed here
to be transversely isotropic, with its ¢ axis being the rotational
symmetry axis, the grain position relative to the global refer-
ence frame {R} can be uniquely described by means of two
angles: the co-latitude (or zenith angle) 6 and the longitude ¢
(see Fig. 1). These two angles determine the rotation matrix R
(cf. Meyssonnier and Philip, 1996) which connects compo-
nents of vectors and tensors in { B} and { R*}.

=0
c=zx3

zaA

9
&
1
) ¥

Fig. 1. Global and local reference frames, with angles 8 and @
defining the c-axis orientation of a grain.

Following Lliboutry (1993) and Van der Veen and Whil-
lans (1994), the hypothesis of the stress homogeneity in ice
aggregate has been adopted

6 = (1)

stating that the microscopic stress 0 in ecach grain, irrespec-
tive of the grain orientation, is equal to the macroscopic
(bulk) stress o applied to the polycrystal. The deviatorie
stress o is defined by

o =o4+pl, p= —gtra. téa’ =10, (2)
where p is the mean pressure, I is the unit tensor, and tra
denotes the trace of o. Since the ice is assumed incompressi-
ble, pis a workless constraint not given by a constitutive law,
but determined by the momentum balance and boundary
conditions.

Further, it is assumed that the transversely isotropic crys-
tal deforms mainly by simple shear parallel to its basal plane,
and its response to stress is linearly viscous. Adopting the sim-
ple relation (Meyssonnier and Philip, 1996) between the mi-
Croscopic strain rate D and the microscopic deviatoric stress
@, which is equal to the macroscopic stress o’ in view of Equa-
tion (1), the transversely isotropic flow law can be expressed in
the form

i 1 % {80+ (1~ B)[o'M + Mo’ - 2tr(Mo') M] },
(3)

where M = ¢ @ cis the structure tensor defined in the global
reference frame {R} by the unit vector ¢ = (sinflcosp,
sinflsin ¢, cosf) associated with the grain ¢ axis, and 1 is
the fluidity (reciprocal viscosity) for shearing parallel to the
crystal basal plane. The parameter 3 is the ratio of the shear
viscosity in a plane parallel to the ¢ axis to the shear vis-
cosity in a plane of isotropy (normal to the ¢ axis) and can
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be regarded as a measure of the grain anisotropy. When
3 = 0, the grain can deform only by basal glide, as assumed
in the Lliboutry (1993) and Van der Veen and Whillans
(1994) models, while 3 = 1 means that the grain isisotropic.
In what follows it is also assumed that each grain in a poly-
crystal occupies the same volume and the number of grains
does not change during the deformation, i.e. the grain
growth, polygonisation and dynamic recrystallisation phe-
nomena are not accounted for in this model.

The macroscopic (bulk) strain rate D of the polyerystal,
in response to the macroscopic deviatoric stress o, is defined
as the average of the strain rates of its constituent grains.
Various homogenisation techniques can be employed to cal-
culate the average strain rates in the ice aggregate. In the
discrete grain models (Azuma, 1994; Van der Veen and
Whillans, 1994; Castelnau and others, 1996) with a finite
number of grains, the components of D are simply arith-
metic means of the corresponding components of D. In our
continuum model with an infinite number of grains, we
make use of the ODF concept, which describes the ice fabric
in terms of the relative density of grains whose ¢ axes have
the orientation (8, ¢) in the global reference frame {R}. In
the ODF approach, the weighted average of a quantity
A(B, ) is delined by

wf2
A= { / A, 0)f(6,p)sinfdfdy, (4)
0

where f(@, ) is the proportion of grains with orientation
(8, ©) in the element “area” sin # df dep, and by definition
1 27 pr/2
— f(6,p)sinfdédp = 1. (5)
271'. 0

Note that in the case of isotropy we have f(é,¢) =1, and
for transverse isotropy, with x3 being the rotational symme-
try axis, the ODFdoes not depend on i, i.e. f(6,¢) = f(6).

