GROUPS WITH RELATIVELY FEW
NON-LINEAR IRREDUCIBLE CHARACTERS

I. M. ISAACS AND D. S. PASSMAN

In (4), Seitz characterized those finite groups which have exactly one
non-linear irreducible character (over the complex numbers). In this paper
we are concerned with the general question of what can be deduced about a
finite group G if the number of its non-linear irreducible characters m(G) is
given. In particular, does the assumption that m(G) is in some sense small
when compared with the order |G| impose any restrictions on the structure of
G? We show that if G is nilpotent and m(G) is small, then G must have class
=< 2 but that non-nilpotent groups need not even be metabelian (although
Seitz showed that if m(G) = 1, then this must be the case). We do show
however, that groups with small period and few non-linear characters when
compared with the order must necessarily be nilpotent.

1. In a group G, any two conjugate elements must lie in the same coset of
G’, and lience each such coset is a normal subset of G, i.e., a union of conjugacy
classes. We shall denote the number of classes of G contained in a normal
subset S by k(S).

LemMma 1.1. In a group G, m(G) = > (k(G'x) — 1), where the sum runs over
all cosets of G’ in G. In particular, at most m(G) cosets fail to be single classes.
Also, [Z(G) NG| =m(G) + land if 1 < G € Z(G), then |Z(G)| = 2m(G).

Proof. We have that > k(G'x) = k(G) = [G: G'] + m(G) since the number
of irreducible characters of G is equal to k(G). This yields

m(G) = Xk(G'x) — [G: G =2 (k(G'x) — 1).

Each G’x which is not a single class contributes at least one to the sum, and
thus the number of such cosets is = m(G).

Now, k(G') 2 |Z(G) N\G'|; thus |Z(G) N\ G'| £ m(G) + 1. Finally, if
G' CZ(G) and 2z € Z(G), then G’z C Z(G) and k(G'z) = |G’|. The number
of cosets of G’ containing elements of Z(G) is [Z(G):G'], and thus
m(G) =z (|G'] — 1)[Z(G):G’']. We then have that

&)|G
A '%(T%T' < 2m(G)
since |G'| > 1.
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We confine our attention to nilpotent groups for the remainder of this
section.

PRrROPOSITION 1.2, If G 1s nilpotent, then |G'| < 2™,

Proof. A series1l = Hy < H; < ... < H, = G’ can be found, where H, A
G and [H;:H ;1] = p;, a prime for 1 =4 =r. Now, H;/H,_, is central in
G/H ;_1 and thus consists of p; classes of G/H,_;. It follows that

k(H; — Hi1) 2 p: — 1,
and thus

BGIZ 1+ (o= 1) and m(@) 2EG) ~ 12X (b0~ D).

We claim that for any set of integers p; = 2,
IIp, < 22—

and since |G’| = IIp,, this will yield the desired result. The function f(x) =
x1/®=D is monotone decreasing for x = 2 and f(2) = 2; thus x < 2°! for
x = 2. Substituting p; for x and multiplying yields the required inequality.

Although |G’| is bounded by a function of m(G) for nilpotent groups, there
is no bound for solvable groups as is shown by the example of Theorem 3.1.
Furthermore, |G| is not bounded by a function of m(G) even for p-groups as
the abelian and extra-special p-groups clearly show. (If G is an extra-special
p-group, then m(G) = p — 1.) The following theorem, however, yields a
bound on |G| when G is a p-group of class > 2.

THEOREM 1.3. Let G be a p-group with m(G) < p& If [G: G'] = p*°2, then
G has class £ 2 and |G'| £ m(G) + 1.

Proof. The proof is by induction on |G’|. If |G'| = 1, the result is trivial;
thus, we assume that G’ > 1, and hence we can find UA G with U C G’
and |U| = p. Then m(G/U) = m(G) < p° and G'/U = (G/U)’; thus,
[G/U:(G/U)'] = [G: G'] = p**2and G/ U satisfies the hypotheses. By the in-
ductive hypothesis, G/ U has class = 2 and |G’|/p = [(G/U)’| £ m(G/U) + 1.
Since U € G’, U is not in the kernel of every non-linear irreducible character
of G, and thus m(G/U) < m(G). Thus |G'|/p = m(G/U) + 1 < m(G) < p°
and |G'| < p**+1. Since |G'| is a power of p, we have that |G| < p°.

