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ANELASTIC BEHAVIOUR OF POLYCRYSTALLINE ICE

By PauL Duvar
(Laboratoire de Glaciologie, C.N.R.S., B.P. 53, F-38041 Grenoble-cedex, France)

ApstracT. Torsion creep tests were performed on glacier ice at temperatures above — 12°C. The
polyerystalline ice, when unloaded, exhibits crecp recovery. The time-dependent recoverable component of
deformation (or anclastic strain) e, was found to be adequately deseribed by a relationship of the form:
en = Arlog(1-+al)/h, where A7 is the stress decrement, o a constant, and ¢ the time. The aneclastic modulus
h defined for times f in excess of 3 h is always smaller than the dynamic elastic modulus. The movement of
dislocations composing the sub-boundaries or in dislocation pile-ups may produce this important reversible
deformation. The time-dependent recovery is explained in a similar way to the transient creep behaviour
observed at low temperatures for metals. The small temperature dependence of creep recovery would arise
from the existence of a distribution of internal stresses values.

Risumit.  Comportement anélastique des glaces polycristallines. Des expériences de fluage en torsion pure ont
¢1¢ réalisées sur des glaces de glaciers a des températures supérieures & —12°C. A la décharge, une restaura-
tion du fluage est trouvée pour les glaces polycristallines. La composante de la déformation restaurée,
dépendant du temps (ou déformation anclastique) ey est correctement décrite par la relation e, —
A7 log(1+at)/h, ot A7 est la contrainte résultant de la décharge et ¢ le lemps. Le module anélastique A
défini pour des temps [ supérieurs & g h est toujours plus petit que le module élastique dynamique, Le
mouvement des dislocations composant les sous-joints ou les empilements de dislocations peut ¢étre a origine
de cette importante déformation réversible. La restauration dépendant du temps est expliquée de la méme
fagon quc le fluage transitoire obtenu a basse température pour les métaux. Une distribution des contraintes
internes serait a Porigine de la faible dépendance du fluage réversible avec la température.

ZUSAMMENFASSUNG.  Anelastisches Verhalten von polykristallinem Eis. An Gletschereis wurden Torsions-
kricchversuche bei Temperaturen oberhalb —12°C ausgefiihrt. Die polykristallinen Eisproben zeigen nach
Entlastung  Kriecherholung. Der zeitabhiingige erholungsfihige Anteil der Verformung (anelastische
Verformung) e, wurde angemessen beschrichen durch eine Bezichung der Form: e — Ar log (1 at)/h,
dabei ist A7 der Spannungsabfall, « eine Konstante und ¢ die Zeit. Der anclastische Modul /. der fiir Zeiten
toberhalb oberhalb 3 h bestimmt wurde, ist stets kleiner als der dynamische elastische Modul. Die Bewegung
von Versetzungen, welche Sub-Korngrenzen oder Versetzungstaus bilden, kénnen diese bedeutende
reversible Verformung hervorrufen. Die zeitabhiingige Erholung wird in zhnlicher Weise wie das Uber-
gangskricchverhalten erklart, das bei niederen Temperaturen an Metallen beobachtet wurde, Die geringe
Temperaturabhiingigkeit der Kriccherholung kiénnte von dem Vorhandensein einer inneren Spannungs-
verteilung herriihren.

InTRODUCTION

The application of a stress to a polyerystalline ice sample results in a total strain that is
often time dependent. The accumulated strain is described by the equation
€ = e,et-+égl, (1)
where ¢, is the instantaneous strain on loading, € the limiting transient creep and ég the
secondary creep-rate. The second creep component changes when recrystallization processes

occur (Glen, 1955). Glen (1955) found that for polycrystalline ice tested near the melting
point, the transient creep strain could be approximated by Andrade’s law:

et = f3th. (2)
Equation (2) has also been confirmed by Duval (1977).

When unloaded, ice exhibits creep recovery (Jellinek and Brill, 1956). So a more realistic
approach should be made in describing the ice creep deformation by the incorporation of
anelastic contributions to the transient behaviour. Anelastic strains are the time-dependent
component of deformation recoverable after release of the stress, and like elastic strains their
magnitude is most frequently linearly related to stress change (Nir and others, 1976; Lloyd
and McElroy, 1976). The values of anelastic strains are typically of the same order of magni-
tude as the elastic strains (Friedel, 1956; Jellinek and Brill, 1956).

