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ABSTRACT As pola r ice descends from the free surfacc to depth in a la rge ice shee t, it 
undergoes deformati ons whi ch g i\·e ri se to the form ation and subsequent e\'olution o f a 
fabri c and associa ted a ni sotropy. In this paper two orlhotropic modcl s of slIch stra i n-in­
duced ani sotropy are considered. i\lodel A is based on ana lysis of the microscopic behaviour 
of an individual ice crysta l with tra ns\'ersely isotropic response and assumed uniform stress 
in a polycr ys ta l. The macrosco pic response of th e ice aggregate is th en derived by applying 
the concept of a n orienta tion di stributi on fun cti o n, and the resulting viscous law rela tes the 
stra in ra te to the stress and three structure tensors. In model B it is ass umed that the m ac ro­
scopic responsc of ice is determined by the fabric induced entirely by m acroscopic defo rma­
ti ons, and a llmicroprocesses ta king pl ace a t the g ra in le\'el a re ig nored. A constiLLlti ve 
relati on is d e ri\'ed from a ge nera l frame-indifferent law for orthotropic materials, a nd ex­
presses th e stress in terms of the stra in ratc, stra in and three structure tensors. The two 
models a re applied to determine th e \·iscous response of ice to continued uniaxia l compres­
sion and simple shearing in ordcr to compa re the predictions of both theori es. 

1. INTRODUCTION 

Pola r ice CO lTS drill ed at dille rent sites in Anta rctica a nd 

Grecnl a nd (G ow and Willi a m so n, 1976; Russell-Head a nd 
Buckl , 1979; H erron a nd L a ngway, 1982; Lipenkov a nd 

o thers, 1989) revea l strong fa brics, with significa nt a lig nment 
of I' axes ofindi\ ·idua l crys ta ls a long some prefe renti a l direc­
ti ons, induced by strains to which the ice is subjec t as it des­

cends I"rom th e free surface to depth in an ice sheet. The 
I~lbri c creat ed during the ice d eformati on gi\'Cs r ise to mac ro­

sco pic a ni sotro py 01" th e medium which considera bly a llec ts 
polar ic e-sheet dynamic behav iour O\'r r long time-sca les. 
This has been confirmed by numerical simulations carried 

out by l\la ngc ney and o the rs (1996), wh o ha\'e applied a 
trans\'ersel y isotropic fl ow law, w ith a rotati ona l symmetr y 

axis ass umed to be \ 'C rlical e\ 'Cr y where, to the ice-sheet fl o\\' 
problem with a non-e"olving ice fabric derived from the 

measurements made a long the GRIP ice core (Thorsteinsso n 
a nd oth ers, 19971. It has been fo und tha t for a g iven, fi xed in 

time, l"ITe-surface elevati on the assumption of the ice ani so­
tropy res ult s in much fas ter ice fl ow compa red to th e isotro­
pic case, and a n estima ted a cc umula ti on ra te required to 

maillla in a steady-state fl ow exceeds by lll ore th a n 1.5 tim cs 
the ra te for isotropic ice. Simil a r conclusions have been 

drawn by ~[angeney a nd o thers (1997), who considered a 
more rea li sti c problem in which th e free-surface e leva tion 
was ca lcula ted lo r a fi xed acc umul a ti on rate. Their nUllleri­

ca l res ults showed that the ice a ni sotropy, as well as leading 

to a globa ll y fas ter flow, sig nificantl y increases shea r stresses 
nea r the bed rock, makes the free surface fl a tte r in th e ice­
di vide regio n, and smooths o ut the effects of the bed topog­

raph y. This c lea rl y indica tes tha t th e strain-induced ani so­

tropy must be included in a ny la rge-scale numerica l model 
of pola r ice shee ts ifreali sLi c res ults a re lo be obta ined. H ow-

ever, there is still no genera ll y accepted constitutive law de­

sc ribing the a ni sotropic behaviour o f po la r ice. This is pa nly 

beca use of the complexity of phys ica l phenomena ta king 

place on the mic rosca le of single cr ys ta ls during the la bric 

fo rm ati on, but a lso because of difTic ulti es associa ted with 

the m athematical modelling of th e stra in-induced, evolving 
in time, a nisotropy. 

Fo ll owing L1ibo utry and Duva l (1985) a nd All ey (1992), 
wc distingui sh three main regions a lo ng th e depth of a ty p­

ica l pola r ice sheet in acco rd ance with th e microsco pic pro­

cesses which domina te the ice-fabric evo luti on. 

(l) In the upper pa rt or a la rge ice shee t, extending from ap­

proximately 100 m under th e free surlace to abo ut one­

third of its thi ckness, shea r stresses a rc neglig ibl y sm all 

compared to norm a l stresses. Defo rm ati on is mainl y due 

to di slocati on g lide on basa l pla nes, a nd ( axes of g r a ins 

rot a te towa rds compress iona l a xes. The gra in-size in­

creases linea rly w ith th e age of ice, which is here nearl y 

proporti ona l to its depth, and no n ew gra ins a rc c reated. 

(2) Be tween approx ima tely onc-third a nd two-thirds o f the 

ice cap thickn ess, th e shear stresses g radu a lly inc rease, 

tho ugh they a rc still small er th a n the norm a l stresses. 

vVith increas ing d eform ati on a nd stra in energy sto red 

in g ra ins, th e fabric continues to streng then and the pro­

cess or /)o~Jlgon isation (a lso ca lled rotation re(~JlJtaLlisa lioll ) 

occ urs. In thi s process new g ra ins, with oricnta ti ons 

simil ar to old g ra ins which a rc n o t consumed by new nu­

clei. a rc produced. The ave rage g r a in-size changes littl e 

with depth throug hout thi s regio n. 

(3) In th e region direc tl y over the bedrock , the shear stresses 

do minate th e n orm al stresses, which combined with 

hi gh tempera tures initi ates the process of migmlion (or 

485 
https://doi.org/10.3189/S0022143000001349 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000001349


J ournal qfGlaciology 

dynamic ) reC7ystallisalioll. New, stra in-free, g rains with 
their c axes a t high angles ("-"lc5°) to compressiona l axes 
are created at the expense o f old gra ins which a re con­
sumed by new nuclei. Abrupt changes in the average 
grain-size a re usually ohse rved in this region, but ge ner­
ally the g ra ins are much la rger th an in region 2. 

