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MEAN VALUE THEOREM FOR THE m-INTEGRAL 
OF DINCULEANU 

BY 

PEDRO MORALES 

1. Introduction. The classical mean value theorem asserts that i f / i s a real, 
bounded, Riemann integrable function defined on a finite real interval a<t<b, 
then $b

af(t)dt = (b-a)y0, where infa^t^bf(t)<yQ<supa^t^bf(t). The extensions 
of Choquet [3], Price [15], and of this paper generalize the fact thatj>0 belongs to the 
closure of the convex hull off ([a, b]). The version of Choquet ([3, p. 38]) applies to 
a continuous function on a compact interval with values in a Banach space; that of 
Price ([15, p. 24]) applies to a bilinear integral of a special type containing the Birk-
hoff integral [2]. The ra-integral of Dinculeanu [6] (specialization of Bartle's *-
integral [1]) leaves intact the Lebesgue dominated convergence theorem and is 
strong enough to support an extended development. The paper is organized as 
follows: the object of §2 is to express the integral of a bounded m-integrable 
function as a limit of Riemann sums; §3 gives Price's generalization of "convex 
hull" [15]; the theorem of the paper is established in §4; §5 gives applications to 
vector differentiation which, for continuously differentiable functions, contain 
results of Dieudonné [5] and McLeod [13]. 

I wish to express my thanks to Professor Geoffrey Fox for his guidance and 
encouragement. 

2. Riemann expression of the /«-integral. Let m : r -> X be a measure of bounded 
variation \m\ defined on a cr-algebra r of subsets of a set T, with values in a Banach 
space X. The functions in question are |#i|-measurable applications of Tinto a 
Banach space Y. We suppose a continuous bilinear application of Xx F into a 
Banach space Z. Then, if/: T-> 7 is \m\-measurable and essentially bounded, 
it is m-integrable and jfdm is an element of Z ([1], [6]). This is the context of 
Dinculeanu [6], slightly specialized in that we assume the space Tto be |m|-inte-
grable. 

LEMMA 2.1. Given an m-integrable function f and arbitrary c>0, there is a finite 
partition {T^^^ of T, Tx e r, such that \m\(Tn)<e and, for 1 < /<« , the oscillation 
off on Ti is <€. 

Proof. There is a mean Cauchy sequence (fn) of r-step functions converging 
\m|-almost everywhere t o / . By the Egorov theorem, there exists Be r such that 
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\m\(T— B)<e and (fn) converges uniformly t o / o n B. So there is an index n0 such 
that, for the corresponding step function 

/no = 2 XBPC,, \fnj,t)-f{t)\ < €/2 
; = i 

for all te B. We may suppose the Bô disjoint, then it suffices to let Tl9..., Tn.x be 
the nonempty intersections of the form BjHB, and Tn = T—B. 

LEMMA 2.2. Given a bounded \m\-measurable function f there exists a sequence of 
finite partitions of T: 

0 ? ) i ^ / c n (3? e r), n = 1, 2 , . . . such that, for t? e 77, 

lim 2 rn{T?)f{t?) = if dm, 
n-*co i = 1 J 

uniformly with respect to the choice of the tf e T-1. 

PROOF. Put M=sup t 6 T \f(t)\, and let e>0 be arbitrary. Let ( r i ) 1^ i^ n be the 
partition of Lemma 2.1. For arbitrary tt e Tiy 

11 miTdf(fd-jf<bn | = | | ( J / ( « dm-j f(t) dm) 

< î f 1/(0-/(01 d\ 
1 JTi 

= nf f 1/(0-/(01 d\m\+ f |/(O-/(0l d\ 
1 JTi JTn 

< e \m\ ( r ) + 2Me. 

It suffices to take a sequence of partitions of this form with e = en, en -^ 0. 

3. Generalized convex hull. Consider the set C1 = {(A1,..., An) | A4>0, 2 ï K= 1> 
« = 1, 2 , . . . } . If E is a subset of a Banach space X, every (A l 9 . . . , An) e Cx 

determines the set of vectors 2 ï \xt (xi e E)> called convex combinations of ele­
ments of E. Now let 3P(X, X) be the Banach space of all continuous linear maps of 
the Banach space X into itself, and consider the set 

c = {(r1,...,rn)|riG^f(z,z), | r t = iz, * = i,2,...}. 