Hence, by the weighted average definition (Equation
(4)), the components of the macroscopic strain rates in the
global reference frame { R} are given by

D= (D). (6)

Once the ODF has been determined, Equations (3) and (6)
vield the relation between the macroscopic strain rate D
and the deviatoric stress @’. In order to describe the evolu-
tion of the ODF, consider the motion of the single grain, i.e.
the rotation of its ¢ axis in the global coordinate system {12 }.
Tollowing Meyssonnier and Philip (1996), the rotation
matrix R that defines the orientation of the grain in { R} is
governed by the relation

(RTR + W% — RTWR)c* =0, (7)

where RT is the transpose of R, the suporpmod dot denotes
the time derivative, W* and W are spins (rates of rotation)
of the grain in the local and global reference [rames, respect-
ively, and ¢* = (0,0, 1). Since during the grain deformation
the original parallel glide planes remain parallel to each
other, the velocity component along the crystal ¢ axis, when
expressed in the rotating frame {R*} attached to the grain,
is a function of un]y. This leads to the kinematic relations

W=D, WL=D§, (8)

which are a direct consequence of the adopted system of

reference frames. In order to close the system of governing
equations, three additional conditions are required, and
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these are adopted by assuming that the microscopic and
macroscopic spins are equal, 1.e.

W=W. (9)

The above equation is closely related to the Taylor (1938)
assumption which postulates the equality of micro- and
macroscopic velocity gradients. The combination of con-
straints (Equations (1) and (9)) adopted here is exactly the
same as that used by Godert and Hutter (1998). With Equa-
tions (8) and (9), Equation (7) provides two relations which
describe the change in the grain orientation by

+ Wazsing, (10)
psinf = —D23 —Wiasiné + (

§=-D" 3+H“C0b
793 cos p— W3 sin @)cosf .
(11)

Since recrystallisation is not taken into consideration, and
hence the total number of grains in the polyerystal is con-
served, it follows from the continuity equation (3) that the
ODF satisfies the relation

A(fsind) " (@fsinf)  A(pfsind) B
ot B 8

(12)

Equations (10-12) completely describe the evolution of ice
fabric for any type of macroscopic anisotropy that is based on
the assumed behaviour of ice on the microscale of individual
crystals. In the case of orthotropic anisotropy, the medium
possesses three planes of reflexional symmetry, which in the
reference frame {R°} are the planes (2{,25), (z{.2%) and
(x5, 2%), and these material symmetries must be accounted
for in the ODF. Tollowing Meyssonnier and Philip (1996},
and using analytical results obtained by Gagliardini and
Meyssonnier (in press), we adopt the following form of the

ODF:

F(8, 0, ke, ko, k3 07)

= {sin@[k] cos’(p—¢°)+k3 sin®(p—¢°)] + 43 cos’ 6}

(13)

where k. ko, ky and ¢° are parameters, the latter being the
angle of rotation of the orthotropic frame { R°} with respect
to the global reference frame { }. Since the grain-conserva-
tion relation (Equation (5)) implies that kjkoky = 1, only
three parameters in Equation (13) are independent. Now,
by substituting Equation (3) into Equation (6), and using
Equation (13) in Equation (4), we obtain the orthotropic, lin-
early viscous law relating the macroscopic strain-rates to
the macroscopic deviatoric stresses by

3
D=%"a (M‘; = %I)

r=1

(14)
+ iy (OJMT + Mjd — % J,‘I)

where M = €0 @ e are three structure tensors defined by
the orthotropic axes unit vectors e, and J, = tr(M;a’) are

three invariants. The six response coeflicients o
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(=T ey 6) are functions of the grain rheological param-
eters ¥ and 3,
(o] S L]
( 0 6 12 8 -2 8
ey 0 6 2 -6 6 s || V0
Qs p(f-1) 2 10 0 8 ¢ —6||Ns
vy - 2 3/[2(3-1)] I 8 5 -2 || Nxg
- a/12(3-1)] 2 3 2 -2 -2 Nas
2 4)/[2(6— : —2 2 9
th | (2-8)/25-1)] & 0 o
(15)

and N3o, N3z, N5o, N3z, N5y are five moments defined by
/ f (0. ) sin”@sin?p dfde . (16)

In the case of ice isotropy, i.e. when f(#,¢) =1 and
ki = ky = ks = 1, the above moments are