Since the product of an irreducible character with a linear character is
irreducible, multiplication defines an action of the group C of linear characters
of G on the set Irr(G) of irreducible characters of G. If x € Irr(G) is non-
linear, then, clearly, the size of the orbit of x under the action of Cis = m(G).
Therefore, C has a subgroup K with [C: K] < m(G) and Ax = x for all
A€ K. Let H= N {kerA] A € K}. Each A € K may be viewed as a linear
character of G/H and therefore
p3e—2

2(e—1)
>t = .
> P

. Il _ [G:G']
G:H] z K| 2 @) = m©)
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If x € G— H, then Mx)x(x) = x(x) for all A € K. Since x ¢ H, \(x) # 1
for some N € K, and thus x(x) = 0 and x vanishes on G — H. Then

G: Hlx, xle = [X|H, x|H]z = x(1)%,

and thus P20 < [G: H] £ x(1)%. Therefore, p! < x(1) and since x(1)
must be a power of p, we have that x(1) = p¢ for every non-linear irreducible
character x of G.

If y € G is arbitrary, then G acts on the class of ¥ by conjugation and since
cl(y) C Gy, the degree of this permutation representation is < |G'| < pe. If
¢ is the character of this representation, then ¢ is a sum of irreducible charac-
ters of G, one of which must be the principal character. Thus, the sum of the
remaining irreducible constituents of ¢ has degree < p¢ and therefore ¢ can
have no non-linear irreducible constituents. It follows that G’ is in the kernel
of ¢, and thus acts trivially on cl(y) and y € C(G’). Since y was arbitrary,
G’ € Z(G) and the nilpotence class of G is = 2. By Lemma 1.1 we have that
|G'| = |G' VYZ(G)| £ m(G) + 1 and the proof is complete.

We give, as a corollary, an alternative statement of the theorem which does
not involve the particular prime.

COROLLARY 1.4. Let G be a p-group. If [G : G'] > m(G)?, then G has class
< 2and |G| = m(G) + 1.

Proof. Let p° be the smallest power of p larger than m(G). Then m(G) = p*;
thus, [G : G'] < $3D and since [G:G’'] is a power of p, we have that
[G: G'] = p*2 and the hypotheses of the theorem are satisfied and the
result follows. Applying this to arbitrary nilpotent groups we obtain the
following corollary.

CoroLLARY 1.5. Let G be non-abelian and nilpotent and supposethat |G : G'] >
m(G)3. Then G = K X P, where P s a p-group of class 2, K is abelian,
K| = m(G), and |G'| = m(G)/|K| + 1.

Proof. Choose a non-abelian Sylow p-subgroup P of G and write G =
K X P. We then have that

™*) m(G) = m(P)[K : K'] + m(K)[P : P'] + m(K)m(P).
Since m(G)* < [G: G'] = [K: K'][P : P'], one of [K : K'] and [P : P'] must
be > m(G). Since m(P) > 0, this yields a contradiction from (*) if m(K) > 0,
i.e., if K is non-abelian. Thus, K is abelian and m(G) = |K|m(P); therefore,
K| = m(G) and

[P:P]=1[G:G)/IK|>m(G)>|K|l = m(G)/|K|)® = m(P)>.
The result now follows from Corollary 1.4.

It is of interest to note that these results may be stated independently of
character theory. Since m(G) = k(G) — [G : G'], the condition [G: G'] >
m(G)? is equivalent to 2(G) < [G : G']I'”® + [G : G’']. We conclude this section
with one further result.
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ProprositioN 1.6. There exists a function B defined on the natural numbers
such that if G is a non-abelian nilpotent group, then the period of Gis = B(m(G)).

Proof. 1f [G : G'] < m(G)?3, then since by Proposition 1.2 |G| £ 2™9, we
have that |G| = 2™ (G)?, and hence the period of G is bounded by
2Mp (G)3. We may therefore assume that [G: G'] > m(G)3, and thus by
Corollary 1.5, G has class 2and 1 < ¢’ € Z(G). By Lemma 1.1 we then have
that |Z(G)| = 2m(G), |G'| £ m(G) + 1. lfx, y € G, then [x, y]" = [«", y] for any
integer 7, and thus 1 = [x, y]/%! = [x!%!| y] and since y is arbitrary, x!¢! €
Z(G). Therefore, x!¢112@®! =1 and the order of x is = |G| |Z(G)| =
2m(G)(m(G) + 1). It follows that the function B(m) = max{2™m?,
2m(m + 1)} has the desired properties.