Given two elements #i = ( r u , . . . , 7\m), <f>2 = (T2i,..., r a n) of C. 

<Plr2 = (-*ll-*2l5 • • • » -*ll-*2n> • • • 5 TlmT2u • • • 5 -* i m i 2 n ) 

\m\ 

m\ 

belongs to C. A subset C* of C is multiplicatively closed if <£l5 <f>2 e C* implies 
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<j>x<l>2 e C*. Considering A>0 as the element x-> Xx (x e X) of S£{X, X), Cx is a 
multiplicatively closed subset of C 

Henceforth (until final specialization), C* denotes an arbitrary multiplicatively 
closed subset of C. If E is a subset of the Banach space X, every (Tl9..., Tn) e C* 
determines the set of vectors 2 ï T&i (xt e E), called C*-convex combinations of 
elements of E. A subset of Xis C*-convex if it contains all C*-convex combinations 
of its elements; and the smallest C*-convex set containing a given subset E of X is 
the C*-convex hull ofE, denoted C*[E], The symbol Cot^] will denote the classical 
convex hull of E; in the case C* = CX we have C*[E] = C0[E]. 

LEMMA 3.1. The operator C* : 2X -> 2X A&s the following properties: 

&E<CnE] 
(ii) £<Fwi J p&jCf[£ ' ]^C?[F] 

(iii) Co*[Co*[̂ ]] = Co*[^] 

(iv) 2?= ! i;cf [£]=c$[E] «r l f . . . , rn) e c*) 

Proof. The only part which is not immediate is the inclusion 2?= i 21 (?*[£] 
< C*[E]. But an element of the left member is of the form 2?= i T^, (Tu . . . , Tn) 
G C*5 Xi G C*[E], and, since C*[E] is C*-convex it contains this C*-convex com­
bination of its elements. 

LEMMA 3.2. For a subset E of the Banach space X, 

C*[E) = {jiTixi\(Tl9...,TJeC*9 XiEE, H = 1 , 2 , . . . } 

is C*-convex. 

Proof. Let x=2?=i Ttxi9 <f> = (Tl9..., Tn) G C*, *4 G C*[£], SO that 

* = 2 ? W , h = Pï0,. •., 71?) 6 c*, *$? G JE, 

and 
n 

x = 2 2 ^7}, ;*;/,. 

For i = l , 

2 T&W = 22 W ^ M = 2 • • • 2 W . . .?£><>. 
i i h H ii in 

F o r i > l , 

2^TK = 2 2Wr« 
ii i i - i ii 

= 2---2OT---7W 
i i ii 

=2---2OT---7?,» 
i l in 
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We then have 

Since x{fi e E, and the operators of this last sum are the components of « ^ . . .<£n, 
xeC*[E]. 

This lemma identifies C* with the Price operator C* ([15, p. 8]). 
In order to apply this generalized convexity to integration, we will define a 

special multiplicatively closed subset C* of C in terms of a given measure m: r 
-> ^(X, X), of bounded variation, satisfying the 

Axiom of Price ([15, p. 20]). For every Aer, m(A) = 0 or m(A) is bijective. 

We note that every scalar measure on a cr-algebra is of bounded variation 
([6, pp. 47, 50]) and obviously satisfies the axiom of Price. 

Let Q, denote the set of all finite disjoint sequences A = (Ai), A{ e r, 2 m(Ai)=£0. 
Let C" denote the subset of C consisting of the finite sequences having one of the 
forms: 

(̂A) = (( ̂  m(4)) "W^;)) V^J< n\ 

f (A) = (m(A^ m(4)) "*) (1 < j < n) (A e Q). 

In the rest of the paper, C* denotes the smallest multiplicatively closed subset of 
C containing C". 

LEMMA 3.3. 2 w ( ^ ) C Î [ £ ] = G w ( ^ ) ) C Î [ £ ] ( W ) e O ) , 

Proof. By (iv) of Lemma 3.1, 

C?[£] = 2 ( S m ^ ^ m ^ O C o * ^ ] = (imiA^Y^miAdCUEl 

LEMMA 3.4. Ifm: r -> Ris a positive measure, C$[E]<C0[E]. 

