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Abstract. A terrace for �m is an arrangement (a1, a2, . . . , am) of the m elements of
�m such that the sets of differences ai+1 − ai and ai − ai+1 (i = 1, 2, . . . , m − 1) between
them contain each element of �m \ {0} exactly twice. For m odd, many procedures are
available for constructing power-sequence terraces for �m; each such terrace may be
partitioned into segments, one of which contains merely the zero element of �m,
whereas each other segment is either (a) a sequence of successive powers of an element
of �m or (b) such a sequence multiplied throughout by a constant. We now adapt this
idea by using power-sequences in �n, where n is an odd prime power, to obtain terraces
for �m, where m = n − 2. We write each element from �n so that they lie in the interval
[0, n − 1] and then delete 0 and n − 1 so that they leave n − 2 elements that may be
interpreted as the elements of �n−2. A segment of one of the new terraces may be of type
(a) or (b), incorporating successive powers of 2, with each entry evaluated modulo n.
Our constructions provide �n−2 terraces for all odd primes n satisfying 0 < n < 1,000
except for n = 127, 241, 257, 337, 431, 601, 631, 673, 683, 911, 937 and 953. We
also provide �n−2 terraces for n = 3r (r > 1) and for some values n = p2, where p is
prime.

2000 Mathematics Subject Classification. Primary 11A07, secondary 05B30.

1. Basic definitions and notation. Let a = (a1, a2, . . . , am) be an arrangement of
the elements of �m, and let b = (b1, b2, . . . , bm−1) be the ordered sequence bi = ai+1 − ai

for i = 1, 2, . . . , m − 1. The arrangement a is a terrace for �m, with b as the
corresponding 2-sequencing or quasi-sequencing for �m, if the sequences b and −b
between them contain exactly two occurrences of each element x from �m \ {0}. A
�m terrace is directed [8] if all the elements in its 2-sequencing (b1, b2, . . . , bm−1) are
distinct. For m odd, a �m terrace is

• anti-directed if its 2-sequencing contains only (m − 1)/2 distinct elements; i.e. if
the element x appears in the 2-sequencing it does so twice, whereas −x appears
not at all;

https://doi.org/10.1017/S0017089509990164 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990164


66 IAN ANDERSON AND D. A. PREECE

• half-and-half [1] if for each element x of �m \ {0}, the set {b1, b2, . . . , b(m−1)/2}
contains either +x or −x exactly once;

• narcissistic [2] if it is half-and-half and anti-directed, with the further property
that its 2-sequencing has bi = bm−i for all i = 1, 2, . . . , (m − 1)/2.

Some expositions include the zero element of �m in b, as an extra element at the
start, but we find this practice inconvenient, and we follow various precedents by not
adopting it. For convenience we often write ‘�m terrace’ in place of ‘terrace for �m’.

Terraces were originally defined by Bailey [8] for a general finite group G, but the
general case does not concern us here.

Terraces are used in the construction of combinatorial designs used in statistical
applications involving carry-over effects [1, 8] and neighbour effects. They are also
implicit in the work of Ringel (e.g. [10, pp. 124, 129]) on graph embeddings and in
some work on Hamiltonian double Latin squares [9].

Anderson and Preece [2–5] gave general constructions for ‘power-sequence’
terraces for �m, where m is odd. Each of these terraces can be partitioned into segments,
one of which contains merely the zero element of �m, whereas each other segment is
either (a) a sequence of successive powers of an element of �m or (b) such a sequence
multiplied throughout by a constant. Many of the sequences x0, x1, . . . , xs−1 of
distinct elements are ‘full-cycle’ sequences such that xs = x0, but partial cycles are
used too.

Anderson and Preece [6] showed that with m = n − 1, where n is odd, there are
many ways in which power-sequences in �n can be used to arrange the elements of
�n \ {0} in a sequence of distinct elements, usually in two or more segments, which
becomes a terrace for �m when interpreted modulo m, with each element taking its
value in the interval [1, m]. We now take the approach from [6] further, by moving on
to m = n − 2.

Each of our �n−2 terraces consists of one or more segments, each comprising a
sequence of distinct entries α1, α2, . . . , αs, where αi+1 = 2αi or 2−1αi, modulo n (not
n − 2), for i = 1, 2, . . . , s − 1. A segment may now be

(i) a full-cycle segment, with α2/α1 = α1/αs;
(ii) a half-cycle segment, with α2/α1 = α1/α2s (but α2/α1 �= α1/αs);

(iii) a segment that would become a full cycle if the element n − 1 were introduced
at either end;

(iv) a segment that would become a half cycle if the element n − 1 were introduced
at one end; or

(v) a segment of irregular length.