That Proposition 1.6 is not true if G is solvable but not nilpotent can be
seen from the example of Theorem 3.1.

2. Here we study not necessarily nilpotent groups for which m(G) is given,

ProPOSITION 2.1. If p is a prime and %G : G'], where p* > m(G), then G
has a normal p-complement.

Proof. As in the proof of Theorem 1.3, the group C of linear characters of G
acts on the set Irr(G) by multiplication and if x € Irr(G) is non-linear, then
the orbit containing x has size < m(G) and the subgroup K = {\ € C|\x =
x} satisfies [C: K] = m(G) < p% But »°| [G: G'] and |C| = [G : G']; there-
fore p | |K|. Thus, there exists A € K, N % 1, N = 1 with \x = x. If H = ker),
then H A G, [G: H] = p, and x vanishes on G — H. Thus [x|H, x|H]z =
(G: H]lx, xle¢ = p. Since x|H = ad>1'0, and p = [x|H, x|Hlz = a2, it
follows thatt = p, and thus p|x(1). Thus, every non-linear irreducible character
of G has degree divisible by p and it follows from Theorem 2.5 (i) of (2) that
G has a normal p-complement.

LeMMA 2.2. Let 7 be a set of primes and let G'x be a m-element of G/G .
Suppose that G'x consists of a single class of G. Then x is a w-element of G and
Cg (x) is a w-group.

Proof. We may write ¥ = vz, where y and z are both powers of x, y is a
n’-element, and 2 is a w-element. Now, G’ A (G’, x) and (G’, x)/G’ is a w-group;
thus all n’-elements of (G’, x) are in G’. In particular, y € G’; therefore
z € G'x, and thus 2 is conjugate to x in G and therefore x is a r-element.

If u € Cg (x) is a non-trivial 7’-element, then ux is not a w-element. Since
ux € G'x, it is conjugate to x and this is a contradiction ; thus, C ¢ (x) must be
a m-group and the proof is complete.

ProprosiTIiON 2.3. Let P C G, where G is not nilpotent and P is an abelian
p-subgroup of period < n. Then [PG' : G'] £ nm(G).

Proof. 1If [PG’ : G'] = m(G), nothing remains to be shown; thus, we may
assume that [PG’ : G’] > m(G), and thus Proposition 2.1 applies and G has a
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normal p-complement K. Let H = G' N\ K. If H = 1, then K C Z(G), G’ is
a p-group, and thus G is nilpotent, contrary to our assumption. Thus H > 1
and we can find an elementary abelian g-subgroup Q of H on which P acts.
We may assume that Q is irreducible under this action, and thus, if L C P is
the kernel of the action, we see that P/L is cyclic, and thus [P : L] < n. Now
let Py =P MNG'. We have that [L: LN Py =[L:LNG]=[LG:G].
Each coset of G’ in LG’ has a power of p as its order in G/G’ and contains an
element of L which centralizes the non-trivial p’-subgroup Qof G'. By Lemma
2.2, none of these cosets can consist of a single class of G, and thus by Lemma
1.1 there are at most m(G) such cosets and [LG’ : G'] £ m(G). Thus

[PG':G'l=[P:PNG]=[P:P] £
[P:PoL]=[P:L][L: PiNL] = nm(G).

This establishes the proposition.

PRroOPOSITION 2.4. Let P be a non-abelian Sylow p-subgroup of a non-nilpotent
group G. Then [PG': G'] £ F(m(G)) for a suitably chosen function F, inde-
pendent of G.