In order to construct a mac roscopic constitutive law for 
a niso tropic polycrystalline ice, a basic and physically moti­
vated approach is to deri\·e an a\"Crage response of ice aggre­
gate from the properti es of indi\·idual g rains and 
assumptions on crys tal interactions. To date, most of the ex­
isting anisotropic models inelude onl y the mechani sm of the 
grain c-ax is rotation, which dominates the fabric form ati on 
and e\·olution in the upper pa rt of an ice shee t, althOLwh 
some attempts to incorporate the rec rys ta lli sa tion process, 
prevailing in deeper regions of ice sheets, have already been 
made. Azum a (1994) and Azum.a and Goto-Azuma (1996) 
assume that individual crystals d eform on ly by basal g lide, 
the glide direc tion is determined by that of the maximum 
macrosco pic shea r stress in the polycrystal, and the cr ys tal 
(m icroscopic) and polyc rystal (macrosco pic ) stresses. 
which may be different in thi s model, a re related by a geo­
metric tenso r associated with the c-axis and g lide direc tions. 
Lliboutry (1993) assumes th at the microscopic stress acting 
on each individual grain is equ a l to the hulk macrosco pic 
stress applied to the polycrysta l, and formulates a flow law 
for a transve rsely isotropic aggrega te. Castelnau and Duval 
(1994) and Va n der Veen and Whillans (1994) extended Lli­
boutry's homogeneous stress model (also called the static 
model ) to any type ofe\·oking anisotropy by considering a 
polycrysta l consisting of a finite number of g rains. Van del' 
Veen and Whillans (199+) a re the first to include the recrys­
tallisa tion mechanism in their model, and consider two al­
ternative criteria to determine the onset of recrystallisati on 
in terms of threshold acc umul a ted strains of crysta ls. An­
other, more genera l, approach is the visco-pl as tic self-co n­
sistent (VPSC) model de\"Cloped by Castelnau a nd others 
(1996). In thi s formul ation, the single crysta l is treated as 
a n embedded idealised geome tri c inclusion in an infinite 
medium with properti es of a n assumed form supposed to 
represent the m acroscopic behaviour. J n contrast to the 
models di sc ussed above, in which individua l crysta ls can 
g lide onl y on basal planes, in the VPSC model crystal slips 
on basal, prismatic and pyra mida l planes a re considered, 
a nd stresses a nd strain rates a re assumed to dep end on the 
crysta llographic orientation. 

In a ll the above theori es, which can be called di screte 
grain models, usually about 200- 400 grains are n eeded to 
properly desc ribe the ice fabric a t a gi\"Cn point. Since in typ­
icallarge-scalc numerical models for ice-sheet fl ows the num­
ber of mesh nodes can exceed 10.'\ it is ob\·ious tha t di screte 
g rain models a re not suitable for simul at ions run on currently 
a\·ailable computers. Therefore, in order to significa ntly re­
duce the number of \·ariables involved in the description of 
icc fabric, anot her approach, in which the polycrystalline ag­
gregate is treated as a continuum, has been adopted. In this 
approach a so-called orienta tion distribution function 
(ODF), defining continuous weightings to the g ra in c-ax is 
orientation, has been appli ed. Although the concept of the 
ODF is a lready well establi shed in material sc ience (Bunge, 
1982), it was fi rst introduced to the field of theoretical glaciol­
ogy onl y recently by Lliboutry (1993), Meyssonnier and Philip 
(1996) and Svendsen and Hutte r (1996). Meyssonnier and 
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Philip (1996) formulated a tra l1S\"Crsely isotropic fl ow law for 
a p olyc rys talline ice using the ODF concept and the VPSC 
model hy adopting some simplifying ass umptions on the 
single g rain behaviour, namely, that the crys tal is trans\·e rsely 
isotropic and offers sma ll resistance to shearing parall el to its 
basal planes, and the response is governed by a linea rl y vis­
cous law. S\"Cndsen and Hutter (1996) employed the ODF ap­
proach to dcrive analytically a fi'ame-indifTerent viscous law 
which inco rporates th e fabric through a single structu re ten­
so r defined by an ax is of ass umed tra nsverse isotropy. This 
theory has been considerabl y extended by Goden and Hutter 
(1998, in press). H owever, the complicated calcul ati ons 
required to follow the evolving properti es of individual ice 
elem ents will add considerably to numerical treatments of 
la rge ice-sheet flows. A transversely isotropic flow law that 
avoids the use of an orientation distribution functi on has been 
proposed by Van cler Veen and Whill a ns (1990). They modify 
Johnson's (1977) law fo r a trans\·erse ly isotropic viscoelaSl.ic 
solid by replacing m ateria l measures of stress and strain ra te 
by spati al measures. H owc\·er, they include the vertica l 
(gravity) direction in the material structure, so thi s model 
ca nnot be treated as a valid constitutive relation for the re­
sponse to general loading. 

D ependence of th e fabric on ice deformation implies that 
transverse isotropy of the medium can occ ur only if the flow 
in the ice sheet induces uniform stretches in some plane, say a 
hori zollla l plane in a g ravit y-dominated fl ow under a centra l 
dome, in which case a transversely iso tropic fabric with th e 
vertical as its rotational symmetry ax is develops. Elsewhere 
in the ice sheet, however, such pa rti cul a r symmetry of the ice 
flow does not take place in genera l, a nd consequentl y the ice 
deform ati on, and hence the ice fabric, does not have rota­
tiona l symmetry about any axis. Therefore, in order to more 
realistically desc ribe the strain-induced ice fabri c, a more 
general form of ani sotropy is needed. Such increased gener­
ality is offered by orthotropic models. Although, strictl y, the 
orthotropy does no t occur fo r any arbitrary loading because 
of th e fabric evolution which destroys any (already devel­
oped ) orthotropic sym metries in the material , thc ass ump­
tion of orLhotropy is strongly supported by observational 
data showing that the fabric in ice shee ts does, in fact , usua ll y 
reveal this type of mate ri al symmetry (this is in part due to 
the dynamic recr ysta llisation, not considered here, which 
he lps to sustain the earlier created orthotropy despite the 
cha nges in the strain configuration). 

In the paper, two orthotropic \·iscous models arc pre­
sented. The first model , formulated by Gagliardini and Meys­
sonnier (in press ), stems from analys is of the beha\· iour of a 
single ice grain in a polycrystal under the ass umption of stress 
homogeneit y, followin g Lliboutry (1993) and Van derVeen 
and ''\Thillans (1994). Assuming transve rse isotropy for each 
individual crystal and a linea r response to de\·iatoric stresses, 
the macroscopic stra in rate of the aggregate is deri\·ed by ap­
plying the ODF concept. Compared to Meyssonnier and 
Philip (1996), Svendsen and Huller (1996) and Godert and 
Hutter (1998), additional parameters a rc introduced into the 
ODF. Owing to the extra parameters, the deri\·ati on of a 
macroscopica lly orthotropic (instead of transversely iso tro­
pic ) viscous law relating the strain rate to the deviatori c stress 
and three structure tensors is poss ibl e. 

The sccond onhotropic model considered here has been 
formul ated by Morl and and Staroszczyk (1998) and further 
ex tended by Staroszczyk a nd Morland (in press ). In this ap­
proach it is assumed that the macroscepic mecha nical re-
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sponse of ice can be described in terms of the fabric induced 
purely by macroscopic deformation, and all microscopic 
processes occurring at the grain level are ignored. The 
assumption that the induced anisotropy depends only on 
the current strains and not on the deformation hi story is a 
considerable si mpli fication since, in genera l, the fabric evo­
lution is a path-dependent process. It is believed, however, 
that this approximatio n is the simplest approach to an evol­
ving a nisotropic viscous law that could be tractable in la rge­
scale sheet dynamics, since it requires tha t only current de­
formation gradients a re calculated in addition to the velocity 
and pressure fi elds. The constitutive rela tion is derived from 
the general frame-indifferent orthotropic representa tion 
(Boehl er, 1987), and expresses the devia toric stress in terms 
of the current strain ra te, deform ation a nd three structure 
tensors. The relati on is separable in the isotropic dependence 
on strain rate and fabric dependence on deform ati on, and in 
its simplified form has only one independent fabric function 
tha t fully describes the o rthotropic viscous response of ice. 
Although in this approach local interactions between indivi­
dual crys tals are excluded from the analysis, this method 
allows good qualitative agreement with observations, a nd 
Oexibility to correlate with detailed experimental res ults. 