In representations of terraces, we separate two segments that abut one another by a
fence |. When a cycle is broken to form one or more segments, the difference between the
two elements on each side of each break is ‘lost’ and becomes a ‘missing difference’. We
nevertheless usually need this difference to occur in the terrace, so we have to arrange
that plus or minus this difference arises at a join between two adjacent segments; we
then say that the missing difference is compensated for by a fence difference.

The sequence of elements in any one of our terraces (a1, a2, . . . , an−2) for �n−2

is to be a permutation of the elements of � \ {0, n − 1}, and the elements in it are to
be written so that 0 < ai < n − 1 (i = 1, 2, . . . , n − 2). Thus with n = 7 the sequence
(−22,−21, 20, 21, 22) is evaluated in �7 and written as (3, 5, 1, 2, 4), which is a terrace
for �5.
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Let (a1, a2, . . . , an−2), written as just described, be any one of our terraces for �n−2.
Using subtraction modulo n, write

di = ai+1 − ai (0 < di < n) , ei = ai − ai+1 (0 < ei < n)

for i = 1, 2, . . . , n − 3. Likewise, using subtraction modulo n − 2, write

d∗∗
i = ai+1 − ai (0 < d∗∗

i < n) , e∗∗
i = ai − ai+1 (0 < e∗∗

i < n).

Now write μi = min(di, ei) and μ∗∗
i = min(d∗∗

i , e∗∗
i ) for i = 1, 2, . . . , n − 3. Following

[6] we call the values μi the μ-differences for the terrace (from μ= mu = ‘minimum
unsigned’), and we call the values μ∗∗

i the corresponding μ∗∗-differences. For any
particular value of i, the value μ∗∗

i may equal μi, or μi − 1, or μi − 2. We refer
to the possibilities μ∗∗

i = μi − 1 and μ∗∗
i = μi − 2 as reduced differences. Returning

to our example with n = 7, the sequence (−22,−21, 20, 21, 22) has two segments,
comprising two and three elements respectively. When it is evaluated as (3, 5, 1, 2, 4),
the consecutive entries 5 and 1 yield a reduced difference.

As each segment of any of our terraces is formed by successive multiplications
by 2 or by 2−1, reduced differences can arise only (a) at the breaks between adjoining
segments or (b) internally between the entries 1 and (n + 1)/2 or between the entries
n − 1 and (n − 1)/2. We exclude n − 1 from all our sequences, so the second case in
(b) does not arise. The first case in (b) gives us μ = (n − 1)/2 and μ∗ = (n − 3)/2.
Thus, if 1 is not the first or last entry in a segment, it must adjoin the entry (n + 1)/2,
thereby producing the reduced difference (n − 3)/2 that compensates for the missing
difference caused by having (n − 3)/2 at the end of a segment. This happens in the
terraces produced via Theorems 2.5, 3.2, 4.1, 4.3, 4.4 and 5.4.

In representations of our terraces, we replace the commas between entries by
spaces. To aid the eye, we put a colon : at the start and end of each segment of type (ii)
or (iv), and a scream ! at the start and end of a segment of irregular length. We put an
asterisk ∗ at the start and end of a segment of type (iii) and at that end of a type (iv)
segment at which the element n − 1 would naturally lie. Thus our example with n = 7
is written as

∗ −22 −21 ∗ | 20 21 22.

If a segment starts with, say, an element c, and the successive elements are then
2c, 22c, 23c, . . . , d, we sometimes find it helpful to write

| c
2→ | or | c

2→ d |.

Likewise, we use
2← when the successive multiplications are by 2−1 instead of 2.

As in previous papers of ours, some of the theorems in this paper are for primes n
such that ordn(2) < n − 1 but �n \ {0} = 〈2, 3〉. Also, one of our theorems below
requires 〈2, 3〉 in �n to contain precisely half of the elements of �n \ {0}. In general,
for a prime n, many different types of relationship between 〈2〉, 〈2, 3〉 and �n \ {0} are
possible. (For example for n = 23 we have 〈2〉 = 〈3〉 = 〈2, 3〉 = the set of quadratic
residues, modulo 23.) We need here comment only that for prime values of n, the
relationship �n \ {0} = 〈2, 3, 〉 usually arises where any element x from �n \ {0} can
be written in different inequivalent ways as a product of a power of 2 and a power
of 3. In the range 0 < n < 1,000, the only prime n with �n \ {0} equal to the direct
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product 〈2〉 × 〈3〉 is n = 683 (for which we have failed to find a construction for this
paper).