N30 =2/3, Ny2=1/3, N5y=8/15, N5p=4/15, Nsy=1/5,
(17)

and the six material coeflicients defined by Equation (15)
become

ai=m=a3=0, a=05=o0ag= (3;}—}— 2). (I8)

20
With the above parameters, and in view of the identity
My + M5+ Mj =1, the orthotropic constitutive law
(Equation (1)) reduces to the linear Glen's flow law for iso-
Lropic ice

o

D :?'cr’._

where 4y is the fluidity of the macroscopically isotropic
polycrystal, which is related to the individual erystal fluidity
'l‘:‘"" l)\

(19)

238+ 2).

it

Wy = (20)
It follows from the latter formula that in the case of isotropic
crystals (#=1) the macroscopic fluidity equals the
grain fluidity 4 while in the case ol the most anisotropic
crystals (3 = 0), when the grain deformation occurs only
by basal glide, ¥y = 0.4,

3. CONTINUUM MODEL

In this continuum approach, proposed by Morland and
Staroszezyk (1998) and further developed by Staroszezyk
and Morland (in press), the phenomena taking place on
the microscale of individual grains, as opposed to the model
considered in section 2, are ignored, and it is assumed that
the macroscopic response of ice depends only on the fabric
induced solely by the macroscopic deformations. Although
this is a considerable simplification, it is believed that such
an approach to an evolving anisotropic constitutive law is
well suited to the large-scale ice-sheet modelling, since it
requires only that the deformation gradient field has to be
determined during the ice flow in order to describe the fab-
ric development. The chosen form of the orthotropic viscous
law is the relation between the frame-indifferent deviatoric
Cauchy stress o', current strain rate D, Cauchy—Green
strain tensor B, and three structure tensors M, (r = 1, 2, 3)
defined by the outer products of the current principal
stretch axes unit vectors e, (r = 1,2, 3).
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Let Ox; (i = 1,2, 3) be spatial rectangular Cartesian co-
ordinates with OX; (i = 1. 2, 3) particle reference coordin-
ates, and v; the velocity components, then the deformation
gradient F and strain rate D have the components

Fy=

ox; 1 ((')'ui o %) (21)

X’ iiTg ﬁ, oz;
The strain B, unit vectors e, (r = 1,2, 3) and squares of the
principal stretches b, (r = 1, 2,3) are defined by

B =FF’, Be, = be,, det(B-bI) =0, b,=\>> 0,
(22)

where A; (=1, 2, 3) are principal stretches along the prin-
cipal axes e, and the three structure tensors M, are given

by
M:=e, ® & (r=1,2,3). (23)
Ice is assumed incompressible, so
det F = MMA3 =det B =bibbs =1, divv=0.
(24)

In order to derive the macroscopic low law for anisotro-
pic ice, we follow Bochler’s (1987) theory for frame-indiffer-
ent relations between tensors and vectors, which ensures
that material properties are independent of the observer.
In the case of a symmetric tensor (here o) being a function
of two other symmetric tensors (here D and B), the general
orthotropic representation is

3
= Z [OIM.‘ ot Gﬁi'l-’i(MrD == DM:)

=1

(25)
+ ¢ri6(M,B + BM, )]
+ 61yD* + ¢11B* + 612(DB + BD) .
where the 12 response coefficients ¢; (i = 1, ;12) are

functions of the 19 invariants
lpe=tr MDD, Lays=4rN.B =},

Lig=trM,B% I, =trMDB
L =trD’B, Ij; = tr DB?, Ij;g =

I = trM, D2,
(=105

det D, Iy = det B,
(26)

subject to the constraints that the deviatoric Cauchy stress
has zero trace, and the material is incompressible, so that
only 11 coeflicients ¢; are independent, and only 18 invar-
iants /; are non-trivial, since I,y = 1. An alternative consti-
tutive law for the strain rate D in terms of the deviatoric
stress 0 and the strain B, corresponding to the usual glacio-
logical approach for the isotropic fluid model, can be formu-
lated similarly by interchanging ¢’ and D in Equations (25)
and (26).
We require that Equation (25) reduces to an isotropic
viscous-fluid law
! ) 1 2 -
o :CDID-Q—(I’E(D'fqtrD‘I). (27)
where @, @5 depend on two invariants tr D? and det D,
when there is no fabrie; that is, in the initial undeformed state
F =1 when the principal stretches are equal, necessarily
A1 = A2 = A3 = 1 by the incompressibility condition (Equa-
tion (24)), or subsequently when F =TI or when F corres-
ponds to a rigid rotation of the ice element. The
conventional glaciological model is ®; = 0 and ®; depends
only on trD”.
fabric

