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Summary

Finite polygenic models (FPM) might be an alternative to the infinitesimal model (TIM) for the genetic
evaluation of pedigreed multiple-generation populations for multiple quantitative traits. I present a
general flexible Bayesian method that includes the number of genes in the FPM as an additional random
variable. Markov-chain Monte Carlo techniques such as Gibbs sampling and the reversible jump
sampler are used for implementation. Sampling of genotypes of all genes in the FPM is done via the use
of segregation indicators. A broad range of FPM models, some combined with TIM, are empirically
tested for the estimation of variance components and the number of genes in the FPM. Four simulation
scenarios were studied, including genetic models with 5 or 50 additive independent diallelic genes
affecting the traits, and random selection or selection on one of the traits was performed. The results in
this study were based on ten replicates per simulation scenario. In the case of random selection, uniform
priors on additive gene effects led to posterior mean estimates of genetic variance that were positively
correlated with the number of genes fitted in the FPM. In the case of trait selection, assuming normal
priors on gene effects also led to genetic variance estimates for the selected trait that were negatively
correlated with the number of genes in the FPM. This negative correlation was not observed for the
unselected trait. Treating the number of genes in the FPM as random revealed a positive correlation
between prior and posterior mean estimates of this number, but the prior hardly affected the posterior
estimates of genetic variance. Posterior inferences about the number of genes should be considered to be
indicative where trait selection seems to improve the power of distinguishing between TIM and FPM.
Based on the results of this study, I suggest not replacing TIM by the FPM, but combining TIM and
FPM with the number of genes treated as random, to facilitate a highly flexible and thereby robust
method for variance component estimation in pedigreed populations. Further study is required to
explore the full potential of these models under different genetic model assumptions.

(FPM) to estimate genetic variance components by
fitting a finite number of unlinked polygenic loci
that describe the genetic covariance among pedigree
members. Fernando et al. (1994) proposed the FPM
for complex segregation analysis. The FPM allows
the inclusion of non-additive genetic effects, such as
dominance and epistasis, whereas this inclusion is
hard in the infinitesimal model for theoretical and
computational reasons (e.g. DeBoer & Hoeschele,
1993).

However, the FPM has not yet been widely applied
for estimation of genetic parameters. A major problem

1. Introduction

Accurate, unbiased estimation of genetic variance com-
ponents plays a key role in breeding programs. Fisher
(1918) introduced the infinitesimal model (TIM), in
which it is assumed that traits are determined by an
infinite number of unlinked, additive genetic loci, each
with an infinitesimal contribution to the trait. TIM
has been successfully applied in animal breeding and
proved to be robust when analysing long-term selec-
tion responses (e.g. Martinez et al., 2000). Thompson
& Skolnick (1977) proposed a finite polygenic model
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in implementing an FPM using a standard likelihood
approach is the calculation of the genotype probability
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for all the loci. The large number of possible genotype
combinations quickly causes practical computation
problems as the number of individuals increases, and is
likely to explode with complex pedigree structures in-
volving loops. Markov-chain Monte Carlo (MCMC)
approaches based upon Gibbs sampling algorithms,
which were previously suggested for segregation studies
of single genes (Guo & Thompson, 1992; Janss et al.,
1995), have recently been extended to the multiple un-
linked genes in the FPM (Pong-Wong et al., 1999).
Instead of sampling the genotypes of individuals,
the segregation of genes can also be fully specified
by meiosis indicators (e.g. Thompson, 1999). In
the computation of probabilities of gene descent
in pedigrees, these meiosis indicators have also been
called inheritance vectors (Lander & Green, 1987),
descent graphs (Sobel & Lange, 1996) and segregation
indicators (Thompson, 1994). Implementation of de-
scent graphs to sample genotypes jointly for all
individuals has been explored by Tier & Henshall
(2001) and Du & Hoeschele (2000); Du and Hoe-
schele reported that the joint sampling procedure
did not improve the parameter estimation compared
with simpler implementation of descent graphs.

The estimates for genetic parameters can be heavily
affected by the number of genes that are fitted in the
FPM and the assumed prior distribution for gene
effects (Pong-Wong et al., 1999; Du et al., 1999).
Assuming uniform priors on gene effects, Pong-Wong
etal. (1999) and Du et al. (1999) found that the number
of loci in the model positively biased the estimates for
genetic variance. This bias was not observed when
normal priors on gene effects were assumed (Pong-
Wong et al., 1999). Du & Hoeschele (2000) postulated
that the positive bias found by Pong-Wong et al. (1999)
might have been due to lack of data. Du & Hoeschele
(2000) simulated larger data sets and found much
smaller biases owing to the number of genes in the
model, especially when assuming normal priors. How-
ever, they suggested further research to determine the
optimal number of genes in the FPM. Also, most of
these results were obtained for situations of random
selection. It has not been well studied whether differ-
ent priors on gene effects behave similarly in situ-
ations of trait selection, as in breeding programs.