We need the following lemmata (n an odd prime power) for some of our theorems
in §2 and §3.

LEMMA 1.1. If u is an integer satisfying 0 < u < n, and u and 3u have the same parity
when 3u is evaluated, modulo n, in the interval (0, n), then u < n/3 or u > 2n/3.

Proof. If n/3 < u < 2n/3, then 3u becomes 3u − n when evaluated, modulo n, in
the interval (0, n). As n is odd, the parity of 3u − n then differs from that of u. �

LEMMA 1.2. If u is as in Lemma 1.1, then the fence difference in

. . . 3u | 21u 22u . . . 2−1u u |

compensates for the difference missing from the segment ending in u.

Proof. By Lemma 1.1, we have u < n/3 or u > 2n/3. If u < n/3, the fence difference
and the missing difference are both u. If u > 2n/3, we have 3u − 2n | 2u − n . . . u | .
The fence difference is now (2u − n) − (3u − 2n) = n − u, and the missing difference
too is n − u. �

2. Theorems for specific small values of (n − 1)/ordn(2). We start with a theorem
for any prime n (> 3) that has 2 as a primitive root.

THEOREM 2.1. Let n be a prime, n > 3, that has 2 as a primitive root. Then the
following sequences, evaluated as described in §1, are terraces for �n−2:

(i) (narcissistic)

: 2−1 2−2 . . . 2(n+1)/2 ∗ : | : 20 21 . . . 2(n−3)/2 :

(ii) (half-and-half and anti-directed)

as in (i) above, with the segments interchanged.

Proof.
(i) The difference between 2i+1 and 2i is 2i, so the differences for the sequence are

all members of �n \ {0} except 2−1 = (n + 1)/2 = −(n − 1)/2, 1 and 2(n−3)/2 =
−2−1 = (n − 1)/2. At the fence we have n − 2 | 1 , which gives the compensating
difference of 1. So we lose the difference (n − 1)/2 twice as required, and the
given sequence is indeed a terrace for �n−2. As 2(n−1)/2−i = −2−i, the terrace is
narcissistic.

(ii) Similar. �
EXAMPLE 2.1. With n = 11, Theorem 2.1 produces the following �9 terrace of

type (i):

: 6 3 7 9 ∗ : | : 1 2 4 8 5 : .

We now proceed to three theorems for primes n such that ordn(2) = (n − 1)/2.
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THEOREM 2.2. Let n be a prime, n ≡ 7 (mod 8), such that ordn(2) = (n − 1)/2. Then
the following sequences, evaluated as described in §1, are terraces for �n−2:

(i) (narcissistic)

∗ −2−1 −2−2 . . . −21 ∗ | 20 21 . . . 2−1

(ii) (half-and-half but not anti-directed)

as in (i) above, with the segments interchanged.

Proof. As ordn(2) is odd, we have −1 �∈ 〈2〉, so �n \ {0} = 〈2〉 ∪ −〈2〉.
(i) The missing differences are (n − 1)/2, 1 and (n + 1)/2 = −(n − 1)/2, and the

fence again has a reduced difference of 1. The terrace is narcissistic as in
Theorem 2.1.

(ii) Similar. �
EXAMPLE 2.2. With n = 23, Theorem 2.2 produces the following �21 terrace of

type (i):

∗ 11 17 20 10 5 14 7 15 19 21 ∗ | 1 2 4 8 16 9 18 13 3 6 12.

THEOREM 2.3. Let n be a prime, n ≡ 1 (mod 8), such that ordn(2) = (n − 1)/2.
Suppose that c is an integer satisfying c �∈ 〈2〉 and 0 < c < (n − 1)/2. Then the following
sequence, evaluated as described in §1, is a terrace for �n−2:

: 20 21 . . . −2−1 : | : 2−1 2−2 . . . −21 ∗ : | 20c 2−1c . . . 21c.