The two orthotropic models are used to determine the 
viscous response of ice to simple stress and strain config ura­
ti ons, corresponding to those occurring in the uniaxia l 
compression and simple shear tes ts carri ed out in a labora­
tory. The predictions of both theories are compared, and the 
influence of some model parameters on calculated responses 
is inves tigated. Additiona ll y, the res ults for simple sh ear 
given by the mic ro~mac rosco pic mode l a re compared with 
the result s obtained from a di screte g rain model (in which 
no assumptions a re m ade about materia l symmetri es ) in 
order to verify the valid i ty of the ass u l11ed onhotropic beha­
viour of polycrys ta lline ice. 

2. MICRO-MACROSCOPIC MODEL 

This model, formul ated by Gaglia rdini a nd Meyssonnier (in 
press ), incorporates the bas ic micromech anism taking place 
on the grain le\-c l during the ice deforma tion, namely, the ro­
tati on of crysta l c axes towards the axes of compression a nd 
away from the axes of extension. The m acroscopic viscous­
Oow law which expresses the strain rat es in terms of the de­
viato ric stresses is derived from the behaviour of individua l 
grains by applying the homogenisation method based on the 
ODF a pproach. 

In the following, three Cartesian reference frames a re 
used to describe the behaviour of ice on the microscale of a 
sing le g ra in and the m acroscale of a p olycr ystal: 

{R} with axes X i is a fi xed global reference frame; 

{RO} is a privil eged frame of an ortho tropic polycrysta l, 

whose axes xi coincide with th e orthogo nal privileged 
directions in the m a teri a l; 

{Rg} with axes xy is a loca l frame associa ted with a n indi­

vidual grain, whose x~ ax is coincides with the c ax is o f 
this grain. 

Microscopic quantities associated with a n individual g ra in 
are indica ted by a tilde, a nd supersc ripts "g" and "0" are used 
to denote non-scal a r qua ntities ex pressed , respectively, in the 
local {Rg} and the privil eged orthotropic {RO} frames. 
Where no supersc ript is appli ed, respective symbols refer to 
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macroscopic quantities expressed in the globa l coordinate 
system {R}. Since the individual ice grain is assumed here 
to be tra nsversely isotropic, with its c axis being the rotational 
symmetry axis, the grain position relative to the global refer­
ence frame {R} can be uniquely described by means of two 
angles: the co-latitude (or zenith angle) B and the longitude t.p 

(see Fig. I). These two angles determine the rota tion matrix R 
(er. Meyssonnier and Philip, 1996) which connects compo­
nents of vectors and tensors in {R} and {Rg}. 

Fig. 1. Global and local referencefiames, with angles Band tp 

difining the c-axis orientat ion if a gmin. 

Following Lliboutry (1993) and Van der Veen and Whil­
lans (1994), the hypothesis of the stress homoge neity in ice 
aggregate has been adopted 

a = a , (1) 

stating tha t the microscopic strcss if in each g ra i n, i rrespec­
tive of the g rain orienta tion, is equal to the mac roscopic 
(bulk) stress a applied to the polycrys ta l. The deviatoric 
stress cl is defined by 

a' = a + pI , 
1 

p = - 3"tra, (2) tra' = 0, 

where ]J is the mean pressure, I is the unit tensor, and tr a 
denotes the trace of a . Since the ice is assumed incompressi­
bl e, p is a workless constraint no t given by a constitutive law, 
but determined by the m om entum balance and boundary 
conditions. 

Further, it is assumed that the transversely isotropic cr ys­
tal deform s ma inly by simple shear parallel to its basa l plane, 
and its response to stress is linea rl y viscous. Adopting the sim­
ple relation (Meyssonnier and Philip, 1996) between the mi­
croscopic strain rate IS and the microscopic deviatoric stress 
iI , which is equal to the m acroscopic stress cl in view ofEqu a­
tion (I), the transversely isotropic Oow law can be expressed in 
the [a rm 

IS = 't {,8 a' + (1 - ,8) [a'M + MiJ' - 2tr (MiJ') M] } , 
2 

(3) 

where M = c Q<) e is the structure tensor defin ed in the global 
reference frame {R} by the unit vector c = (sin Beostp, 
sin 8 sin tp, eos 8) associated with the grain c axis, and 1j; is 
the fluidit y (reciprocal viscosity) for shearing p a rallel to the 
crys tal basal plane. The parameter f3 is the ratio of the shear 
viscosity in a plane para llel to the c axis to the shear vis­
cosit y in a plane of isotropy (normal to the c ax is) and can 
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be regarded as a measure of the grain a nisotropy. When 
(3 = 0, the grain can deform only by basal glide, as assumed 
in the Lliboutry (1993) a nd Van der Veen and Whillans 
(1994) m odels, whil e (3 = 1 means that the g ra in is isotropic. 
In what follows it is also assumed that each g rain in a poly­
crysta l occupies the same volume and the number of grains 
does not change during the deform ation, i. e. the grain 
growth, polygonisation a nd dynamic recrystallisation phe­
nomena a re not accounted for in this model. 

The m acroscopic (bulk) strain rate D of the polycrystal, 
in resp onse to the macroscopic deviatoric stress d, is defined 
as the average of the stra in rates of its consti tuent grains. 
Various homogenisation techniques can be employed to cal­
culate the average strain rates in the ice aggregate. In the 
discrete grain models (A zuma, 1994; Van der Veen and 
Whillans, 1994; Castelnau and others, 1996) with a finite 
number of grains, the components of D a r e simply arith­
metic m eans of the corresponding components of:O. In our 
continuum model with an infinite number of grains, we 
make use of the ODF concept, which describes the ice fabric 
in terms of the relative density of grains whose c axes have 
the ori enta ti on (e, 'P) in the global reference frame {R}. In 
the ODF approach, the weighted average of a quantity 
A (e, 'P) is defined by 

A = (A)= 2~12la 7r/~(e ' 'P) f ( e ' 'P)sineded'P' (4) 

where f (e, 'P) is the proportion of g rains with orientation 
(e, 'P) in the element "a rea" sin e de dip, and by definition 

1 {27r {,,/2 
27r la la f (e,'P)sineded'P = 1 . (5) 

Note that in the case of iso tropy we have f (e, 'P) = 1, and 
for tran sverse isotropy, with X3 being the rota tional symme­
tr y axis, the ODFdoes not dep end on 'P, i. e. f (e, 'P) = f (e). 