In this study, I describe a flexible FPM for the
estimation of genetic parameters. First, I include the
number of genes in the FPM as an additional unknown
variable via a reversible jump Metropolis—Hastings
algorithm (Green, 1995). Second, I sample genotypes
for genes using segregation indicators (Thompson,
1994). Furthermore, I combine the FPM with TIM,
making the joint procedure as flexible as possible. The
method considers multiple-trait evaluation, which is
a logical extension and has not been explored before.
Iuse Monte Carlo simulation to study the performance
of many FPM models for scenarios with few and many
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genes simulated and for situations of random selection
or trait selection. In the simulation, I focus on additive
genetic models, whereas the method is described for
additive and dominance genetic models.

2. Methods

The method is described for two quantitative traits, but
there is no theoretical or practical restriction for more
than two traits. Also, for reasons of clarity and focus,
I omit the description of TIM (e.g. Wang et al., 1993,
Sorensen, 1996) in this section, although I do consider
combinations of the FPM and TIM in the analysis of
simulated data.

(1) Finite polygenic model

Under this model, the two quantitative traits are as-
sumed to be genetically controlled by L unlinked bi-
allelic loci, so the genotypes can be denoted as AA, AB
and BB. Following the same notation as Falconer
(1989), each locus / for trait ¢ has an additive (a;) and a
dominance (d};) effect with a frequency of alleles A and
Bin the base population of p;and ¢, respectively. Here,
I assume that the base population is produced by
random mating; that is, it is in Hardy—Weinberg
equilibrium and there is linkage equilibrium among
loci. If m;; denotes the mean for locus / for trait ¢, then

my=(p)* x (—an)+2pigr)di + qray.

The total genetic (co)variance explained by locus /
for traits ¢t and ¢’ is thus

977 =p?(m,, —(—ay))my —(—ay))
+aqpi(my, — dy )y —dy)

+ Q?(mlt —ay)(my —ayr).

If ¢'=1¢ then o;,,=0} (the genetic variance); other-
wise, it equals the genetic covariance. Because the loci
are assumed to be unlinked and in linkage equilibrium,
the total genetic (co)variances are the sums over all the
loci. As in the studies by Pong-Wong et al. (1999), Du
et al. (1999) and Du & Hoeschele (2000), I assume that
the allele frequencies p; and ¢, are fixed at 0-5 in the
founders.

Let y, and y, denote the vectors of dimension n,
of data for the two traits ¢ and ¢". Let a;, denote the
two-dimensional vector [a;, d;,]T for the /th locus. Now
the following model can be assumed:
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where b; (b,) is the vector of dimension k, (k,) of
‘nuisance effects’, and e, (e,) is the vector of dimension
n, (ny) of residuals of trait ¢t and ¢'. Incidence matrices
X, and X, relate the trait data to the nuisance effects
and are identical to each other when the same nuisance
parameters are included for all traits. For simplicity,
I assume only an overall mean effect 4 for each trait
(u, and u,). The incidence matrices Z; and Z,; are
typically unknown because the genotypes of individ-
uals are unobserved. The conditional distribution of
the data (ordered individuals within traits) is:

( Y
Y
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(i1) Prior distributions

For the nuisance effects, I assume proper uniform
distributions (omitting the bounds bymin), bsmax)
br’(min)> and bt’(max)),

p(b,) xconstant and p(b,) occonstant.

Based on the results of Pong-Wong et al. (1999), 1
consider two possible prior distributions to model the
gene effects: uniform and normal. Pong-Wong et al.
(1999) chose a folded-over normal because a, was, by
their definition, the effect of the favourable homo-
zygous genotype. In a multiple-trait situation, this
folded-over normal is not applicable because a geno-
type might be favourable for one trait and unfavour-
able for another trait; that is, it might act in opposite
directions for different traits. Inverted Wishart (IW)
distributions are used as prior distributions for the
(co)variance components, mainly for simplicity. The
Wishart density describes the distribution of sums
of squares and cross-products of standard normal
random variables (see also Van Tassell & Van Vleck,
1996).

PRy, Vo) o< [R| HHmD exp [ LRIV, )],

where v, and V, are hyperparameters of the distri-
butions, which I assume are known, and n, is the
number of traits (and the dimension of R,). In the
univariate case, the IW distribution reduces to an in-
verted 1-square distribution. This IW distribution
reduces to a uniform distribution if we setv= —(n,+ 1)
and V=0 (see also Sorensen, 1996). In the case of
normal priors for the random variables a;, and d;,, IW
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distributions are also used as priors for the hyper-
parameters A, and A, respectively.

The number of unlinked genes (L) was assumed to
be known and kept fixed in previous studies by Pong-
Wong et al. (1999), Du et al. (1999) and Du & Hoe-
schele (2000). Here, I consider L as a random variable
and want to infer its distribution from the data. Simi-
lar to several quantitative-trait-locus (QTL) mapping
studies (e.g. Sillanpdi & Arjas, 1998 ; Stephens & Fish,
1998 ; Lee & Thomas, 2000), I use a Poisson distri-
bution with hyperparameter A as the prior distribution
for the number of genes in the model.