If the anelastic contribution is included, the relationship for creep is given by:

€ = e tenteég, (3)
where ¢, is the anelastic strain and e; becomes the unrecoverable transient creep.
621

https://doi.org/10.3189/50022143000033736 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000033736

622 JOURNAL OF GLACIOLOGY

The purpose of the present study was to investigate the anelastic strain in polycrystalline
ice deformed in shear over a range of temperatures and stresses, and to establish the time law
of recovery.

EXPERIMENTAL METHODS
Ice samples

The behaviour of different natural polycrystalline ices was investigated.
1. Ice from the Vallée Blanche (French Alps)

The sample cores come from a drilling carried out through the whole thickness of the
glacier (187 m). Only ice down to the depth of 180 m was studied (the sample reference was:
V.B. 180). This ice, of grain size of about 1 cm, was without bubbles. The c-axis fabrics
consisted of four maxima (Vallon and others, 1976).

2 .Ice from Terre Adélie (Antarctica)

During 1973, a hole 303 m deep was drilled near station D 10 (distance to the coast:
5 km). Several samples were investigated in this study. Temperature in the ice was —4°C
in the upper layer and reached —7°C at the bottom. The crystal size of ice studied was
always smaller than 1.4 em.

Experimental procedure

Specimens in the shape of a hollowed-out cylinder (external diameter go to 100 mm,
internal diameter about g0 mm, height about 130 mm), were prepared. Torsion creep tests
were carried out at temperatures of —12°C and —1.5°C over a range of stresses from 130 to
370 kN/m? using a constant-stress machine (Duval, unpublished). The shear stress = was
calculated by assuming the validity of Glen’s law with n = 3. The values quoted were
calculated for the outer surface of the cylinder.

The loading unit was housed in a cold room the temperature of which was maintained at
—14°C. A regulation system inherent in the apparatus allowed one to reach the required
temperature. The maximum variation of sample temperature during an experiment was
0.2°ClL

Strain was measured as a function of time by linear variable differential transformer
transducers (L.V.D.T.) and the output was recorded continuously. The sensitivity of strain
measurements was approximately 107s.

EXPERIMENTAL RESULTS
Strain—time relationship during unloading

Figure 1 shows typical results for the creep recovery strain plotted against the logarithm
of the time after 100%, stress reduction during secondary creep. The same specimen was
used for measurements at shear stress of 200 kN/m?2 and 130 kN/m2. The anelastic strains e
are adequately described by the relationship

€a = klog(1+-at), (4)
where ¢ is the time after unloading and k and « are constants. Equation (4) was found to hold
for times in excess of g h providing this followed a loading period in excess of x6h (i.e.
hefore secondary creep).

Over the range of stresses investigated, the constant k is proportional to the shear stress
decrement Ar. So anelastic strain is given by

ea = Arlog(1-+at)/h. (5)

With this linear relationship and for defined recovery times, the quantity & can be defined as
the anelastic modulus (Lloyd and McElroy, 1976).

https://doi.org/10.3189/50022143000033736 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000033736

ANELASTIC BEHAVIOUR OF POLYCRYSTALLINE ICE 623

-25 7 . ;
b
T, =370kt

|
|

~201 /
/ T -SZOH;?

// T:200kN/m?
,mL i /
/ n:unwmz

. /
-5 o /:/” 2|
=
Log t (nours
6 " n | 1

= —2 -1 0 |

ol

[
T
4

a
B
“a,

it

Anelostic recovery strain ¢, 10

Fig. 1. Anelastic recovery strain as a _function of log t after pre-strains for different values of shear stress. Samples 3V.B. 180.
Temperature T — — 1.5°C.

The anelastic strain does not change with the loading period during secondary creep; but,
as shown in Figure 2, it increases with pre-strain during primary creep. The three curves
shown on Figure 2 were obtained with the same specimen; the recovery period was always
three times the loading period.

The anelastic modulus calculated for recovery times in excess of g h is always smaller than
the elastic modulus measured by dynamic methods. For frequencies greater than roo Hz,
characteristic values of elastic modulus are of about g ooo MN/m? (Nakaya, 1959). From the
results shown in Figure 1, the anelastic moduli are of one order of magnitude less than the

elastic moduli.
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Other measurements were made on natural ice from Antarctica. The results are shown
in Table I. The anelastic modulus varies with the origin of the samples, but is always smaller
than the dynamic modulus. So it appears that the anelastic contribution cannot be neglected

in the creep equation (Equation (3)), in spite of the influence of pre-strain during primary
creep.