The above prescription asserts that there is
some alignment of initially randomly distributed ¢
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axes— only when there are differential principal stretches,
ie. when B # L

Following Staroszezyk and Morland (in press), we sim-
plify the general law (Equation (25)) by ignoring tensor de-
pendence on D? B? and DB, and the terms involving M,
without D or B, i.e. we restrict attention to a reduced model
with a linear tensor dependence of ¢’ on D and B. Hence,
we adopt the relation

= i Dria [M,.D + DM, - % tl‘(M,.D)I]
=1

+ 12 [DB +BD - % tr{DB)I], (28)

where the ¢, and ¢12 terms have been modified to recover
zero trace, noting that the included scalar H(MD) = I
and the scalar tr(DB) = I3 + 14 + I15. Equation (28) still
represents a non-linearly viscous law since, in general, the
response functions @3 and @12 depend on D). We further
express these functions in separable forms which factor out
invariants depending only on the deformation B and retain
a common dependence on invariants involving the strain
rate D:

dr2 = Po (116, Ioo) 9(T21, Ina), (29)
bri3 = Po(L16, Ino) h(Iris, I, In) (r=1,2,3), (30)

where
3 ., 3
Iy = ZL-+4i =trD", Iy = ZL-+3 = trB,
r=1 r=1
3
Ip= Y Ly =trB. (31)
=

The response functions (Equations (29) and (30)) have to
satisfy the isotropic fluid law (Equation (27)) when B =1,
and hence o) = Iy = 3; thus

5 " 1 .
®y(trD*, trD?) = 5 (trD*. detD), @, =0, (32)
where the functions h and g are normalised by
Rl 8.8 <FulE3.3) =1. (33)

We restrict attention to a simple model with the fabric re-
sponse function h depending only on the principal stretches
Ar (through Lys = b. = /\;‘)_ ), and the function g depending
only on the invariant measure of total deformation
I, = tr B; thus

®, = & (trD?) = 2u9, h=h(b),
g=g(K), h(1)+4g@3)=1, (34)

where gy = 1/1y is the (constant) isotropic {luid viscosity
(when by = by = b3 = 1), and

K=trtB="0b +b + by > 3. (35)

Now, with Equations (34) and (32), the constitutive law
(Equation (28)) expressed in terms of the two response func-
tions b and g and the viscosity pp takes the linear form

o = Hl){ i: h(b:) [MI'D + DM, 7% tI‘(M.,.D)I]
=] :

+g(K)[DB +BD - § tr(DB)L| }. (36)

Staroszczyk and Morland (in press) derived equalities
and inequalities which have to be satisfied by instantaneous
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viscosities pi; (i, j =1,2,3; 1 # j), depending on the rela-
tive magnitudes of the principal stretches. With the ordering
by > by > by there aresix distinct sets of relative values of by
(r=1,2,3), and for cach of them corresponding relations
order pya, 13 and fizg in the coordinate frame of the prin-
cipal stretch axes. By using the viscosity relation corres-
ponding to the plane flow, i.e. when Ay =b; = 1, hence
by =1/by and K =b +1+b;', it is possible to express
g(K) in terms of h(b,), namely,

g(K) = W;zbi = [h(br) - (Y], (37)
1

9b =K —1+4/(K—17-4,>2. (38)

The limit of Equation (37) as by — 1, K — 3, combined
with the normalisation (34) 4, gives

(1) = K(1) = 1, (39)

where

which is a restriction on h(b,) at b = 1. Rewriting the func-
tion g(K) as

g(K) = K'G(K), (40)

where G(K) is bounded, it can be shown that the limit of
Equation (37) as by — oo, K ~ by, yields the relation

G(50) = h(0) — h(z0). (41)