(ii1) Joint posterior distribution

Combining the conditional distribution of the com-
plete data and the priors on model parameters lead to
the required joint posterior density of all unknowns
(including the L x N genotypes in G),

N
p(b» a, d, p. R(,, G’ L | y) OCHP(YI | ba a, d» R(’» Gl)
i=1
x p(b) x p(a) x p(d) x p(R.)
N, L

< [T Irten

i=1 j=1

Ny L
x TT Tlrteilgnsgm

i=Np+1 j=1

where N is the number of individuals (assuming all
individuals have phenotypes), N, and N, are the
number of base individuals (founders) and the number
of descendants, respectively (N=N,+ N,), G; is row i
of G and G;={g;}, where g; is the genotype of indi-
vidual 7 at locus j, and p(g;) and p(g;gys;,» &m,j) are the
population frequency and transition probability, res-
pectively, of genotype g;;.

The genotypes for a locus are determined together
by the alleles of founder individuals and by segrega-
tion indicators of non-founder individuals (Lange &
Matthysse, 1989; Thompson, 1994; Sobel & Lange,
1996). The segregation indicators uniquely describe
the flow of genes through a pedigree and the implemen-
tation was similar to those described (for QTL map-
ping) by Uimari & Sillanpdd (2001) and Bink et al.
(2002). Similar to Du & Hoeschele (2000), we modified
the block-sampling scheme of Janss et al. (1995), such
that both male and female parents are sampled un-
conditionally on the genotypes of their final offspring
(offspring not having progeny themselves), i.e. integ-
ration of the final offspring.

The number of affecting loci (L) was updated
through reversible jump sampling (Green, 1995;
Waagepetersen & Sorensen, 2001). I have adopted
the implementation proposed by Sillanpdid & Arjas
(1998). As a basic strategy, only single step moves
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were allowed (i.e. only one locus may be added or
deleted during an updating cycle). In the locus ad-
dition proposal (i.e. the birth step), new values for a
were generated from their priors (where a=[a, d]T
(the gene effects)). To increase the probability of ac-
ceptance for the addition step, we used a scaling fac-
tor w that is smaller than unity (e.g. 0-05) (see also
Uimari & Sillanpdd, 2001) on the prior distribution
of a. New genotypes and segregation indicators for
founders and non-founders, respectively, were also
proposed from the priors. Given a truncated Poisson
prior distribution on L with parameter A, the accept-
ance ratio of the birth step reduces to (Sillanpdd &
Arjas, 1998)

_ P(y|G',d, others) " A
~ P(y|G.a, others) ~ (L)

X W,

where ' indicates the old values (of existing loci) plus
proposed values for the new locus, and ‘ others’ refer to
all other random variables, which are constants in both
numerator and denominator. If a deletion (death step)
was proposed, the locus to be deleted was chosen
randomly. The acceptance ratio for a deletion step is
1—A. Refer to Uimari & Sillanpdd (2001) and Bink
et al. (2002) for more details on the sampling steps of
the MCMC simulation.

(iv) Simulated population

Four scenarios are considered, differing in genetic
model (5 or 50 genes underlying the quantitative traits)
and in selection (random or trait selection). These
scenarios are denoted as S05, S05s, S50 and S50s, where
the number indicates the number of genes and “‘s”
indicates trait selection. Each scenario will be studied
by analysing ten replicates of simulated data sets.

(a) Genetic parameters

The environmental and genetic variances for two
quantitative traits were 1-0. The genetic variance was
due to 5 or 50 independent genes that each had the
same contribution (Table 1). All genes were assumed
to be diallelic and to act additively (i.e. no dominance)
on both traits. The direction (or correlation) differed
between genes (Table 1). For the base population, the
allele frequency was 0-5 for each gene and I assumed
Hardy—Weinberg equilibrium within genes and link-
age equilibrium between genes.

(b) Population structure

The structure of the simulated population consisted of
a base population of 80 unrelated individuals (40 males
and 40 females) plus 5 discrete generations each of 400
individuals. At each generation 40 males and 40 fe-
males were selected, where selection was either random
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Table 1. Scenarios of simulated data sets
Number  Correlation gene

Scenario  of genes  effects on traits Selection
S05 5 2 similar, 3 opposite Random
S05s 5 2 similar, 3 opposite Trait 1
S50 50 25 similar, 25 opposite  Random
S50s 50 25 similar, 25 opposite  Trait |

or based on phenotypic superiority for trait 1. A single
mating resulted in 4 full sibs, 2 males and 2 females,
where the parents were a random sample of available
candidates with no restriction on the number of off-
spring per parent nor on the kinship between parents.

(v) Models of analysis

As previously stated, two possible priors for gene ef-
fects are considered : uniform priors and normal priors.
In the case of normal priors, the hyperparameters of
the normal distribution (A) can be treated as unknown
and must be estimated from the data. However, when
the number of unlinked genes is small, the sampling of
random variable A can become problematic owing to
lack of degrees of freedom. Therefore, I restrict the use
of normal priors for gene effects to cases where there
are enough genes in the model (at least five genes). In
the case of L being a random variable, this might oc-
casionally happen in the Markov chain. The number
of unlinked genes (L) is a priori either known (fixed) or
unknown (random) (Table 2). In the case where the
number of genes is treated as unknown, its prior dis-
tribution was assumed to be Poisson distributed with
amean of 2 or 20 (Table 2). For reasons of comparison,
I also include models combining TIM and FPM, where
the number of genes in the FPM are again treated as
known or unknown and only uniform priors on gene
effects are applied (Table 2).