Proof. Here 〈2〉 is the set of squares in �n, and −1 is a square as n ≡ 1 (mod 8).
So −1 ∈ 〈2〉. As x is a non-square if and only if n − x is a non-square, we can find
a non-square c satisfying 0 < c < (n − 1)/2. The missing differences are (n − 1)/2,
(n + 1)/2 = −(n − 1)/2, 1 and c. The first fence has difference 1 and the second has
reduced difference c, and these compensate as required for missing differences. �

EXAMPLE 2.3. With n = 17, we can take c = 3, 5, 6 or 7 in Theorem 2.3. With c = 3
we obtain the �15 terrace

: 1 2 4 8 : | : 9 13 15 ∗ : | 3 10 5 11 14 7 12 6.

THEOREM 2.4. Let n be a prime, n ≡ 17 (mod 24), such that ordn(2) = (n − 1)/2.
Then the following sequences, evaluated as described in §1, are terraces for �n−2:

(i) (the two segments can be interchanged)

∗ −21 −22 . . . −2−1 ∗ | −3 · 2−1 −3 · 2−2 . . . −3 · 20

(ii)

: 20 21 . . . −2−1 : | : 2−1 2−2 . . . −21 ∗ : | −3−1 · 22 −3−1 · 23 . . . −3−1 · 21

(iii)

: 2−1 2−2 . . . −21 ∗ : | : 20 21 . . . −2−1 : | −3−1 · 20 −3−1 · 21 . . . −3−1 · 2−1
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Proof. As n ≡ 17 (mod 24), the elements 2 and −1 are squares in �n but 3 is not.
So we can write �n \ {0} = 〈2〉 ∪ 3〈2〉, with −1 ∈ 〈2〉.

(i) Here the missing differences are (n − 1)/2, 1, (n − 3)/2. The difference at the
first fence is 1. The result follows, as (n − 3)/2 = −(n − 1)/2 in �n−2.

(ii) The missing differences are (n − 1)/2 (twice), 1 and (n − 2)/3. The first fence
has difference 1 and the second has reduced difference (n − 2)/3.

(iii) Similar. The last missing difference −3−1 · 2−1 = (5n − 1)/6 = −(n + 1)/6 is
compensated for at the second fence, where the difference is (2n − 1)/3 − (n −
1)/2 = (n + 1)/6. �

EXAMPLE 2.4. With n = 17, Theorem 2.4 produces the following �15 terrace of
type (ii):

: 1 2 4 8 : | : 9 13 15 ∗ : | 10 3 6 12 7 14 11 5.

The next two theorems are for primes n with ordn(2) = (n − 1)/3.

THEOREM 2.5. Let n be a prime, n ≡ 1 (mod 6), such that ordn(2) = (n − 1)/3 and
�n \ {0} = 〈2, 3〉. Then the following sequence, evaluated as described in §1, is a terrace
for �n−2:

−3−1 · 2−1 −3−1 · 2−2 . . . −3−1 · 20 |
∗ −2−1 −2−2 . . . −21 ∗ | −31 · 20 −31 · 21 . . . −31 · 2−1.

Proof. We have �n \ {0} = −〈2〉 ∪ −3〈2〉 ∪ −3−1〈2〉, where −1 ∈ 〈2〉. Checking the
differences is routine. �

Note 2.5. In the range 3 < n < 1000, Theorem 2.5 covers n = 43, 109, 157, 229,
277, 283, 691, 733, 739 and 811.

EXAMPLE 2.5. With n = 43, Theorem 2.5 produces the following �41 terrace:

7 25 . . . 28 14 | ∗ 21 32 . . . 2 1 22 11 . . . 39 41 ∗ | 40 37 . . . 10 20.

A generalisation of our next theorem, Theorem 2.6, could readily be provided to
cover Theorem 2.7 too, but we keep the two cases separate for clarity.

THEOREM 2.6. Let n be a prime, n ≡ 1 (mod 6), such that ordn(2) = (n − 1)/3.
Suppose that c1 and c2 are integers such that c2 = 3c1 − 4, where c1 is odd, with 0 <

c1 < n/3 and �n \ {0} = 〈2〉 ∪ c1〈2〉 ∪ c2〈2〉. Then the following sequence, evaluated as
described in §1, is a terrace for �n−2:

: 20 21 . . . −2−1 : | : 2−1 2−2 . . . −21 ∗ : | 2−2δc2
2← | δc1

2→,

where δ = ±1 accordingly as n ≡ ±c1 (mod 4).

Proof. The first three missing differences are (n − 1)/2 (twice) and 1, with 1 being
compensated for at the first fence.