That is, in view of Equation (37), only one fabric response
function, h(b,), remains free for prescription, subject to
Equation (39). In order to further restrict this function, the
model defined by Equation (36) is used to predict the viscous
response of ice at large deformations in the axial compres-
sion and simple shear conditions. For such configurations,
Budd and Jacka (1989) present experimental data obtained
for a steady-state flow (when the microprocesses of grain ro-
tation, polygonisation and dynamic recrystallisation
halance one another) and determine the limit ratios of fab-
ric-induced viscosity to (maximum) isotropic viscosity.
These empirical ratios, expressed in terms of so-called en-
hancement factors for compression and shear, provide two
further relations connecting h(oc), h(0) and G(oc)
(Staroszezyk and Morland, in press). For the uniaxial com-
pression the viscous law (Equation (36)) yields
2

1 1 .

where A is the reciprocal of the axial enhancement factor,
and for the simple shear in the plane flow we obtain

1 1 1

where § is the reciprocal of the shear enhancement factor.
Equations (41—43) provide the following values of h(0),
h(c0) and G(o0):
h(0) =S, h(x)=64—55, G(x)=6(S—A4).
(44)

Despite several simplifying assumptions adopted to de-
rive the model (36) with the single fabric function (b, ) from
the general orthotropic law (Equation (25)), this approach
still retains considerable flexibility to correlate with
observed data. In fact, only three specific restrictions are
imposed on the function hi: Equation (39) to yield a valid re-
sponse in the isotropic state, and Equations (44), and (44),
to match the enhancement factors for compression and sim-
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ple shearing at large strains. However, it is also required
that the function h(b;) vield a response which satisfies the
viscosity relations derived in Staroszezyk and Morland (in
press), otherwise physically invalid responses can be
obtained.

4. MODEL COMPARISONS

The two orthotropic models deseribed in sections 2 and 3
arcnow applied to explore the viscous response of'ice to sim-
ple deformation histories, corresponding to those taking
place in typical laboratory tests. For the sake of brevity,
throughout this section we will refer o the micro-macro-
scopic model as model A, and to the continuum model as
model B.

First we consider an axial compression in the x5 direc-
tion, defined by the axial stretch Az < 1, with cqual lateral
stretches A; and Az along the x; and 3 coordinate axes, for
which the deformation field is described by

71 = MXy, 23 = M Xy, m3 = M X,
) (45)
/\] :/\;{ =1 ,\2 — /\1_' < 1

and the associated velocities, in view of Equations (45), and
(45)5 are

v = .I'[/\]/z\l. Uy = —Q.ng\]/Al‘ U3 = .I';;/\']_/Al ‘ (—l())
With Equations (45) and (46), the Cauchy-Green strain
tensor B and the strain-rate tensor D are given by

X0 o0 A1/ 0 0
B=|0 X' 0].D=( 0 -2X/n 0
0 0 A 0 0 A1/ M
(47)

and the three structure tensors, due to the coincidence of the
principal stretch axes e, with the coordinate axes x,, are
defined by

1 0 0 0 0 0 0 0 0
M;=(0 0 0], My=(0 1 0),My=[0 0 0
0 0 0 00 0 001
(48)

The deviatoric stresses (Equations (2)) are given by the
diagonal tensor

adn 0 0
o= 0 a0 0 , with G‘I“ = J’;g;g = —012-1/2.
0 0 0"33

(49)
The response of ice predicted by model A, defined by Equa-
tion (I4), is illustrated in Figure 2, which shows the evolution
of the normalised axial viscosity o’s/(2p9D22) with in-
creasing principal stretch Ay for different values of the
grain-anisotropy parameter 3. The curves corresponding
to =010, 0.15, 0.20, 0.25 are labelled Al, A2, A3, A4, re-
spectively, and the same labelling applies in subsequent plots
illustrating the results given by this model. It is scen from
the figure that the micro-macroscopic model predicts very
slight softening of ice (decrease in viscosity) during the first
stage of uniaxial loading, for the stretches 1 < A} =1.2
(0.7 A2 < 1). The softening stage 1s followed by a phase
of considerable hardening of ice, particularly pronounced
for the stretches in the range 135X\ =517
(0.355 A <0.6) and small values of the parameter 3 (ie.
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Fig. 2. Evolution of the ratio o’y | (2p19 D2 ) with increasing
stretch Ay in uniaxial compression for different values of 3 in
model A.