TasLE I. RESULTS OF RECOVERY TESTS
Samples: ice from D.10o station (Antarctica) at various depths
Test temperatures: —1.5-+0.1°C

The anelastic moduli were calculated for recovery times of 3 h
Loading period prior to recovery period: 48 h

Depth in the glacier  Grain size  Shear stress  Anelastic modulus

m cm kN/m? MN/m?
46.13 0.4 140 680
100.66 0.7 171 430
127.53 1.0 160 205
247.00 1.3 177 550

Effect of temperature

Figure g shows the variation of shear strain-rate with time at two temperatures for two
samples during primary and steady-state creep. The first part is transient creep, which
corresponds to the recovery creep, and is very little temperature dependent. This result
contrasts with that concerning secondary creep for which the activation energy is greater
than 8o kJ/mol in the same range of temperature (Glen, 1955).
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Fig. 3. Shear strain-rate as a_function of time during creep tests at — 12°C' and — 1.5°C and for shear stress v — 310 kN|m?,
Samples: V.B. 18o.

Discussion
Low values of anelastic modulus

For the glacier ice studied, experimental results show clearly that the anelastic modulus is
always much smaller than the elastic modulus measured at high frequencies (Nakaya, 1959).
Glen (1955) observed that a stress decrease during a creep test is followed by a strain diminu-
tion much greater than the expected elastic contribution. However, for fine-grained poly-
crystalline ice and low stresses, the anelastic moduli calculated by Jellinek and Brill (1956)
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were always of the same order of magnitude as the dynamic clastic modulus. A strong drop of
Young’s modulus was also observed in polygonized coarse-grained aluminium by Friedel and
others (1955). This drop of modulus was attributed to displacements of the dislocation walls
of the polygonized structure. A much smaller anomaly of elastic modulus is expected if the
dislocations form a network in the bulk of the crystal (Friedel, 1956). The dislocation sub-
structure observed by Fukuda and Higashi (1969) in ice single crystals from Mendenhall
Glacier (a temperate glacier) could explain the low values of anelastic modulus. But, in
addition to the unbowing of dislocations in sub-boundaries, one could also consider the run-
back of dislocations piled up against grain boundaries or other obstacles.

Strain—time relationship

The logarithmic time law for the strain recovery was explained by Duval (1977), by the
same model as generally adopted for the transient creep in metals deformed at low tempera-
tures. This model is based upon the competition between work hardening and recovery.
During transient creep, the strain-hardening rate exceeds the recovery rate or, in like manner,
the average internal stress opposing dislocation motion, increases. Upon unloading, the
dislocation motion is explained by relaxation of internal stresses. Traetteberg and others
(1975) suggested that the non-elastic behaviour was determined by two or more relaxation
times. In fact, the logarithmic law implies a distribution of relaxation times.

Equation (5) has not been verified for small stresses. However the transients observed
after a small stress decrease during secondary creep show that anelastic strain must be very
small for stresses lower than 50 kN/m? (Duval, 1977). The results found by Jellinek and Brill
(1956) for shear stresses smaller than 150 kN/m? support this inference.

Creep recovery and internal friction

The creep recovery, treated as an anelastic process, leads to the possibility that the method
may be analysed like internal friction process. In creep-recovery tests, the unloading period
constitutes only one-quarter of a cycle in the context of internal friction. The effective
frequency of creep recovery tests would be typically of about 10-5 Hz. In a wide range of
materials there is a rapid rise in internal friction at high temperatures which follows a law of
the type:

g = Adexp[—UJKT], (6)
where ¢! is the internal friction. U the apparent activation energy, and A a structure-
sensitive term. This behaviour was observed in ice single crystals as well as in polycrystalline
samples (Kuroiwa, 1964; Vassoille and others, 1974).