Proof. Choose F(m) = m so that we may assume that [PG’ : G'] > m(G)
and G has a normal p-complement by Proposition 2.1. If K is the complement,
then P =~ G/K; therefore m(P) = m(G). Thus, P has period < B(m(P))
< B*(m(G)), where B is the function whose existence is guaranteed by
Proposition 1.6 and B*(m) = max{B(n)| n < m}. Choose a self-centralizing
normal subgroup A4 of Pand apply Proposition 2.3 to conclude that [AG': G'] £
B*(m(G))m(G). Now, |P'| < 2m®) < 2™ by Proposition 1.2, and since G
has a normal p-complement, P’ = P M G’; therefore |P N G’| = 2™, Thus

A = [A: ANGT|ANG| £ [AG : G']|P NG| £ B*(m(G))m(G)2™9,

Since P/A is isomorphic to a subgroup of Aut(4), its order is bounded by a
function of [4] and this yields a bound on |P| and the result follows.

We shall need the following result of Landau (3) which is stated here as a
lemma.

LEMMA 2.5. There exists a function L defined on the natural numbers such
that if G is a finite group and k(G) = n, then |G| < L(n).

THEOREM 2.6. For each natural number n, there exists o function f, such that
if G is a finite group, then either

(1) G is abelian,

(2) [G: G'] £ fum(G)) and |G| = L(m(G) + fu(m(G)),

(3) G = K X P, where K is abelian, |K| < m(G), P is a p-group of class 2,
and |G'| £ m(G)/|K| + 1, or

4) G = G'A, where G’ N\ A = 1, A contains an (abelian) Sylow p-subgroup
P of G with period > n, and at most m(G) elements of A have non-trivial central-
izers in G'.
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Proof. Since k(G) = m(G) + [G : G'], the second part of (2) follows from
the first by Lemma 2.5. If we take f,(m) = m?® for each #, then if G is nilpotent
and does not satisfy (1) or (2), we have that [G : G'] > f,(m(G)) = m(G)? and
by Corollary 1.5, G satisfies (3). We may therefore restrict our attention to
non-nilpotent groups.

Let G be non-nilpotent and suppose that G does not satisfy (4). If p is a
prime dividing [G : G’'] and P is an abelian S,-subgroup of G, then the p-part of
[G:G)is [PG : G'). If [PG": G’] > m(G), then G has a normal p-complement
K by Proposition 2.1 and G = KP. Since P was assumed to be abelian,
G’ C K and each element of P is in a distinct coset of G. By Lemma 1.1, at
most 7 (G) of them are in cosets which are not a single class of G. Since |P| >
m(G), we have that G’x is a class for some x € P, and hence |C(x)| = [G : G'].
By Lemma 2.2, C¢ (x) is a p-group but since G’ C K, we have that Cg (x)
= 1. Therefore, if A = G(x), we have that 4 N\ G’ = 1; thus 4 is abelian and
since |4]|G’| = |G|, we see that G = G'A. If y € A with Cg (y) > 1, then
Cqa(y) > A and [G: C(y)] < |G'];thus G’y is not a single class of G. Since each
y € A is in a distinct coset of G’, there can be at most m(G) such y with
C¢ () > 1. Since we have assumed that (4) does not hold, it follows that the
period of P is =< #u, and thus by Proposition 2.3, the p-part of [G : G'] is
< nm(G). We see then that this is true for all primes dividing [G : G'] for
which a Sylow subgroup of G is abelian.

Suppose now that p|[G : G’] and that P is a non-abelian .S,-subgroup of G.
Then the p-part of [G: G'] is [PG’ : G'] = F(m(G)) by Proposition 2.4. Thus,
the contribution of each prime divisor to [G: G'] is £ M = max{nm(G),
F(m(G))}. In particular, if p|[G : G'], then p £ M, and hence there are at most
(M) distinct prime divisors of [G : G’], where 7 (M) is the number of primes
< M. Therefore, [G : G'] = M™™ and if we choose f,(m) = max{m3, M}
where M = max {nm, F(m)}, G will satisfy (2) if it does not satisfy (1), (3),
or (4) and the theorem is proved.

3. As has already been noted in §1, extra-special p-groups provide examples
of arbitrarily large groups satisfying m(G) = p — 1 for a fixed prime p, and
thus they yield examples of groups which satisfy only (3) of Theorem 2.6.

In this section we construct a series of groups for each prime which will
yield examples where only (4) holds in Theorem 2.6. They also provide
counter-examples to Corollary 1.5 for non-nilpotent groups. In fact, they
show that there is no function % such that if [G: G'] > h(m(G)), then G’ is
abelian. What these groups definitely do not provide is a counter-example to
the statement that there exists a function % such that if [G: G'] > h(m(G)),
then G is solvable. In fact, by Theorem 2.6, this statement would follow if the
conjecture that a group having a fixed point-free automorphism of prime
power order is necessarily solvable were true.