for very anisotropic ice grains). As the deformation con-
tinues, all the grain ¢ axes rotate towards the compression
axis (here the zp axis), and at large strains the macroscopic
viscosity of a polycrystal approaches the axial viscosity of a
single crystal. Since the latter viscosity is (1//3) larger than
the viscosity for shearing on crystal basal planes, it follows
from Equation (20) that the limit macroscopic viscosity for
compression is given in terms of 3 by the relation
(Trgg 30+ 2
—
Q,UUDZZ 53

The viscous response of ice vielded by model B is deter-
mined by the function h(b;). There is a variety of possible

(50)

functions, as long as they satisty some very general conditions
(Staroszezyk and Morland, in press), and this gives the model
ample flexibility to correlate with observations. For illustra-
tions, we apply simple monotonic increasing functions

h(b.) = hs —(ho — o) exp(—abd), >0, n>0,r=1,2,3
(51)

h(b.)=hg + (hec —ho) tan(ab,), o >0, (52)

where by = h(0) and hy = h(oe), m in Equation (51) is a
free parameter, and « in Equations (51) and (52) is deter-
mined by Equation (39). The limit values A(0) and h(o0) are
related through Equations (44) to A and S, the reciprocals of
the enhancement factors. In Staroszczyk and Morland (in
press) both A and S were chosen less than unity (both en-
hancement factors greater than unity), which corresponds to
the values measured by Budd and Jacka (1989) for warm ice
near melting. Here, in order to compare the predictions of the
two orthotropic models, we adopt A > 1 (an enhancement
factor for compression less than unity), meaning the increase
in viscosity with increasing deformation, which according to
Pimienta and others (1987) is the case for the response of cold
ice subjected to stress levels typically occurring in polar ice
sheets. The value of’ A can be as high as 10 for a single-max-
imum fabric, as has been found experimentally by Pimienta
and others (1987), although recently Mangeney and others
(1996) calculated the value of about 3 for the ice near the
bottom of the GRIP ice core, deduced from the data provided
by Thorsteinsson and others (1997). We carry out the simula-
tions for two values of this factor, namely, A = 22, which is
smaller, and A = 4.6, which is larger than the value obtained
for the GRIP ice, though both orthotropic models are flexible

491


https://doi.org/10.3189/S0022143000001349

Journal of Glaciology

in this respect and allow much larger values of A to be imple-
mented. Since Expression (50), defining the asymptotic value
of viscosity, is simply the reciprocal of the enhancement fac-
tor, A, it relates the parameter A in model B to the parameter
Binmodel A. Hence, we find that the selected values A = 2.2
and A = 4.6 correspond to 3 = 025 and 3 = 0.10, respect-
ively. Associated with the chosen values of A are the factors
S = 0.55 and S = 046, being the limit values of the normal-
ised viscosity in simple shear, which correspond, respectively,
to 3 = 025 and 4 = 010 in model A, as will be shown shortly
in Figure 6. In view of Equations (44), we have the following
connections:

3=010: A=460, S=h(0) = 0.46, h(co) = 25.30,
(53)

B=025: A=220, §=h(0) = 0.55, h(co) = 10.45.
(54)

The response functions b determined by the limit values in
Equations (54) are illustrated in Figure 3, and very similar
plots can be obtained for Equations (33). Henceforth, the
curves labelled Bl, B2, B3 correspond to Equation (51) with
m = 1,1.5, 2, respectively, and the curves labelled B4 corres-
pond to Equation (52).

12 T T T T

Fig. 3. Adopted forms of the fabric vesponse function h(b,.) in
model B.

With Equations (47-49), the constitutive law (Equation
(36)) leads to the following relation describing the beha-
viour of ice in uniaxial compression:

gDy 3

[h(b1) + 2h(b;*) + g(K) (b1 + 26, %), (55)

where K = 2by + b, The evolution of the axial viscosity
92 /(240 Ds2) with increasing stretch Ay for the adopted
forms of the fabric response function h(b,) is illustrated in
Figure 4 for the parameters in Equation (53), and in Figure
5 for the parameters in Equations (54). We note that the in-
fluence of the function k(b ) on the predicted response of ice
is most significant during the first phase of deformation. We
see that the functions in Equation (51) with m = 15 and
m = 2, curves B2 and B3, respectively, yield responses
which agree quite well with the responses given by model
A, curves Al and A4, particularly for the set of parameters
in Equations (54).