In the following, I refer to all models with a fixed
number of genes as F* models and those with a random
number of genes as R* models. Furthermore, models
including TIM are referred to as T* models.

3. Results

The results presented below are the averages of the
posterior mean estimates from ten replicates of simu-
lating the four scenarios given in Table 1, analysed
by the 15 models given in Table 2. For each combi-
nation of scenario +model, we obtained 1000 realiz-
ations from a Markov chain, storing every 25th or 50th
sample for the F* and R* models, respectively. This
sampling protocol provided low autocorrelation be-
tween consecutive realizations; that is, the Monte
Carlo standard errors (Geyer, 1992; Sorensen et al.,
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Table 2. Models of analysis in the finite polygenic
model (FPM)

Number of FPM genes

Fixed Random

P@* 0 5 10 20 50 2 20

FO5u F10u F20u F50u R02u R20u
FO05n F10n F20n F50n R02n R20n
TRO02u TR20u

Uniform
Normal

TIMi TIM

* Prior distribution of (additive) gene effects.
i The infinitesimal model.

1995) were below 0-5% for (ratios of) variance
components. The required computation time on a
Pentium III (1 GHz) was almost 18 h for the models
fitting 50 genes, whereas less than 1-5 h were needed
for models fitting five genes.

(1) Distribution of number of genes

Table 3 presents the posterior probabilities and pos-
terior mean estimates for the number of genes for all
R* models and TR* models for the four different
scenarios. The genetic models RO2u and R02n resulted
in highly similar posterior distributions across all
scenarios, except for a small upwards shift of R02n in
scenario S50s. The posterior distributions for these
two models were both shifted upwards (with the mean
in the direction of the simulated values) under trait
selection versus random selection. The posterior mean
estimates were close to five in scenario S5s and close
to eight in scenario S50s.

The genetic models R20u and R20n resulted in pos-
terior distributions that were always higher than those
for the genetic models RO2u and R02n, with differ-
ences in posterior mean estimates ranging from 1-1
(R20u versus R02u in S05s) to 3-2 (R20n versus R02n
in S50 and S50s). The genetic model R20n consist-
ently gave an up-shifted posterior distribution com-
pared with model R20u. Like models R02u and R02n,
trait selection caused the posterior mean estimates of
models R20u and R20n to be closer to the simulated
values. This shift was downwards in S05s, because the
posterior distribution was higher than the simulated
value in S05.

In general, a normal prior distribution on gene effects
gave higher estimates for the number of genes than
a uniform prior distribution, especially when many
genes were expected and when selection was applied.
These higher numbers might result from the expected
regression towards zero for gene effects in case of
normal priors. Also, trait selection provides substan-
tial information for estimating the number of genes
(Table 3).
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Across all scenarios and the two different priors, the
T* models always resulted in posterior mean estimates
(and distributions) that were lower than those from the
R* models. The differences in posterior mean estimates
ranged from 0-9 (TR20u versus R20u in S05s) to 7-1
(TR20u versus R20n in S50s). For model TRO02u,
the effect of trait selection versus random selection
resulted in differences in posterior distribution only
between scenario S05 and scenario S05s, where trait
selection gave higher posterior estimates (closer to
the simulated value). For model TR20u, the effect of
trait selection versus random selection was only ob-
served in the posterior distributions between scenarios
S50 and S50s, where trait selection gave lower pos-
terior estimates.

(i) Variance components
(a) Scenario S05: five genes and random selection

Table 4 presents the averaged posterior mean estimates
of residual and genetic variance components for traits
1 and 2, for the 15 models given in Table 2, across ten
replicates of simulation of scenario S05. Taking uni-
form priors on gene effects, a strong positive corre-
lation was observed between the number of genes in the
FPM and the estimated genetic variance (e.g. for trait
1, the posterior estimates were 1-:07 and 1-:40 for models
FO05u and F50u, respectively). A similar negative (but
smaller) correlation was observed between the esti-
mates for residual variance and the number of genes in
the FPM model (Table 4). For models RO2u and R20u,
the posterior mean estimates for variance components
were close to those for model FO5u, which agrees well
with the posterior mean estimates for the number of
genes, which were 4-4 and 6-2 for R0O2u and R20u,
respectively (Table 3). Taking normal priors on gene
effects, all F* models and R* models resulted in very
similar posterior mean estimates, ranging from 1-03 to
1-06 (Table 4). These results confirmed the conclusions
of Pong-Wong et al. (1999) and Du et al. (1999) for
random selection.

For the T* models, the posterior mean estimates for
total genetic variance were slightly higher than those
for the FPM models with normal priors. When com-
bining TIM and FPM, the estimated standard devi-
ation of the posterior densities for the two genetic
variance components were much larger than fitting
only one component (either TIM or FPM). This indi-
cates that, for random selection, the phenotypic data
have relatively little power to distinguish between TIM
and FPM as genetic models underlying the quanti-
tative traits.