Proof. Since Cx is multiplicatively closed and contains C", (because m is positive), 
and C* is the smallest such subset of C, we have C^C*. Hence every convex 
subset of Z i s C*-convex, and therefore C*[E]<C0[E]. 

4. Mean value theorems. In this section the bilinear context is specialized as 
follows: E is a Banach space, Y=Z=E, X=J?(E, E), and the continuous bilinear 
map is ($, x) -> </>(*) (</> e Se(E, E\ x e E). 

THEOREM 4.1. Let the measure m: r -> J£(E, E) be of bounded variation and 

satisfy the axiom of Price. For every m-integrable function f: T-* E, §fdm = m(T)y0, 

Jo e Co* [/CO], andy0 is unique ifm(T) * 0. 
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Proof. It suffices to consider the nontrivial case m(T)^0, then y0 is unique if it 
exists, by the axiom of Price. If / is bounded, by Lemma 2.2, there exists a sequence 
of finite T-partitions of T: ( r / 1 ) ^ ^ ^ such that 

lim f m(TT)fW) = (fdm ft»el?). 

By Lemma 3.3, 

2 m{mm)e 2 tn(T?)Cnf(T)] = ( | ni(TT))cf\f(T)] 
i = l 1 = 1 \f = l / 

= m(T)CUf(T)l 

so that the limit \fdm belongs to m{T)Ct[f{T)]. Since x-+m(T)x (xeE) is a 
homeomorphism (axiom of Price), 

m(T)C%[f(T)] = rn(T)C*[f(T)], 

and the proof for the bounded case is complete. There remains the case where fis 
not bounded. We note that, for n= 1, 2 , . . . , An={t \ teT, \f(t)\ <n) e r.Choose 
w0 ef(T) and 
set 

[w09 teT-An. 

The/n are |m|-measurable ([6, p. 91]) and the sequence (fn) converges pointwise to 
/ . Also, for fl>|w0|, |/n(OI^I/(OI> f° r aU teT. Since the Lebesgue dominated 
convergence theorem holds for the m-integral ([6, p. 136]), we have 

lim \fndm = if dm. 
n-+oo J J 

By the theorem for the bounded case, 

jfn dm = m(T)yn9 yn e CS\fn(T)] < cf\JW)l 

The inequality 

\yp-y*\ = \m(T)-\m(T)yp-m(T)yq)\ < \m(T)^\ \m(T)yp-m(T)yq\ 

implies the convergence of (yn) to a point y0 e C*[f(T)]. By the continuity, 

(fdm = lim m(T)yn = m(T)y0. 

REMARKS. 

1. Let m: r -> E be a measure of bounded variation with values in a Banach 
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algebra E, such that m(A) has an inverse whenever m(A)^0. Then for every m-
integrable function/: T-> E, 

jfdm = m(T)yQ, y0 e C$\f{T)] 

Oo unique for m(r)#0) . In fact, considering E as a subspace oîJ?(E, E), this is a 
special case of 4.1. 

2. Let E be a real Banach space and let /A: T - > R<J?(E, E) be a positive 
measure. Applying 4.1, with scalar multiplication playing the role of the continuous 
bilinear map, we have, for every fx-integrable function/: T-> E, 

jfdr = rfr)y09 y0 e C0[f(T)], 

because C*[ / ( r ) ]<C 0 [ / ( r ) ] . 
3. The Remark 2 contains the following theorem of Choquet ([3, p. 38]): I f / is a 

continuous application of a compact interval [a, b] into a Banach space, 

At)dt = (b-a)y09 y0eC0[f([a,b])]. 
J a 

(Since/([a, b]) is compact, therefore separable,/is Lebesgue measurable.) 
Let se be an algebra of subsets of T and let ^T be a hereditary subring of se. Let 

E be a Banach space and let m\sé' -> ^( is , £ ) be an additive function of bounded 
semi-variation, absolutely continuous {JT). Consider the space of ^-almost 
totally measurable functions ([6, p. 154])/: T-> E. Such functions admit the Rie-
mann representation of 2.2, by construction, and the integral of an almost totally 
measurable function vanishing on ^-negligible sets is the integral of an Jf-
equivalent totally measurable function ; therefore we have what is needed to carry 
out the first part of the proof of Theorem 4.1 for such functions; so we have, in 
this context: 

THEOREM 4.2. Let m : se -> ££(E, E) be an additive function of bounded semi-
variation, absolutely continuous («^0, satisfying the axiom of Price. For every almost 
totally measurable function / : T-^ E9 vanishing on ^-negligible sets, §fdm = m(T)y0, 

Jo e CSlfÇT)] 0>o unique for m(T)*0). 