(i) First suppose that n ≡ c1 (mod 4), and take δ = 1. Then c2 ≡ −n (mod 4), and
the remaining missing differences are (n + c2)/4 (which is less than n/2) and
(n + c1)/2 = −(n − c1)/2. The second and final fences give reduced differences
(n + c2)/4 and c1 + (n − 2 − (n + c2)/2) = (n − c1)/2 respectively.
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(ii) Now suppose that n ≡ −c1 (mod 4), so that c2 ≡ n (mod 4) and δ = −1. The
last two missing differences are now (n − c2)/4 and (n − c1)/2, and these are
similarly shown to be compensated for at the fences. �

Note 2.6. In the range 3 < n < 1,000, Theorem 2.6 covers n-values as follows,
where the smallest possible value of c1 is listed for each n:

n 43 109 157 229 277 283 307 499 643 691 733 739 811 997
min c1 9 5 13 3 3 3 11 5 7 15 9 9 3 7

EXAMPLE 2.6. With n = 109, we can take c1 = 5, 11, 13 or 31 in Theorem 2.6. With
c1 = 5 we obtain the following terrace for �107:

: 1 2 . . . 27 54 : | : 55 82 . . . 105 107 ∗ : | 30 15 . . . 11 60 | 5 10 . . . 83 57.

We now extend the idea used in Theorem 2.6 from ordn(2) = (n − 1)/3 to ordn(2) =
(n − 1)/4.

THEOREM 2.7. Let n be a prime, n ≡ 1 (mod 8), such that ordn(2) = (n − 1)/4.
Suppose that c1, c2 and c3 are integers such that ci+1 = 3ci − 4 (i = 1, 2), where c1 is
odd, with 0 < c1 < n/9 and �n \ {0} = 〈2〉 ∪ ⋃3

i=1 ci〈2〉. Then the following sequence,
evaluated as described in §1, is a terrace for �n−2:

: 20 21 . . . −2−1 : | : 2−1 2−2 . . . −21 ∗ : | 2−2δc3
2← | δc2

2→ | δc1
2→,

where δ = ±1 according as n ≡ ∓c1 (mod 4).

Proof. Similar to that of Theorem 2.6. �
Note 2.7. In the range 3 < n < 1,000, Theorem 2.7 covers n-values as follows:

n 113 281 353 577 593 617
min c1 3 9 33 5 17 35

EXAMPLE 2.7. With (n, c1) = (113, 3), Theorem 2.7 yields the following terrace
for �111:

1 2 . . . 28 56 : | : 57 85 . . . 109 111 ∗ : |
31 72 . . . 11 62 | 5 10 . . . 86 59 | 3 6 . . . 29 58.

We now end this section of the paper with three theorems specifically for values of
n with ordn(2) = (n − 1)/6. For the first two of these theorems, ordn(2) is odd, whereas
for the third it is even.

THEOREM 2.8. Let n be a prime, n ≡ 7 (mod 24), such that ordn(2) = (n − 1)/6.
Suppose that �n \ {0} = 〈2, 3〉 and that 3 · 11 ∈ 〈2〉. Then the following sequence,
evaluated as described in §1, is a terrace for �n−2:

3−1 · 20 3−1 · 2−1 . . . 3−1 · 21 | 20 21 . . . 2−1 | ∗ −2−1 −2−2 . . . −21 ∗ |
32 · 2−3 32 · 2−4 . . . 32 · 2−2 | 3 · 2−1 3 · 20 . . . 3 · 2−2 |

11 · 3−1 · 2−1 11 · 3−1 · 20 . . . 11 · 3−1 · 2−2.
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Proof. As n ≡ 7 (mod 24), the element 2 is a square in �n but −1 and 3 are not. Also,
−1 ∈ 33〈2〉 and 11 · 3−1 ∈ 3−2〈2〉 = 34〈2〉 as 3 · 11 ∈ 〈2〉. Thus 11 · 3−1〈2〉 = 34〈2〉.

The missing differences are (2n + 1)/3 = −(n − 1)/3, (n + 1)/2 = −(n − 1)/2,
(n − 1)/2, 1, (n + 9)/8, (3n + 3)/4 = −(n − 3)/4 and (7n + 11)/12 = −(5n − 11)/12.
The fence differences are (n + 2)/3 − 1 = (n − 1)/3, 1, (n + 9)/8 (reduced),
(n + 3)/2 − (n + 9)/4 = (n − 3)/4 and (n + 11)/6 + (n − 2 − (3n + 3)/4) = (5n − 11)/12
(reduced). �

Note 2.8. In the range 3 < n < 1,000, Theorem 2.8 covers only n = 31 and 223.
The n-values 439, 727 and 919 are not covered as, for each of them, 3 ∈ −〈2〉.