The construction given below is modeled on G, Higman’s construction of
the Suzuki 2-group 4 (n, 6) in (1).
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THEOREM 3.1. Let p be a prime and n = 3 an odd integer. Then there exists a
p-group H = H, , satisfying

(1) [H| = p, |H| = p*, H' = Z(H),

(2) there exists cyclic A C Aut(H) with Cyx(a) =1 for all a % 1 in A.
Also, |A] = 2=4(p™ — 1), where t is defined by p — 1 = 2%, r being odd,

B)EH) =1+ (" — 1@+ 1), and

(4) if Gis the split extension of Hby A, then k(G) = 2'(p+ 1) 4+ 2-!(p™ — 1)
and m(G) = 2'(p + 1) < p? and m(G) s independent of n.

Proof. Let F = GF(p™) and let H be the subset of GL(3, F) consisting of

matrices of the form
1 a &
[0 1 o= (o),
0 0 1

where the ordered pair notation is used as a shorthand for the matrix. Note
that (o, £)(8, 1) = (@ + B, £ + 7 + aB?), and thus H is a group, 1 = (0, 0),
|H| = p?", and Z = {(0, &)} is a subgroup with |Z| = p". Clearly, (a, £) and
(8, 1) commute with each other if and only if af? = Ba?, i.e., if and only if
B =0 or a/B8 = (a/B)". Since n > 1, it follows that Z = Z(H), and since
x — x? is an automorphism of F which generates the Galois group of F over
its prime field, /8 = (a/B)? if and only if «/8 € GF(p), ie.,a = 53,0 < s <
p. If @ = 5B, then (B, n)* = (&, §) = (, £)(0, § — &), and thus C((e, §)) =
(Z, (, £))if a5 0. Now (q, £)? € Z; thus, if @ # 0, |C((e, £))| = p"! and the
class containing each non-central element of H has size p"~1. Thus

vn) = 121+ B2l g o =yt = 14 7 - 06+ ).

If we set p — 1 = 2% for odd 7, then 2!|(p" — 1) since
Po L= (o= DA+ p .

Since # is odd, there is an odd number of terms in the second factor which
must therefore be odd and 2%+1(p” — 1). Let A be a generator of the multi-
plicative group of F and set u = A?’. Since A has order p* — 1, the order of
wis 274(p™ — 1). Define the mapping o: H — H by (a, £)° = (au, éu?*). Then
o is a group automorphism and (a, £)°™ = (au™, £u™#+D). If ¢™ fixes (a, £) for
0 < m < 27%(p" — 1), then since u™ ## 1, we have that « = 0. If pm@+) = 1,
then 2-'(p" — 1)|m(p + 1). We claim, however, that 2=%(p" — 1) and p + 1
are relatively prime, for if ¢ is a prime, ¢|(p + 1), then = —1 mod ¢; thus
p*= —1modqg. If ¢|27%(p" — 1), then 0 =p" — 1= —2modg; thus
g = 2. However, 24 27%(p" — 1), and this establishes the claim. Thus,
274(p* — 1)|m(p + 1) contradicts 0 < m < 274(p" — 1) and p™P+) 1 and
& = 0. This establishes (2) of the theorem if 4 = (o).

Clearly, H/Z is abelian; thus H' C Z and |H'| = p® < p". Since H' admits
A, we have that 2=¢(p" — 1)[(p® — 1). Since 2*divides p* — land 27(p" — 1)
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is odd, we have that (p* — 1)[(p® — 1); thus p* = p%, and therefore H' = Z
and (1) follows.

Finally, since no a £ 4, @ # 1 can fix any class of H except {1}, it follows
that the number of classes of G that are contained in H is

L+ @ =D+ 1D/|A] =142 + 1).

It is clear that every coset of H (=G’) in G except for H itself is a single class
and there are 27(p" — 1) — 1 such cosets. This yields

kG) =2'(p+ 1) +27(p" — 1)
and

mG) =kG) —[G:G=2p+1) =(p—Dp+1 <9

and the proof is complete.
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