Next we consider a simple shear at constant strain rate
Dy = %7 which follows an initial plane compression and

4.0
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0.0 " 1 L | " L

Fig. 4. Evolution of the ratio a’ v [ (2000 D2 ) with increasing
strelch Ny inuniaxial compression for different fabric response
functions h(b,) in model B. The results for A = 4.6 and
S = 046 are compared with the prediction of model A for
3= 010.

2.5 T T T T T T T

o/ (200 D22)

05 -

0.0 . 1 N 1 L 1 A
1 2 3 4
Al &

Fig. 5. Evolution of the ratio 0y, [ (2410 D2 ) with increasing
stretch Ay inuniaxial compression for different fabric response
Sunctions h(by) in model B. The resulls for A= 2.2 and
S = (.55 are compared with the prediction of model A _for
8 =025

stretch that has been frozen at constant Ay = /\{l <1 by
the removal of the stress and strain rate. The deformation
field is now described by

I :/\1X1 +RX2, 332=)\1_1X2., :L‘3=X3. (5())

the corresponding velocitics are
3 T
K=", (57)

v = TakA1, m=v3=0,

and the strain and strain-rate tensors are defined by

AN+rE A's 0 0 4 0
B=| A« X% 0)|; D=|39 0 0
0 0 1 0 0 0

(58)

The principal stretch squares b, (i = 1,2, 3), the eigenvalues
of B, are given by

2b1 = M+ A7% + K7+ \/(Af+)\;‘2+n2)274 _,
by =8 Ma=1, (59)

and the associated principal vectors €, are determined by
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Equation (22),. In terms of these vectors, the three structure

tensors are expressed by
‘L]} ,E-‘H {?L]](’Lm 0 0O 0 0
M= |eMel®? ePe? 0] (s=1,2), Ms=(0 0 0
0 0 0 a i 1
(60)

The response of'ice to simple shearing given by model A,
defined by Equation (14}, is illustrated in Figure 6, which
shows the evolution of the normalised viscosity a”19/(pg7)
with increasing shear s started from the isotropic state
(A1 = A2 = 1) for different values of the grain-anisotropy
parameter 4, We note that the model predicts initial harden-
ing ofice (for strains £ = 1), with a more significant increase
in viscosity taking place for smaller values of 3 (i.e. for more
anisotropic ice grains). As shearing continues, the initial
hardening is followed by the softening phase, with a mono-
tonic decrease in viscosity until an asymptotic value is
reached at large strains. This limit value is given by

&y 80432

61
HoY 2 (61)

and follows from Equation (20), since at very large shear de-
formations all crystals are aligned for casy glide on basal
planes (their ¢ axes are approximately parallel to one an-
other) and hence in the limit the macroscopic viscosity of a
polyerystal approaches the viscosity of an individual grain.

In Figure 6 we also show the results predicted by a dis-
crete grain model, with 800 grains, for 3 = 0.10 (curve DI),
and 3 = 0.25 (curve D4). The discrete model is based on the
same assumptions as model A, except that no restrictions on
material symmetries are imposed, so it has a more general
character than the orthotropic model. Therefore, compari-
sons between the predictions of both models should give
some indication whether the assumption of orthotropy of
ice is justified. "T'he results obtained seem to support the va-
lidity of this assumption, since the maximum relative dis-
crepancies between curves Al and DI, and A4 and D4, do
not exceed 153% for £~ 1, and for larger shear strains
(k2 5) the agreement between the results given by both
models is very good.