The estimated genetic and residual correlations be-
tween the two traits were very similar in all studied
models (Table 4) and agreed well with the simulated
values. Those for model TR02u varied considerably,
with the genetic correlation owing to the FPM being
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Table 3. Prior and posterior probabilities and posterior mean estimates of number of genes, calculated as
averages over ten replicates per simulation scenario. Scenarios S05, S05s, S50, and S50s are defined in Table 1,
genetic models are defined in Table 2. Prior and posterior probabilities > 0-005 are shown

Number of genes (L)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean
Prior
P0O2* 0-14 027 027 018 009 0-04 0-01
S05
RO2u 004 056 033 007 4-4
RO2n 0-:04 052 037 0-07 4-5
TRO2u 0-:06 036 043 0-13 0-02 27
S05s
RO2u 0-35 054 010 0-01 4-8
R02n 0-38 0-51 0-10 0-01 47
TRO2u 0-16 054 027 004 32
S50
RO02u 0-03 029 041 022 0-05 5-0
R02n 0-:02 029 037 024 0-07 0-01 51
TRO2u 0:05 040 036 0-15 0-04 0-01 1-7
S50s
RO02u 0-:05 009 034 038 013 0-01 75
R02n 0-05 029 0-37 0-18 0-10 0-01 80
TRO2u 0:08 043 0-33 0-13 0-03 1-6
Prior
P20* 0-01 001 002 003 005 007 009
S05
R20u 0-07 019 035 026 0-11 0-03 62
R20n 002 011 024 026 020 0-10 0-04 0-02 7-1
TR20u 0-01 007 024 032 022 0-11 0-03 52
S05s
R20u 0-:04 029 042 021 004 59
R20n 0-02 018 034 028 0-13 0-04 0-01 65
TR20u 0-:07 026 038 022 006 0-01 50
S50
R20u 0-:09 020 0-27 027 0-13 0-04 7-3
R20n 0-:02 009 025 025 020 0-12 005 0-02 83
TR20u 0-03 011 022 028 021 0-11 0-03 0-01 5-0
S50s
R20u 0-01 003 011 0-27 0-30 016 0-10 0-02 9-8
R20n 0-01 003 009 018 027 023 0-12 005 002 112
TR20u 0-03 010 024 026 022 0-11 0-04 0-01 41

* Priors P02 and P20 denote a Poisson prior with expected mean of 2 and 20, respectively. For P20. the probabilities for
n>15 are not given in this table; their joint probability is ~0-72.

slightly positive and that owing to the TIM being
strongly negative. However, accounting for the TIM
proportion of the total genetic variance, the overall
genetic correlation for the TRO2u (and TR20u)
models agreed well with those from the other models
(~—0-23).

(b) Scenario S05s: five genes and trait selection

When selection was based on trait 1, the posterior
mean estimates for genetic variances for trait 1 were
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clearly affected by the number of genes in the FPM
models (Table 5), irrespective of which prior was taken
for gene effects. Taking uniform priors, however, the
trend was very different from the one observed in
scenario S05 (random selection): the posterior esti-
mates of genetic variance decreased when the number
of genes increased in the F* models. This same negative
trend was also observed taking a normal prior on gene
effects; estimates were 1-09 and 0-84 for models F05n
and F50n, respectively. In the case of normal priors,
the trends of trait 1 were also observed for trait 2 but, in


https://doi.org/10.1017/S0016672302005906

Polygenic models for multiple-trait evaluation 251

Table 4. Posterior mean estimates for error variance (0%), total genetic variance (oz), proportion of the genetic
variance owing to TIM (Propriwm) for traits 1 and 2, and error correlation (r.) and genetic correlation in FPM
(ro.rpm) and in TIM (r4 tim) for scenario SO5. Calculated as the average of ten replicates. Standard errors

across the ten replicates ranged between 0-04 and 0-07 for 62, and between 0-07 and 0-11 for 02 (similar for both traits)

FO5u F10u F20u F50u RO2u R20u FO05n F10n F20n F50n RO02n R20n TIM TRO02u TR20u

Trait 1
o’ 098 096 093 085 099 098 099 098 098 098 1-00 099 098 098 097
o:, 1-07 1-10 1-18 140 1-05 107 103 105 106 106 103 104 109 108 1-09
Prop iy 1-:00 040 021
Trait 2
o? 098 095 093 084 098 097 098 097 097 098 099 098 097 096 095
oz, 1-07 1-10 1-17 138 1:06 1:08 106 106 106 105 105 1:06 110 1-11 1-12
Propriav 1-00 049 0-35
Correlation
e 0-02 002 003 003 002 002 003 003 003 003 002 003 003 004 003
e FPM —0-22 —0-22 —0-21 —0-18 —0:23 —0-22 —0-23 —0-23 —0-23 —0-24 —0-23 —0-23 0-05 —0-14
Fo.TIM —0:25 —0-61 —0-46