H ence, by the weighted average definition (Equation 
(4)), the components of the macroscopic stra in rates in the 
global reference frame {R} a re given by 

(6) 

Once the ODF has been determined, Equations (3) and (6) 
yield the relation between the macroscopic strain rate D 
and the deviato ric stress a'. In order to describe the evo lu­
ti on of the ODF, consider the motion of the single grain, i.e. 
the rotation of its c axis in the global coordina te system {R} . 
Following M eyssonnier a nd Philip (1996), the rotation 
matrix R that defin es the orientation of the g rain in {R} is 
governed by the relation 

where R T is the transpose of R , the superposed dot denotes 
the time derivative, W g a nd W are spins (rates of rotation ) 
of the g rain in the local a nd globa l reference frames, respect­
ively, and cg = (0, 0, I). Since during the gr a in deformation 
the origina l parallel glide pla nes remain p a ra ll el to each 
other, the velocity component along the crysta l c axis, when 
expressed in the rotating frame {Rg} attach ed to the grain, 
is a function of x~ only. This leads to the kinem a tic relations 

(8) 

which a re a direct consequence of the adopted system of 
reference frames. In order to close the system of governing 
equations, three additional conditions a re required, and 
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these are ad opted by ass um ing that the microscopic and 
macroscopic spins a re equa l, i. e. 

(9) 

The above equation is closely related to the Taylor (1938) 
assumption which postulates the equality of micro- and 
macroscopic vcl ocity gradients. The combina tion of con­
straints (Equ ations (I) and (9)) adopted here is exactly the 
same as tha t used by Gbdert and Hutter (1998). With Equa­
tions (8) a nd (9), Equation (7) p rovides two I-cla ti ons which 
describe the ch a nge in the g ra in orientation by 

(10) 

o sin e = - D~3 - W 12 sin e + (W 23 cos 'P - W 13 sin r.p )eos e . 

(11) 

Since recrystallisation is not taken into consider ation, and 
hence the to ta l number of grains in the polycr ysta l is con­
served, it follows from the continuity equation (5) that the 
ODF satisfi es the relation 

a(J sin tJ ) a(Bf sin tJ ) a( 0f sin e) 
at + ae + a'P = ° . (12) 

Equations (10- 12) completely describe the evo lu tion of ice 
fabric for any type of macroscopic anisotropy tha t is based on 
the assumed b ehaviour of ice on the microscalc of indi\·idual 
crystals. In the case of orthotropic anisotropy, the medium 
possesses three planes of refl exional symmetry, which in the 
reference frame {RO} are the planes (x~ , xg), (x~,x~) and 
(xg , x3) , and these materi a l symmetries must b e acco unted 
for in the ODF. Foll owing M eyssonnier and Philip (1996), 
and using ana lytica l results obta ined by Gaglia rdini and 
Meyssonnier (in press), we adopt the following form of the 
ODF: 

3 

= {sin2 tJ [ki C08
2 ('P-'P0

) + k~ sin 2 ('P- 'PO) ] + k~ C08
2 e} -", 

(13) 

where kl' k2, k3 and 'Po are parameters, the latter being the 
angle of rota tion of the orthotropic frame {RO} with respect 
to the globa l r eference frame {R}. Since the gr a in-conserva­
tion relation (Equation (5)) implies that k lk2k3 = 1, only 
three pa ram e ters in Equation (13) are indep endent. Now, 
by substituting Equation (3) into Equation (6), a nd using 
Equati on (13) in Equation (4), we obtain the or tho tropic, lin­
early viscous law relating the m acroscopic stra in-rates to 
the macroscopic deviatoric stresses by 

D = t [011,. ( M~ -~I) 

+ 0 , + 3 ((/M~ + M~(}I - ~ lrI) 1 
(14) 

where M~ = e~ (9 e~ are three structure tensors defined by 
the orthotropic axes uni t vectors e~, and 1,. = tr(M~d) are 
three inva ri ants. The SI X r esponse coefficients 0 i 

https://doi.org/10.3189/S0022143000001349 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000001349


(i = 1, .... 6) arc functions of the g ra in rheologieal param­
e ters '1/; and /3, 

0.1 1 
0 - 6 12 8 - 22 

Q2 
0 - 12 - 6 N30 

Q :3 1j;(p - 1) - 10 0 8 - 6 N32 

Q I 2 ,i /12(J - I )1 - 3 - 2 - 2 N50 

0.;:; 
,i /12(J - I )1 -2 3 - 2 - 2 

N 52 
(2- ,J)/12(J - l )1 0 - 2 - 2 

u(j N 501 

(15) 

and N30, N32, N5Q, Nw, N54 are fiv e m oments defin ed by 
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"/21'''/2 
Np(J = - f ee, cp) sinpesin'icp dedcp 0 

7r 0 0 
(16) 

In the case of ice isotropy, i. eo when f ee, cp) = 1 a nd 
kl = k2 = k3 = 1, the above moments a rc 

N 30 =2/ 3, N32= 1/ 3, N 50 =8/ 15, N 52 =4/ 15, N54 = 1/ 5, 

(17) 

a nd the six material coefTi cients defin ed by Equation (15) 
become 

With the above parameters, and in view of the ident it y 
M~ + M~ + M~ = I , the orthotropie constituti ve law 
(Equ ation (14)) red uces to the linear Glen's fl ow law for iso­
tropic ice 

D = '1/;0 (J' 2 . (19) 

where I/Jo is the fluidit y of the macrosco pica ll y isotropic 
p o lycrysta l, wh ich is related to the indiv idual crys tal fluidit y 
'1/; by 

(20) 

It fo llows from the la tter formul a th a t in the case of isotropic 
crystals (fJ = 1) the macroscopic fluidit y '1/;0 equals the 
grain fluidit y '1/;, while in the case of the most ani so tropic 
crysta ls (/3 = 0), whe n the grain deform ati on occ urs only 
by basal glide, '1/;0 = 0.4'1/; . 

3. CONTINUUM MODEL 

In thi s continuum approach, proposed by Morl and and 
Staroszczyk (1998) and further developed by Staroszczyk 
a nd i'vIorland (in press ), the phenomena taking place o n 
the microsca le of individual grains, as opposed to the m odel 
considered in section 2, a rc ignored , a nd it is ass umed that 
the macroscopic response of ice depend s on ly on the fabric 
induced solely by the mac roscopic defo rm ati ons. Altho ug h 
this is a considerabl e simplification, it is beli eved tha t such 
a n approac h to a n eyoh-ing an iso tropic consti tut ive law is 
wel l suited to the la rge-scale ice-sheet modelling, since it 
req uires onl y tha t the deformati on g radient fi eld has to be 
determined during the ice fl ow in orde r to describe the fa b­
ric development. The chosen (arm of the o rthotrop ic viscous 
law is the relation be tween the frame-indifferent devia toric 
Cauchy st ress 0-', current strain ra te D , Cauchy- Green 
stra in tensor B , and three structure te nsors M ,. (1' = 1,2,3) 
defin ed by the outer products of the current principa l 
stretch axes unit vecto rs e l' (1' = 1,2, 3). 