The behaviour of ice predicted by model B, defined by

1.5

1.0

0.5 [0 7

Ml 2 4 B & 10
Fig. 6. Evolution of the ratio o'vs /(po07) with increasing
strain k& in simple shear starled from an isotropic state
(Ao = 1) for different values of 3 in model A. Also shown
are the vesulls given by the discrete grain model for 3 = 0.10
(curve DI) and 3 = 0.25 ( curve D4).
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Equation (36) with Equations (58—60), is described by

o, 1 - 2 | 2
Tt L (o) 4 505 + o005 + 47+ 2)], (02)

where now K = by + bl—' + 1. Figures 7 and 8 show, for dif-
ferent fabric response functions (Equations (51) and (52)), the
evolution of the viscosity ratio o’12/(uoy) with shear s
started from the isotropic state (A; = Ay = 1). The same sets
of parameters as in the uniaxial compression simulations are
used, i.e. those in Equation (33) for Figure 7 and those in
Equation (54) for Figure 8, and again the results yielded by
model B are compared with the predictions of the micro-
macroscopic model A (curves Al and A4). It can be observed
that now, for simple shear, the discrepancies between the re-
sponses given by the two models are more considerable than
in the case of uniaxial compression, especially for the param-
eters in Equation (53) (Fig 7), corresponding to more aniso-
tropic grains (smaller value of ) in model A, or “stiffer” ice
(larger value of the viscosity factor A) in model B. For the
parameters in Equation (54) (Fig. 8), a good qualitative
agreement between the two models is still reached, although
model A predicts more significant increase in ice viscosity

Kk 8 10

Fig. 7. Evolution of the ratio o'12/(poy) with increasing
strain & in simple shear started from an isolropic staie
(Ao =1) for different fabric response functions h(b,.) in
maodel B. The results for A = 4.6 and S = 046 are compared
with the prediction of model A for 3 = 0.10.

1o/ (1Y)

0.6

0.4

02 -

0.0 ) 1 \ " 1 i L
0 2 4 8 . B 10
Fig. 8 Evolution of the ratio o' 12/ (p05) with increasing
strain & in simple shear started from an isotropic state
(Ao =1) for different fabric response functions h(b,) in
model B. The results for A = 2.2 and S = 0.55 are compared
wilh the prediction of model A for 3 = 0.25.
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during the initial phase of shearing. However, the discrepan-
cies between the two models are still limited to relatively
small (compared to those occurring in ice-sheet flows) shear
strains, so it is anticipated that in realistic ice-sheet flow simu-
lations the two constitutive theories should yield similar pre-
dictions for most of an ice sheet, apart from a region near the
ice divide, where (relatively) small shear deformations occur,

5. CONCLUSIONS

We have presented two orthotropic models for viscous re-
sponse of ice based on two fundamentally different ap-
proaches. The first, a micro-macroscopic model, has been
derived from the behaviour of individual ice grains and incor-
porates the mechanism of crystal rotation in response to
shear stresses. The second, a macroscopic model, was con-
structed by applying the general theory of frame-indifferent
(objective) relations for materials with orthotropic anisotro-
py. The results of numerical simulations for continued uniax-
ial compression and simple shearing have shown that for
appropriately chosen model parameters a good correlation
between the responses given by the two theories can be
achieved. Both models predict significant hardening of ice in
compression, and initial hardening followed by softening in
simple shear, which seems to agree with the observed heha-
viour of cold ice at low stress levels. The theoretical results,
however, should be verified against detailed experimental
data; unfortunately, very few relevant data on cold ice are
available, since practically all laboratory tests performed to
date have been carried out on warm ice near melting and at
relatively high deviatoric stresses. It is also anticipated that
the numerical simulations of realistic ice-sheet flows and the
comparison of results obtained in this way with in situ data
should throw some light on the validity of the assumptions
made in the paper: first of all, whether the assumption of
orthotropic behaviour of ice is justified, or a more general
form of anisotropic constitutive law is recquired.

Further work should concentrate on including in the
models other micromechanisms, such as rotation and mi-
gration (dynamic) recrystallisation. This will, however,
add considerably to the complexity of theoretical formula-
tions. This is particularly true of the micro—macroscopic
model, and, to the authors’ knowledge, very few attempts
to incorporate recrystallisation have yet been made. In
terms of extending its generality, the continuum model is
more flexible, since only the modification of response func-
tions is required, although in order to account for a more
complex mechanical behaviour more tensor generators
may be needed in the constitutive law. Finally, we would like
to emphasise that in order to construct a model that prop-
erly describes the behaviour of ice in polar ice sheets, more
experimental work on cold ice needs to be done to provide
reliable input data for the theory.
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