Table 5. Posterior mean estimates for error variance (6%), total genetic variance (02), proportion of the genetic
variance owing to TIM (Proprtim) for traits 1 and 2, and error correlation (r.) and genetic correlation in FPM
(rg,ppm) and in TIM (rqtim) for scenario S05s. Calculated as the average of ten replicates. Standard errors
across the ten replicates ranged between 0-02 and 0-04 (trait 1) and 0-06 and 0-09 (trait 2) for o2, and between
0-02 and 0-06 (trait 1) and 0-08 and 0-14 (trait 2) for oé

FO5u F10u F20u F50u RO2u R20u FO05n F10n F20n F50n RO02n R20n TIM TRO02u TR20u

Trait 1
o 1-02 1-01 099 097 102 102 102 101 100 099 102 102 099 100 1-01
ofz 111 1-04 102 101 1-12 108 109 101 095 084 111 106 08 105 106
Proprim 1:00 023 0-13
Trait 2
o 097 095 091 081 098 097 098 09 095 094 099 097 095 097 096
02 1-04 108 112 124 102 104 1-01 1-01 098 08 1-00 1-01 0-83 1-03 1-06
Propriv 1-:00 0-18 0-12
Correlation
e 0-01 001 o001 001 001 001 001 001 002 002 001 001 002 001 002
T, FPM —0-21 —0-20 —0-19 —0-19 —0-21 —0-21 —0-21 —0-21 —0-22 —0-24 —0-21 —0-21 —0:15 —0-14
T, TIM —023 —042 —0-67

the case of uniform priors, the trend of trait 2 was  across all models studied and close to the simulated
similar to those observed in the scenario S05 (random  values (Table 5).

selection). The posterior mean estimates for the R*
models were all very close to those obtained by the
F05u and FO5n models, because the posterior mean for
the number of genes in these models was close to 5  In this scenario the trends of results for the different
(Table 3). TIM gave posterior mean estimates that ~ models of analysis were similar to those in scenario
were very similar to those in F50n — relatively very low  S05. Taking a uniform prior on gene effects, the pos-
estimates for genetic variance. The estimates for (total) terior mean estimates for genetic and residual vari-
genetic variance for the TR* models were close to the ances increased and decreased, respectively, with the
simulated values, where the proportions of genetic number of genes in the F* models (Table 6). Taking a
variance explained by TIM were only about 0-2 and  normal prior on gene effects, the number of genes in the
0-1, respectively, for the two traits in models TR02u model did not affect the estimates for variance com-
and TR20u. The posterior mean estimates for re- ponents —the points estimates were very similar across
sidual and (overall) genetic correlation were consistent all models. It is also noteworthy that, in this scenario,

(¢) Scenario S50: 50 genes and random selection
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Table 6. Posterior mean estimates for error variance (6%), total genetic variance (oz), proportion of the genetic
variance owing to TIM (Proprim) for traits 1 and 2, and error correlation (r.) and genetic correlation in FPM
(ro.rpm) and in TIM (rq tim) for scenario S50. Calculated as the average of ten replicates. Standard errors

across the ten replicates ranged between 0-05 and 0-08 for o2, and between 0-07 and 0-12 for Oé (similar for both traits)

FO5u F10u F20u F50u RO2u R20u FO05n F10n F20n F50n R02n R20n TIM TRO2u TR20u

Trait 1

o’ 1-01 097 094 08 101 099 1-01
o:, 1-01 106 1-13 133 100 1-:03 099
Proprim

Trait 2

o? 1:06 102 098 08 106 104 1-06
0:, 094 099 108 131 094 097 093
Propriy

Correlation

e 0-00 000 000 000 000 000 0-00
'e FPM 0-03 002 002 002 003 002 003
I'g TIM

099 099 098 102 100 097 0-98 0-98
1-00 101 102 098 100 1-06 1-05 1-05
1-00 0-77 0-41
1-04 104 103 106 105 102 1-02 1-02
096 096 097 093 094 102 1-00 1-02
1-00 0-76 0-53
0-00 000 0-01 000 000 0-01 0-00 0-00
0-02 002 001 003 002 —0:01 —0:06
0-01 0-03 0-13

Table 7. Posterior mean estimates for error variance (0%), total genetic variance (02), proportion of the genetic
variance owing to TIM (Proprtim) for traits 1 and 2, and error correlation (r.) and genetic correlation in FPM
(rg,rpm) and in TIM (rgtim) for scenario S50s. Calculated as the average of ten replicates. Standard errors
across the ten replicates ranged between 0-02 and 0-04 (trait 1) and 0-06 and 0-09 (irait 2) for o2, and between 0-06

and 0-08 (trait 1) and 0-09 and 0-13 (trait 2) for o,

FO5u F10u F20u F50u RO2u R20u FO05n F10n F20n F50n RO02n

R20n TIM TRO2u TR20u

Trait 1

o 1-07 104 103 099 105 105 107
af, 143 125 118 1-18 131 125 141
Propriv

Trait 2

o 1-:05 099 095 08 101 099 105
0:, 1-05 113 119 139 110 113 1:04
Propriv

Correlation

e 0-01 0-01 001 001 001 001 001
T'g FPM 0-04 003 002 001 003 003 004
T'e TIM

1-05 104 103 105 105 1-02 1-02 1-03
1-23 1-12 103 128 120 098 1-00 1-03
1-00 0-88 0-72
1-01 100 098 102 100 0-98 0-98 0-98
1-08 107 106 107 108 1-07 1-08 1-10
1-00 0-74 0-53
0-01 001 001 001 001 001 0-01 0-01
0-03 002 001 003 003 —0-09 —-0-05
0-01 0-04 0-05

with 50 genes simulated, model F50u leads to a severe
overestimation of the genetic variance, whereas model
FO05u seems to give consistent estimates, and the num-
ber of genes fitted is much lower than simulated.