With the assumption that the dislocation velocity is proportional to the effective stress
defined by:

Oe = Oa—0i,
where a, is the applied stress and o the average internal stress, the internal friction is given by:
g~ = B[ fexp(Uo/kT)]", (7)
where fis the frequency, U, the true activation energy for the process controlling the disloca-
tion motion, and B and n are constants. This form for the internal friction implics a not-too-
wide distribution function for internal stresses (Schock and others, 1964).
From Equations (6) and (7), it follows that:

U=l (8)
The activation energy U,, measured by Mai (1976) on monocrystals, is about 0.6 ¢V
for applied stresses smaller than 200 kN/m?, but, in this case, the applied stress corresponded
to the effective stress.
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The value of #n can be found from the frequency dependence of the internal friction g-'.
For different pure metals and alloys, the value of n is about 0.2 (Batist, 1969; Lloyd and
McElroy, 1976). On the other hand, the properties of transient creep and internal friction
were correlated by Lomnitz (1957) on the basis of a linear theory. According to this author, a
creep function of logarithmic type implies that internal friction is nearly constant for fre-
quencies smaller than 102 Hz. So, the value of n of Equation (7) should be very small for the
creep-recovery tests. This result explains the very small temperature dependence of transient
creep and shows that the activation energy for secondary creep corresponds to that of the
recovery rate (Duval, 1977).

From Equation (7), we can see that internal friction increases when the frequency
decreases. This result should explain the difference between the values of the dynamic elastic
modulus and those of the anelastic modulus found in this study.

Vassoille and others (1974) observed that the level of background damping was higher
for polycrystalline ice than for ice single crystals. We think that the high-temperature back-
ground has the same origin for polycrystalline ice and for ice single crystals. The plastic
anisotropy of ice crystals and grain-boundary sliding favour the bending of basal planes in
polycrystalline ice, with the formation of many small angle boundaries (Gold, 1963).
Obviously, these obstacles to slip do not exist in ice single crystals deformed by sliding in the
basal plane. Traetteberg and others (1975) observed that Young’s modulus of both granular
and columnar-grained ice undergoes a relaxation in the range of strain-rates studied. But
Young’s modulus of columnar grained ice was always greater than that of granular ices.

CONCLUSION

Experimental results show that anelastic strain must be taken into account in the con-
stitutive relations for the non-elastic deformation of ice. The variation of anelastic strain with
frequency explains the discrepancies found in internal-friction and creep-recovery tests.

The anelastic strain contribution corresponds to the first part of creep curve. The linear
relationship between anelastic strain and stress show that recovery processes do not intervene
during the first part of transient creep. This supports the interpretation given by Weertman
(1973) of the first-power creep observed by many investigators in experiments carried out at
low stresses.

Reversible motion of dislocations composing the sub-boundaries or of pile-ups of disloca-
tions may explain the importance of anelasticity in ice. Following the model proposed for
Andrade creep and secondary creep, strain is caused by dislocation movement but the strain-
rate is controlled by recovery processes.
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DISCUSSION

J. W. Gren: There appear to be discrepancies between your activation energies for creep
recovery and those reported by Jones and Brunet (and I suspect also those of Joncich and
others) on single crystals and Sinha on polyerystals. However you have indicated that this
may result from use of a different variable. Can you indicate whether you think your results
agree or disagree with these other reports? 1f so, is this indication of a difference between
polycrystals and single crystals ?

P. Duvar: I think that the results found in this study agree with the ones found on single
crystals by Jones and Brunet (1978). The activation energies {/, measured by them probably
correspond to the activation energy of the rate-controlling dislocation mechanism. This is not
the case for polycrystals owing to strain hardening. Indeed, at low stresses, the dislocation
velocity is given by:

dx s
- = Bexp| —= (ca—o0
d¢ IB p kT ( a l) ’
when oy is the applied stress and o; the internal stress produced by the elastic interaction of
dislocations. If we assume that oy is proportional to ¥, the dislocation movement is then given

by:
dx U,
@ = e m)]
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but there is a distribution of values of y. In this case, the activation energy for the creep does
not correspond to the true activation energy for the process controlling the dislocation motion.
As shown by Duval (1977), logarithmic creep is followed by Andrade creep when the recovery
process occurs. Steady-state creep is obtained when the strain-hardening rate is equal to the
recovery rate. Following this model, the activation energy of steady-state creep corresponds
to that of the recovery state. On the other hand, these results have been found for tempera-
tures above —12°Cl.

R. W. Warrworts: Could you explain how you know the value of the parameter n?

DuvaL: The value of the parameter n is obtained if we know the variation of ¢-' (or the
variation of anelastic strain) with frequency. If the values of anelastic strain are plotted
against unloading period (time ¢ = 1/4 f) with log-log coordinates, the slope of the curve is
not constant. Indeed, the anelastic strain is given by

Ar

€ =3 log(1+at),

but for a limited range of time ¢ around the value of about 1 000 s, the parameter nis about 0.2.
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