5. Application to vector differentiation. Two points a, b of a Banach space define 
the segment [a, b] = {\a + fib \ À, /x>0, A + /x=l}. 

THEOREM 5.1. Let f: U'-> Y be a continuously differentiate application of an 
open set U of a Banach space X into a Banach space Y, and let [a, b] < U. Given e > 0, 
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there is a finite sequence (x^^i^n of points of [a, b], and numbers Af >0 (1 <i <ri) 
such that 2ï \ = 1, and 

\f{b)-f(a)-2\f'(pcd-(b-a)\ < e. 
i 

Proof. For the case X= R, [a, b] = [0, 1], 

7(1)-/(0) = [fV)dt ([9, p. 171]) 

and 

J V ( 0 dt = yQe ColfW, 1])] (Remark 2 of 4.1). 

This means that there is a vector 

y = l\fVi), ft e [0,1], A ^ O , 2A i = l 
i i 

such that |y—y0\ <e. The special case established, let [a, b]<U, and introduce the 
functiong(t) =f{a+t(b-a)), 0<t<L Then 

l£( l ) -S(0) - i \gVd\ < c, ft G [0,1], Af > 0, J Ai = 1. 
i i 

Since g'(t)=f'(a+t(b—a))'(b—a), putting xt=a+ti (b — a), we prove the general 
case. 

REMARK. The theorem implies the inequality 

\f(b)-f(a)\ < sup |/'(*)| |ft-«|, 
# e [a, b] 

which appears in ([5, p. 155]) under a weaker hypothesis: the continuity of the 
derivative is not assumed. 

THEOREM 5.2. Let f: U-> Rn be a continuously differentiable application of an 
open set XJofa realBanach space Xinto the real Euclidean n-space, and let [a, b] < U. 
There is a sequence ofnpoints xt belonging to [a, b] andn numbers \>0 such that 

2 A, = 1 and f(b)-f(a) = 2 V(*) - (* -« ) . 
i i 

Proof. As in the proof of 5.1, it suffices to treat the case X=R, [a, b] = [0, 1], 
and we have 

/(!)-/«» = J V ( 0 dt = y0e C0[/'([0, 1])] 
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Since/'([0, 1]) is a compact subset of Rn, Co[/'([0, 1])] is compact ([4, p. 115]), 
therefore closed, so thatj>0

 e C0[f'([0,1])]. Sinœf'([0, 1]) is connected, the Fenchel-
Bunt theorem ([10, p. 36]) gives the required expression: 

yo = ï\fVil fie [0,1], A t>0, 1 ^ = 1. 
i i 

COROLLARY. Letf: U -> Cn be a continuously differentiable application of an open 
set U of a complex Banach space X into the complex Euclidean n-space, and let 
[a, b] < U. There is a sequence of In points x{ belonging to [a, b] and In numbers 
Xi > 0 such that 

2n 2n 

2 A, = 1 and f(b)-f{a) = 2 V'(xf) •(£-«). 
1 1 

Proof. It suffices to replace X by the underlying real Banach space and Cn by 
R?« ([5, p. 145]). 

REMARKS. 

1. For H = 1, X=Rm, 5.2 reduces to the classical mean value theorem for con­
tinuously differentiable functions ([14, p. 121], [12, p. 304]). 

2. McLeod ([13, p. 203]), applying real value and convexity techniques, obtains 
a mean value differentiation theorem which contains 5.2, for X=R. 

3. There are other mean value theorems in the context of McLeod's theorem 10, 
for example, the following result of Dotson ([7, p. 144]) : Let zl9 z2 be distinct points 
of an open set Uin the complex plane such that U contains the segment [zl9 z2]. Iff is 
a complex holomorphic function defined on U, there exists points wl9 w2 of [zl9 z2] 
such that 

/frJ-Zfa) 
Zi—Z2 

= Re/'OVi) + i Im f'(w2). 

This may be deduced by applying the classical mean value differentiation (or inte­
gral) theorem to the auxiliary function 

Zx—Z2 
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