The posterior mean estimates for genetic variance
for the T* models were slightly higher than those for
the models with normal priors. The proportion of
genetic variance explained by the TIM decreased with
the number of genes fitted in the FPM: 0-77 and 0-41 in
models TR0O2u and TR20u, respectively. In TR02u and
TR20u, the posterior mean estimates for the number
of genes were 1-7 and 5-0, respectively (Table 3). The
posterior mean estimates for the residual and genetic
correlation agreed very well with the simulated value
of 0-0.
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(d) Scenario S50s: 50 genes and trait selection

Table 7 shows that the posterior mean estimates for
residual and genetic variances have very similar trends
to those in scenario S05s. Taking uniform priors on
gene effects, posterior mean estimates for residual
variances decreased for both traits when the number of
genes in the FPM increased. For the genetic variance,
the posterior means for trait 1 and trait 2 decreased and
increased when the number of genes increased. Similar
to scenario S50, the genetic variance for trait 2 seemed
to be severely overestimated by model F50u. Ac-
counting for the number of genes fitted in models R02u
and R20u (Table 3), these models gave consistent esti-
mates with the F* models with uniform priors. Taking
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normal priors, the posterior mean estimates for gen-
etic variance decreased with the number of genes in
the model, whereas those for residual variance also
decreased slightly. The trend observed for genetic vari-
ance of trait 1 was not observed for trait 2, whereas
the trend for residual variance of trait 1 was clearer
in trait 2. The models TR02u and TR20u gave very
similar estimates to TIM and these estimates were the
most consistent with the simulated values. In these
models, the proportion of genetic variance explained
by TIM was always higher than 0-5, differing between
the two models and the two traits (Table 7). There was
a small decrease in genetic correlation when the num-
ber of genes in the F* models increased, regardless
of which prior was taken. For all TR0O2u and TR20u
models, the genetic correlation for the FPM and
TIM were slightly negative and positive, respectively,
although the posterior densities were very broad
(results not shown). Their overall genetic correlation
was again very consistent with those in the F* and R*
models.

4. Discussion
(1) Method

A Bayesian method was presented to study the genetic
architecture of multiple quantitative traits by explor-
ing a range of FPMs, some combined with TIM.
Within the FPM, the number of genes is modelled as
an additional random variable by using a reversible
jump algorithm. In the proposed FPM, the genes
can act as additive or dominant but, in the simulation
study, we concentrated on additive genes only. The
multiple-traits implementation facilitates the study of
the behaviour of individual genes at correlated traits.
This would allow the identification of genes that act
favourably on all traits of interest, either positively or
negatively correlated traits. I realise that the scenarios
studied here are limited and more simulation studies
are required to evaluate the potential of our method
to pick up interesting (major) genes that act on
multiple traits in different directions and different
magnitudes. Forexample, simulating many small genes
and one major gene might do this where the major
gene acts upon one or more traits. However, this was
outside the scope of this paper.

(i) Simulation results

The analysis with uniform priors on gene effects in our
simulations confirmed the previous findings of Pong-
Wongetal. (1999) and Du et al. (1999) that the number
of genes in the model can greatly affect the estimates of
genetic variance in the FPM. That is, for more genes,
the estimates of genetic and residual variances in-
creased and decreased, respectively. In the case of
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random selection, this dependency was not observed
taking normal priors on gene effects, irrespective of
the genetic model that was used in the simulation.
However, in the case of trait selection, there were
dependencies between parameter estimates and the
number of genes, irrespective of the choice of priors
on gene effects. For the selected trait, the number of
genes was negatively correlated with the estimated
genetic variance. This resulted in an underestimation
by the F* models with more genes in scenario S05s,
and in an overestimation by the F* models with fewer
genes in scenario S50s. Treating the number of genes
as a random variable did make the FPM more robust
to trait selection, but the posterior mean estimates
from these models were still somewhat biased when
many genes was simulated. The prior expected num-
ber of genes in models R02n and R20n was much
lower than the number simulated in scenario S50s,
although models such as R50n were not studied to see
whether the estimates would improve or not. Across
the two scenarios of trait selection, models TRO2u
and TR20u proved to be very robust; that is, they
yielded consistent estimates for variance components.
In scenario S05s, the random FPM explains most of
the variance and, in scenario S50s, TIM explains most
of the variance (see also Fig. 1). Treating the number
of genes as random primarily facilitates this desired
flexibility. However, one should treat the posterior
distribution of the number of genes in the FPM as
indicative, because this number cannot easily be in-
ferred from phenotypic data alone, unless the number
of genes is very small and they have very different con-
tributions to multiple traits.