Staroszc;:yk and GagLiardini: Strain-induced aniso/raP)' ofpolar ice 

L e t OXi (i = 1, 2,3) be spati al rectang ular Cartesian co­
ordinates with OXi (i = 1, 2,3) particle reference coordin­
ates, and Vi the velocity components, then the deformation 
gradient F and strain ra te D have the components 

F - aXi D _ ~ ( aVj 8Vj) 
' J - :::lX . ' 'J - 2 :::l . . + :::l " • 

U J u X./ U X 'I 
(2 1) 

The stra in B , unit vec to rs e " (1' = 1, 2,3) a nd squa res of the 
principa l stretches bl' (1' = 1, 2, 3) are de fined by 

B = FFT
, Bel' = bre I" d et(B - b,I ) = O. br = A,2 > 0, 

(22) 

where AI' ('r = 1, 2,3) a rc principal stretches a long the prin­
cipal axes e r, and the three structure tensors M ,. a rc given 
by 

M ,. = e r 181 e,. (1' = 1,2,3). (23) 

Ice is ass umed incompress ible, so 

det F = AIA2A3 = det B = bj b2b3 = 1, divv = O. 

(24) 

In o rder to derive the m acroscopic fl ow law for an isotro­
pic ice, wc foll ow Buchlcr's (1987) theory fo r rrame-indiffer­
ent relat ions between tensors and vec tors, which ensures 
that m a te rial properti es a re independent o f the observer. 
In the case or a symmetric tensor (here 0-' ) being a function 
of two o ther symmetric tensors (here D a nd B ), the genera l 
orthotropic representa ti on is 

3 

(J' = L [<p,M, + <p,.+;l(M ,D + DMr) 
1'= 1 (25) 
+ <Pr+u( M rB + BMr)] 

2 ? + <P lo D + <PIJ B - + <P12(DB + BD), 

where the 12 response coefTi cients <Pi (i = 1, ... . 12) arc 
fun ctio ns of the 19 invar ia nts 

Ir = t r M ,.D , 1,.+3 = tr M ,.B = br I ,.+u = tr M,D~, 

1,+9 = t r M "B2. 1,.+12 = tr M rDB (1' = 1,2,3), 

I IG = tl' D 2B , III = tr DB2. h~ = det D , IJ 9 = det B , 

(26) 

subj ect to the constra ints that the dev ia toric Cauchy tress 
has zero trace, and the materi al is incompressible, so tha t 
onl y II coeffi cients <Pi a re independent, a nd onl y 18 im'a r­
iants I j a re non-tri vial, since 119 = 1. An a lternative consti­
tutive law for the strain rate D in terms o r the deviatoric 
stress (J' a nd the strain B , corresponding to th e usual glacio­
logical approach for the isotropic fluid model , can be formu­
lated simila rly by interchang ing cl and D in Equat ion (25) 
and (26). 

\lVe require that Equation (25) reduces to an isotropic 
visco us-fluid law 

(27) 

where ct>l , ct>2 depend on two im'ari an ts tr D 2 ancl det D , 
when the re is no fabric; th a t is, in the initi a l undeformed state 
F = I when the principal stretches are equa l, necessarily 
Al = A2 = A3 = 1 by the incompressibility co ndition (Equa­
tion (24)), o r subsequentl y when F = I o r when F con-es­
ponds to a rigid rota tion of the ice clement. Th e 
conventio m~} ,$l ac i o log ica l model is iP2 = 0 a nd iP I depends 
onl y on tr D -. The above prescription asse rts that there is 
fabric - some alignment o f initi all y random ly di stributed c 
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axes - only when there a re diITerential principa l stretches, 
i.e. when B i- I. 

Following Sta roszczyk and Morland (in press ), wc sim­
plify the genera l law (Equatio n (25)) by ignoring tensor de­
pendence on D 2, B 2 a nd DB, and the terms involving M 1' 
without D or B , i.e. we restrict a ttention to a reduced model 
with a linear tensor dependence of cl on D and B. Hence, 
wc adopt the relat ion 

3 2 
cr' = L cP,+3 [M ,.D + DM1' -"3 t r (M rD )I ] 

r=1 

+ cPl2 [DB + BD - ~ tr (DB)I ] , (28) 

where the cP,+3 and c/>12 terms have been modi fi ed to recover 
zero trace, noting that the included scala r t r (M rD ) = I ,., 
and the scala r t r (DB) = h 3 + 114 + 115 . Equa tion (28) still 
represents a non-linearl y viscous law since, in general, the 
response functions c/>r+3 and cP12 depend on D. Wc further 
express these fun ctions in sep a rable forms which factor out 
im'a ri a nts depending only on the deformation B and retain 
a commo n dependence on inva riants involving the strain 
rate D: 

c/>12 = if:Io (116 ,120) g(121 ,122)' (29) 

c/>r+3 = if:Io (116 ,120 ) h(11'+3,!21 ,122) (1' = 1, 2, 3), (30) 

where 

3 :l 

'""' - 2 h o = ~ 1"+0 = t r D , hi = LIr+3 = t rB , 
r=1 'r= l 

3 

I n = LIr +9 = trB2 (31 ) 
r=1 

T he response functions (Eq ua tions (29) a nd (30)) have to 
satisfy the isotropic fluid law (Equati on (27)) when B = I , 
and hence h i = h 2 = 3; thus 

<Po (tr D 2, t r D 2) = ~ if:I1 (tr D 2, det D) , if:I 2 = 0, (32) 

where the fun ctions h a nd 9 a re normali sed by 

h(l , 3, 3) + g(3, 3) = 1. (33) 

We restrict attention to a simple model with the fabric re­
sponse function h depending only on the principa l stretches 
Ar (th rough 1"+3 = br = )..; ), and the functio n 9 depending 
only on the invariant m easure of tota l deformation 
hI = tr B ; thus 

if:I t = <P l(trD2) = 2MO, h = h(b,.), 

9 = g(K ), h( l ) + g(3) = 1, (34) 

where Mo = 1/'ljJo is the (constant) isotropic fluid viscosity 
(when bl = b2 = b3 = 1), a nd 

K = tr B = b1 + b2 + ba 2: 3. (35) 

Now, with Equations (34) and (32), the constitutive law 
(Equation (28)) expressed in terms of the two resp onse func­
tions h a nd 9 and the viscosity Mo takes the linear form 

(r' = MO{ t h(br) [M TD + DM1' - ~ t r (M rD )I] 
1'=) 

+ g( K ) [DB + BD - ~ t r (DB)I] } . (36) 

Sta roszczyk and Morla nd (in press ) de ri ved equalities 
and inequ a liti es which have to be sati sfi ed by instal1laneous 
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visCOSlties Mi j (i, j = 1, 2,3; i =1= j ), depending on the rela­
tive magnitudes of the principal stretches. With the ordering 
b1 2: b2 2: b3 the re a re six distinc t sets of relative values of br 

(1' = 1, 2, 3), a nd for each of them corresponding relations 
order M12, M13 and M23 in the coordinate frame o f the prin­
cipal stretch axes. By using the viscosity rela ti on corres­
p onding to the plane fl ow, i. e. when A2 = b2 = 1, hence 
b3 = l i b) a nd K = b1 + 1 + b11 , it is possible to express 
g(K ) in term s of h(br ), namely, 

b) [ - 1 1 g( K ) = --2- h(b1 ) - h(bj ) , 

b) - 1 
(37) 

wl1('r(' 