(ii1) Mixed inheritance models

For the TIM (TFO00u), the estimated genetic variance
under trait selection was much lower than the estimates
from the F* and R* models. The difference was largest
in the SO5s scenario but also still present in the S50s
scenario. These differences in estimates might be ex-
plained by the different model assumptions —allowing
for changes in allele frequencies that interfere with
selection acting on one of the traits. Under assumption
of normality, all models performed similarly in the case
of random selection but very differently in the case of
trait selection. Tables 4-7 indicated that the TR*
models with random number of genes performed well
under very different models of simulation. Therefore,
when one is interested in robust estimation of variance
components (and not, for example, in detecting major
genes), I propose the use of model TR02 (a combi-
nation of TIM and FPM with a random number of
genes). In this study, I only considered uniform priors
on gene effects for this model but normal priors could
be used as well, although the scale parameters of this
normal distribution can not then be inferred from the
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Fig. 1. Marginal posterior distributions of genetic variance owing to TIM and FPM in model TR02u for four different
scenarios (as averages over ten replicates).
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data. That is, there might be too few genes present,
leading to too few degrees of freedom for the IW dis-
tribution. Taking the scale parameters as fixed solves
this problem but one should then have some prior
indication of the size of these scale parameters. The
effects of taking fixed scale parameters needs to be
studied more precisely.

(iv) Major-gene detection

The results also point to the need for some caution with
respect to the detection of major genes. For example,
the FPM part of the TR* models explained a signifi-
cant fraction of the genetic variance in the S50 and S50s
simulation scenarios, although no major genes were
simulated, a result that was also reported by Tier &
Henshall (2001). In these cases, one should base in-
ferences on the full posterior density of the genetic
variance (or heritability) of the FPM instead of only
the posterior mean. Figure 1 clearly shows that, in
scenarios S50 and (especially) S50s, there is a relatively
high posterior probability of having zero or very little
variance owing to the FPM. Only when there is very
little or no mass near zero might a major gene be
postulated. So, for scenarios S50 and S50s, I would
have rejected the presence of major genes based upon
the posterior distribution of the genetic variance or
heritability. Also, one may examine the effects of in-
dividual genes, although it should be realized that their
identity cannot be established in cases of multiple
genes. Notice also that I simulated genes of equal size,
whereas unequally sized genes might be more realistic
and the performance of a FPM with random number
of genes remains unknown. A natural way to reduce
the false discovery of major genes is by imposing a very
stringent prior on the number of genes by imposing a
high prior probability mass at or near zero. By the
same reasoning, the TIM model would have been ex-
cluded or rejected in scenario SO5s based on the high
posterior probability near zero (Fig. 1).

(v) Sampling genotypes

Du et al. (1999) suggested sampling the genotypes of
parents unconditionally on their final offspring, which
is an extension of the sampling scheme of Janss et al.
(1995). Du & Hoeschele (2000) explored a genotype-
sampling scheme based on descent graphs (Thompson,
1994, Sobel & Lange, 1996) to sample the genotypes
at all loci jointly. However, Du & Hoeschele (2000)
reported that descent-graph sampling of genotypes
only modestly improved variance-component esti-
mation compared with Gibbs sampling. I sampled
genotypes for genes using segregation indicators
(Lange & Matthysse, 1989; Thompson, 1994) and did
not observe unsatisfactory mixing. However, more
research is needed to evaluate the mixing properties
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of segregation indicators for large and deep pedigrees,
because these might exist in practical livestock breed-
ing programs. Then, the mixing of segregation in-
dicators or founder alleles for ancient parents might
be hampered by the large amount of information
coming from all their descendants.

(vi) Extensions

Estimation of non-additive genetic variances can be a
major incentive to implement FPM ; this was not ex-
plored in this study but has already been studied by Du
et al. (1999) and Du & Hoeschele (2000). The next step
in my method is to incorporate molecular marker data
to map QTLs to chromosomes. This novel Bayesian
approach then allows three sources of genetic variance
(QTL, FPM, and TIM). This method of mapping
QTLs has already been applied to data from humans
(Uimari & Sillanpédéd, 2001) and plants (Bink ez al.
2002), but no allowance has yet been made for un-
linked genes. In practice, mapping experiments are
likely to provide a limited number of marker loci and
these markers only partially cover the genome. For
example, I have been analysing data from pig selec-
tion lines, in which marker data are available for
a single chromosome, and used the flexibility of the
FPM to account for putative QTLs on other (un-
marked) chromosomes. Furthermore, combinations
of QTL and FPM models will also be used to analyse
data on complex plant pedigrees, for which the pres-
ence of high rates of inbreeding hampers the use of
TIM. In this way, experimental and non-experimental
data on animal and plant breeding populations will
be used more efficiently to explore the genetic vari-
ation underlying quantitative traits.

The contributions of P. Uimari to the software are gratefully
acknowledged. Suggestions from T. Meuwissen, R. Jansen
and an anonymous reviewer on earlier versions of the
manuscript are acknowledged.
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