2 bt = K - 1+ V (K - 1)2-4,2: 2. (38) 

The limit of Equation (37) as b1 -+ 1, K -> 3, combined 
with the normalisati on (34)'il gives 

h(l ) - h' ( l ) = l. (39) 

which is a res tricti on on h(b,.) at b = 1. Rewriting the func­
ti on g(K ) as 

(40) 

where G(K ) is bounded, it can b e shown that the limit of 
Equation (37) as b1 -> 00, K cv b1, yields the rela tion 

G(oo) = h(O) - h(oo) . (41) 

That is, in view of Equation (37), onl y one fabric response 
function, h(br ), remains free fo r prescription, subj ect to 
Equati on (39). In order to further restrict this [unction, the 
model defin ed by Equation (36) is used to predict the viscous 
res ponse of ice a t la rge deforma tions in the axia l compres­
sion and simple shea r conditions. For such config urations, 
Budd andJacka (1989) present exp erimental da ta obta ined 
[or a steady-state fl ow (when the microprocesses o f g ra in ro­
tation, po lygonisation and d ynamic recrystalli sation 
balance one a no ther) and de termine the limit ra ti os offab­
ric-induced viscosity to (m aximum) isotropic viscosity. 
Thesc empi rical ra tios, expressed in terms of so-called en­
hancement factors for compress ion and shea r, provide two 
further rela tions connecting h (oo), h(O) a nd G (oo) 
(Staroszczyk a nd MOl'land, in press ). For the uniax ia l com­
pression the vi sco us law (Eq ua tion (36)) yields 

1 2 1 
3 h (oo) +"3 h(O) +"6 G(oo) = A, (42) 

wherc A is the rec iprocal of the axial enhancem ent facto r, 
and for the simple shear in the pla ne fl ow we obta in 

1 1 1 
2" h (oo) +"2 h(O) + 2" G(oo) = S , (43) 

where S is the reciprocal of the shear enhancem ent factor. 
Equations (41- 43) provide the fo llowing values of h(O), 
h (oo) and G(oo): 

h(O) = S, h (oo) = 6A - 5S , G(oo) = 6(S - A). 

(44) 

Despite severa l simplifying ass umptions adopted to de­
rive the model (36) with the sing le fabric function h(bT ) from 
the genera l orthotropic law (Equation (25)), this approach 
still retains considerable fl exibility to correlate with 
observed da ta. In fact, onl y three specific restri ctions a re 
imposed on the functi on h: Equa tion (39) to yield a valid re­
sponse in the isotropic state, a nd Equations (44) 1 a nd (44l2 
to mateh the enhancement fac tors fo r compressio n and sim-
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pie shearing at la rge strains. H owever, it is a lso required 
that the function h(b,.) yield a response which satis fi es the 
viscosity relations derived in Staroszczyk and Morland (in 
press ), otherwise physically invalid responses can be 
obta ined. 

4. MODEL COMPARISONS 

The two orthotropic models described in sec ti o ns 2 and 3 
a rc now appli ed to explore the v iscous response o f ice to sim­
ple deformati o n hi stories, correspo nding to those ta king 
place in typica l labo ratory tes ts. For the sake of brevity, 
throughout thi s section we will refer to the micro- macro­
scopic model as model A, a nd to the continuum model as 
m odel B. 

First we cons ider an axia l compression in the X2 direc­
tion, defined by the axial stretch A 2 < 1, with equa l latcra l 
stretches Al a nd A 3 a long the Xl a nd X3 coord ina te axes, for 
wh ich thc deform ation field is described by 

XI = AI X l' X2 = A 2 X 2, X3 = A3X3, 

Al = A3 > 1, A2 = X;-2 < 1, 
(45) 

and the assoc ia ted \'elociti es, in view of Equations (4·5) I a nd 
(+5)5 are 

VI =Xl '>;1/AI. V2=-2x2 '>;I / Al, V;J=X3 '>; I/Al. (-16) 

"Vith Equations (45) and (46), the Cauchy- Green stra in 
tensor B a nd the strain-rate tenso r D are given by 

(
Ai 

B = 0 
o 

0) ('>; I/Al o . D = 0 
A~ 0 

o ) o . 
'>;1/AI 

(47) 

and the three structure tensors, due to the coincidence orthe 
pr incipa l stretch axes e r with the coordinate axes X,. , are 
defined by 

o 
o 
o 

o 
1 
o 

o 
o 
o 

( -18) 

The deviator ic stresses (Equa ti o ns (2)) arc glven by the 
d iagona l tensor 

(

(5'11 

(5' = 0 
o 

o 
IT22 

o 
~ ) , with 

d 33 

, , , /2 (511 = (533 = -(512 . 

( 49) 

The response of ice predicted by model A, defined by Equa­
ti on (14), is illustra ted in Figure 2, w hich shows the evolution 
of the norma li sed axia l \'iscosity IT n/(2p,oD22) with in­
creas ing principa l stretch Al fo r different values of the 
g ra in-a ni sotropy parameler {3. T he curves co rresponding 
to (3 = 0. 10,0. 15,0.20, 0.25 are labell ed AI, A2, A3, A4, re­
specti\ 'ely, a nd the same labell ing a ppli es in subsequent plots 
illustrat ing the results given by this model. It is seen from 
the fi gure tha t th e micro- macroscopic model predicts \'ery 
sli ght softening of ice (decrease in vi scosity) during the first 
stage of uniax ia l loading, fo r the stretche 1::; Al ;S 1.2 
(0.7 ;S A2 ~ 1). The softening stage is foll owed by a phase 
of considerable ha rdening of ice, particula rl y pro nounced 
for the stre tches in the ra nge 1.3 :5 Al ;S 1.7 
(0.35 ;S A2 ;S 0.6 ) and small val ues of the param eter (3 (i.e. 

Staros<'C2:yk and Gagliardilli: Strain-induced anisotropy cif polar ire 

Al 

A2 

A3 

A4 

OL-~ __ ~ __ ~ __ -L __ ~ __ -L __ ~ __ ~ 

1.0 1.5 2.0 2.5 3.0 
Al 

Fig. 2. Evolution qftlze ratio d 22/ (2 P,oD22) with illmasing 
stretch Al illllniaxial compressionJor different values cif (3 in 
model A. 

for very an isotropic ice grains). As the deformation co n­
tinues, a ll the g rain c axes rota te towa rds the compression 
ax is (here the X2 ax is), a nd at la rge stra ins the macroscop ic 
viscosit y of a polyc rysta l approaches the ax ial \'iscosit y of a 
si ngle crystal. Si nce the lat ter \'iscosit y is (1/(3) larger than 
the viscosity for shearing on crys tal basal pl anes, it fo ll ows 
from Equation (20) that the li mit m ac roscopic \'iscos ity fo r 
compression is given in terms of (3 by the rel ation 

(5'22 3(3 + 2 
----- --> ---
2p,oD22 5{3' 

(50) 

The \'iscous response of ice yielded by model B is deter­
mined by the fun cti o n h(b,). There is a \'ar iety of possible 
functi ons, as long as they sa tisfy some very general condit ions 
(Staroszczyk and MOI"land, in press ), a nd thi s gives the m odel 
a mple Oexibility to con 'elate with obsef\·at ions. For illustra­
ti o ns, we apply simple monotonic increas ing funct ions 

h(bT)= hc>v -(hx - ho)exp(-ab;"), a>O, 17>0,1'=1,2,3 

(51) 

h(b,) = 11 0 + (h x - ha) tan(ab, ), a > 0, (52) 

whe re ho = h(O) a nd hoc = h(oo) , m in Equation (51) i a 
frce pa rameter, and a in Equations (51) a nd (52) is de ter­
mined by Equation (39). The limit \'alues h(O) and h(oo) arc 
rel ated through Equations (H ) to A and S, the reciproca ls of 
the enhanceme nt factors. In Sta roszczyk and i-.10rla nd (in 
press ) both A and S were chosen less tha n unity (both en­
ha ncem e11l factors greater than unity ), which corresponds to 
the values measured by Budd andJacka (1989) (or warm ice 
near m elting. Here, in order to compa re the predictions o f the 
two onhotropic models, wc adopt A > 1 (an enhancem ent 
fac tor for compress ion less than unity ), m eaning the increase 
in v iscos ity with inc reasing deforma tion, which acco rding to 
Pimienta and others (1987) is the case for the response of cold 
ice subj ected to stress levels Iypically occ urring in pola r ice 
shee ts. The va lue of A ca n be as high as 10 for a single-max­
imum fabric, as has been found experimentally by Pimie nta 
a nd others (1987), a lt ho ugh recently ~vlange ney and others 
(1996) ca lculated the value of about 3 for the ice near the 
bottom of the GRIP ice core, deduccd from the data provided 
by Thorsteinsson and others (1997). \Ve carry OUI the simul a­
ti o ns for two values of th is factor, na m ely, A = 2.2, which is 
smaller, and A = 4.6, wh ich is la rge r th a n the va lue obta ined 
for the GRIP ice, though both orthotropic models are fl exible 
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in th is respec t a nd allow much la rger values of A to be imple­
mented. Since Expression (50), defining the asymptotic value 
of viscosity, is simply the reciprocal of the enha ncemelll fac­
tor, A, it relates the parameter A in model B to the parameter 
f3 in model A. H ence, we find that the selected values A = 2.2 
and A = 4.6 correspond to f3 = 0.25 and f3 = 0.10, respect­
ively. Associated with the chosen values of A are the factors 
S = 0.55 and S = 0.46, being the limit \'alues of the normal­
ised viscosity in simple shear, which correspond, respec tively, 
to f3 = 0.25 and f3 = 0.10 in model A, as will be shown shortly 
in Figure 6. In view of Equations (44), wc have the fo llowing 
connections: 

f3 = 0.10: A = 4.60, S = h(O) = 0.46, h( 00) = 25.30, 

(53) 

f3 = 0.25: A = 2.20, S = h(O) = 0.55 , h(oo) = 10.45. 

(54) 

The response functions h determined by the limit values in 
Equations (54) a re illust rated in Figure 3, and very si milar 
plots can be obtained for Equations (53). H encefor th , the 
curves labelled El, B2, B3 correspond to Equation (51) with 
m = 1, 1.5,2, respectively, and the curves labelled B4 corres­
pond to Equation (52). 

12 ,-----,-----,-----,-----,------, 

10 
~ 

B4 ~ 

~ 
-<:: 

8 

B1 

6 

4 

2 

3 4 

Fig. 3. AdoptedJorms ofthefabric responseJunction h (b,.) in 
model B. 

With Equations (47- 49), the constitutive law (Equation 
(36)) leads to the foll owing relation describing the beha­
viour of ice in uniaxial compression: 

(J' 1 
- D

22 = - [h(b1) + 2h(bI 2
) + g(K)(b1 + 2bI 2

)] , (55) 
2J..lO 22 3 

where K = 2b1 + bl 2 
. The evolution of the axial viscosity 

0' 22/ (2J..loD22) with increasing stretch )IJ for the adopted 
forms of the fabric response function h(b,. ) is illustrated in 
Figure 4 for the parameters in Equation (53), a nd in Figure 
5 for the pa ra meters in Equations (54). We note that the in­
nuence of the function h(b,.) on the predicted response of ice 
is most signi fi cant during the first phase of deformation. We 
see that the functions in Equation (51) with m = 1.5 and 
m = 2, curves B2 and B3, respectively, yield responses 
which agree quite well with the responses given by model 
A, curves Al a nd A4, particula rl y for the se t of parameters 
in Equations (54). 

Next we consider a simple shea r at constant strain rate 
DI 2 =!i' which follows an initial plane compression and 
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5.0 ,--~----,---~---.---~--,-~---, 

Al ,----------------------- -
~,' 

I 

2.0 

1.0 

0.0 '--~ __ ___1. __ ~ __ _'__ __ ~ __ '__~ __ _' 

Fig. 4. Evolution of the ratio 0' 22 / (2J.LoD 22) with increasing 
stretch Al in uniaxial compressionJor dif.ferentJabric response 
functions h( br) in model B. The results Jor A = 4.6 and 
S = 0.46 are compared with the prediction of model AJor 
fJ = 0.10. 

2.5 ,-----.----,---,----,--,-----.---,----, 
A4 

~---- --- - - ----- - - - - -
B2 ' 

~, 

B3 

B4 

1.0 

0.5 

0.0 L-~ __ ___' __ ~ __ -L __ -'--__ ....L __ -'-----.J 

1 3 Al 5 

Fig. 5. Evolution of the ratio 0'22 / (2J.LoD 22) with increasing 
stretch Al in uniaxial compressionJor differentfabric response 
Junctions h( b.,) in model B. The results Jor A = 2.2 and 
S = 0.55 are compared with the prediction of model A for 
f3 = 0.25. 

stretch that has been frozen at constant A2 = All :s 1 by 
the remova l of the stress and strain ra te. The deformation 
field is now described by 

(56) 

the corres ponding velocities are 

(5 7) 

a nd the strain and strain-rate tensors are defined by 

( 

0 l' n 
D = !Oi' ~ 

(58) 

The principal stretch squares b; (i = 1,2,3), the eigenva lues 
of B , are given by 

(59) 

and the associated principal vectors e r are determined by 
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Equati on (22h In terms ofth esc vec tors, the three structure 
tensors arc expressed by cn I" ~ 

(1) (2) 

~) ('~ L2) , M,~ G 0 

D 
es es e" es 

M - (1) (2) (2) (2) 0 s - es es e" es 

0 0 0 

(60) 

The respo nse of ice to simpl e shearing gi\'C n by m odel A, 
defin ed by Equa tion (14), is illustra ted in Figure 6, which 
shows the e\ 'o lutio n of the norm a li sed viscosit y a'td(J-io"r) 
with increasing shear r;, sta rtcd from the isotropic sta te 
(AI = A2 = 1) fo r different va lucs of the gra in-a ni so tropy 
para meter fJ. We note that the m odel predicts initi a l harden­
i ng of ice (for stra ins!;, ;S 1), wi th a more sign i fi cant increase 
in \' iscosity taking place for smaller values of fJ (i.e. fo r more 
a ni sotropic ice g rains). As shea ring continues, the initi a l 
ha rdc ning is fo ll owed by the softening phase, with a mono­
tonic dec rease in \'iscos ity until a n asympto tic value IS 

reached at la rge strains. This limit value is g ivcn by 

(J'12 3fJ + 2 
----;---

~LO"r 5 
(61) 

a nd foll ows from Eq uation (20), since at ve ry la rgc shcar de­
fo rmations a ll crystals arc a lig ned for easy g lide o n basa l 
pla nes (their c axes are approxim ately parallel to o nc an­
othcr ) a nd hence in the limit the m acroscopic \ 'iscosity or a 
polycrys ta l approaches the vi scosity of a n individu al g rain. 

In Figure 6 wc also show the results predi c ted by a di s­
crete grain m odel, with 800 g ra ins, for fJ = 0.10 (c urve DI ), 
a nd fJ = 0.25 (c urve D4). The d isc rete model is based on the 
sa me ass umpti ons as model A, except that no restric tions on 
materi a l symme tri es arc imposed , so it has a m ore genera l 
cha racter th a n the orthotropie model. Therefo re, compa ri­
sons betwec n the predicti ons o f both models sho uld gi\"C 
some indicat io n whether the ass umption of o rth o tropy of 
ice is justifi ed. The results obta ined seem to support the va­
lidity of thi s ass umption, since the max imum rela tive di s­
crepa ncies betwee n eur\'Cs AI a nd DI, and A4 a nd D 4, do 
not exceed 15 0ft, for r;, rv 1, a nd for la rge r shca r strains 
(!;,;:: 5) the agreement betwee n the results g i\ 'en by bo.rh 
models is \'ery good. 

The behav iour of ice predi c ted by model E, dcfin ed by 

3.0 ~~-~~--.---~-r-~-.-~--' 

~ 
~ 2.5 

--­"" b 
2.0 
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6 10 

Fig. 6. Evolution qf the ratio cl L2/(J-iO"r) with increasing 
strain !;, in sim/lle shear started f rom all isotropic state 
( A2 = 1) jor differellt values qf (3 in //lode! A. Also shown 
are the results giz1en ~Y the discrete gmin modeljor fJ = 0.10 
(curve DI) and fJ = 0.25 (curve D 4). 
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Equa tion (36) with Equations (58- 60), is desc ribed by 

a' 1 ---4 = - [h(b L) + h(bI
1
) + g(K ) (Ai + AI2 + r;,2 ) J, (62) 

J-iOl 2 

where now K = b1 + bl 1 + 1 Figures 7 a nd 8 show, [or dif­
fercnt fabric responsc functions (Equa tio ns (51) and (52)), the 
evolution of the viscosity rati o cl1d (J-io"r) with shear r;, 

sta rted from the isotropic state (AI = A2 = 1). The sam e se ts 
of pa ra meters as in the uni axial compression simul ations a rc 
used , i. c. those in Equation (53) fo r Fig ure 7 and th ose in 
Equa ti on (54) for Fig urc 8, and again the results yielded by 
m odel B are compa rcd with the predictions of the mic ro 
m acroscopic model A (curves AI a nd A4-). It can be observed 
tha t now, for simple shear, the discrep a ncies between the rc­
sp onses gi\'en by the two models a re m ore considerable tha n 
in the case ofuni ax ia l compre sion, esp ecia lly fo r the p a ra m­
eters in Equati on (53) (Fig. 7), corresp onding to more a ni so­
tropic grains (sma ller value of fJ ) in m odel A, or "stiffcr" ice 
(la rger value of the viscosity factor A ) in model B. Fo r the 
pa ra meters in Equa tion (54) (Fig. 8), a good qua lita tive 
agreement be tween the two models is still reached, altho ug h 
m odel A predicts m ore significant inc rease in ice viscosit y 

B3 

2 6 10 

Fig. 7 Evolution qf the ra tio d l 2!( /-io"r) with increasing 
strain !;, ill simple shear started jrom an isotm/lic state 
( A2 = 1) jor different jabric response junctions h(b,.) in 
model B. The resultsfor A = 4.6 and S = 0.46 are compared 
with the /mdiction qf model A jor fJ = 0.10. 
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Fig. 8. RZ1olution qf the ratio (J'I2/ (J-io"r) with increasing 
strain r;, in simple shear started jrom an isotra/lic state 
( A2 = I) jor different jabric response jUllctiollS h( b,.) in 
model B. The resultsfor A = 2.2 and S = 0.55 are compared 
with the prediction qf model A jor fJ = 0.25. 
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during the initia l phase of shearing. However, the discrepan­
cies between the two models a re still limited to relati\'e!y 
small (compared to those occurring in ice-sheet flows) shear 
strains, so it is anticipated that in realistic ice-shee t flow simu­
lations the two constitutive theorie should yield similar pre­
dictions for most of an ice sheet, apart from a region near the 
ice divide, where (relatively) sm a ll shear deformations occur. 

5. CONCLUSIONS 

\Ve have presented two orthotropic models for viscous re­
sponse of ice based on two fundamentally different ap­
proaches. The first, a micro- macroscopic model, has been 
derived from the behaviour of individual ice grains and incor­
porates the mechanism of crystal rotation in response to 
shear stresses. The second, a m ac roscopic model, was con­
structed by applying the genera l theory of frame-indifferent 
(obj ective) relations for materi a ls with orthotropic anisotro­
py. The results of numerical simulations for continued uniax­
ia l compression and simple shearing have shown that for 
appropriately chosen model pa rameters a good correlation 
between the responses given by the two theories can be 
achieved. Both models predict sig nificant hardening of ice in 
compression, and initial hardening followed by softening in 
simple shea r, which seems to agree with the obser ved beha­
viour of cold ice at low stress level . The theoretical results, 
however, should be verifi ed against detail ed experimental 
data; unfortunately, very few relevant data on cold ice are 
avail abl e, since practically all laboratory tests performed to 
date have been carried out on wa rm ice nea r melting and at 
relatively high deviatoric stresses. It is also anticipated that 
the numerical simulations of reali stic ice-sheet flows and the 
comparison of results obtained in this way with in situ data 
should throw some light on the validity of the assumptions 
made in the paper: first of all, whether the assumption of 
orlhotropic behaviour of ice is justified, or a more general 
form of anisotropic constitutive law is required. 

Further work should conce ntrate on including in the 
models other micromechanism s, such as rota tion a nd mi­
gration (dynamic) recrystalli sation. This will, however, 
add considerably to the complexity of theoretical formula­
tions. This is particularly true of the micro- macroscopic 
model, and, to the authors' knowledge, very few attempts 
to incorpora te recrystallisatio n have yet been m ade. In 
terms of extending its genera lity, the continuum model is 
more fl exible, since only the m odification of response func­
tions is required, a lthough in order to account for a more 
complex mechanical behaviour more tensor generators 
may be needed in the constitutive law. Finally, we would like 
to emphasise that in order to construct a modcl that prop­
erly describes the beha\'iour of ice in polar ice sheets, more 
experimenta l work on cold ice needs to be done to provide 
reli able input da ta for the theory. 
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