EXAMPLE 2.8. With n = 31, Theorem 2.8 produces the following terrace for �29:

21 26 13 22 11 | 1 2 4 8 16 | * 15 23 27 29 * |

5 18 9 20 10 | 17 3 6 12 24 | 7 14 28 25 19.

THEOREM 2.9. Let n be a prime, n ≡ 7 (mod 24), such that ordn(2) = (n − 1)/6.
Suppose that 3 ∈ −〈2〉 and that c and d are integers such that c and 3c are both even,
d and 3−1d are both odd and �n \ {0} = 〈2,−1〉 ∪ c〈2,−1〉 ∪ d〈2,−1〉. Then c < n/3 or
c > 2n/3, and the sequence

20 21 . . . 2−1 | ∗ −2−1 −2−2 . . . −21 ∗ |
31 · 2−1c

2← | 30 · 2c
2→ | 30 · 2d

2→ | 3−1 · 2d
2→,

evaluated as described in §1, is a terrace for �n−2 provided that

(i) either c < n/3 and c = 3d + 2 − n
(ii) or c > 2n/3 and c = 3d − 2 − n.

Proof. That c < n/3 or c > 2n/3 follows from Lemma 1.1.
The missing differences are (n − 1)/2 (twice), 1, 3c/2, c, d and 3−1d. The difference

at the first fence is 1. The second fence has the reduced difference 3c/2 if c < n/3 (as we
then have 3c/2 < n/2); on the other hand, if c > 2n/3, we have n − 2 | 3c/2 − n , where
3c/2 − n < n/2, so the reduced difference is then 3c/2 − n.

The third fence has 3c | 2c , which yields the difference c if c < n/3. If c > 2n/3,
however, we have 3c − 2n | 2c − n , for which the difference is n − c.

At the fourth fence we have c | 2d , and we now show that this yields a reduced
difference of d (or n − d). First suppose that c < n/3. Then d = (n + c − 2)/3, and
we have d < (4n − 6)/9 < (n − 2)/2. As 2d − c = n − d − 2 > n/2, the fence has the
reduced difference c + (n − 2 − 2d) = d. Now suppose that c > 2n/3. Then d = (n +
c + 2)/3 > (5n + 6)/9. We have c | 2d − n , where c − (2d − n) = d − 2 > n/2, so the
fence has the reduced difference (2d − n) + (n − 2 − c) = n − d.

At the final fence we have d | 3−1 · 2d , which may be written as 3u | 2u , where the
elements u = 3−1 · d and 3u are both odd. The end of the sequence is 3u | 2u . . . u ,
and by Lemma 1.2, the fence difference is u = 3−1 · d. �

Note 2.9. In the range 3 < n < 1,000, Theorem 2.9 covers only n = 439, 727 and
919.

EXAMPLES 2.9. With n = 439 we can take (c, d) = (22, 153), (306, 249), (342, 261),
(360, 267) or (396, 279) in Theorem 2.9. With (c, d) = (306, 249) we obtain the
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following �437 terrace:

1 2 . . . 110 220 | ∗ 219 329 . . . 435 437 ∗ | 20 10 . . . 80 40 |
173 346 . . . 153 306 | 59 118 . . . 344 249 | 166 332 . . . 261 83.

With n = 727 we can take (c, d) = (666, 465), and with n = 919 we can take (c, d) =
(738, 553).

THEOREM 2.10. Let n be a prime, n ≡ 1 (mod 12), such that ordn(2) = 6. Suppose
that 〈2, 3〉 comprises half of �n \ {0} and that c and d are integers such that c, 31c and
32c are all even and d ∈ 3〈2〉. Then the sequence

3−1 2← | : 20 21 . . . −2−1 : | : 2−1 2−2 . . . −21 ∗ : |
32 · 2−1c

2← | 31 · 2c
2→ | 30 · 2c

2→ | 30 · 2d
2→,

evaluated as described in §1, is a terrace for �n−2 provided that
either (i) c < n/3 and c = 3d − n + 2
or (ii) c > 2n/3 and c = 3d − n − 2.

Proof. Here ordn(2) is even, so −1 ∈ 〈2〉. That c < n/3 or c > 2n/3 follows from
Lemma 1.1.

The only non-trivial part of the proof is to show that the elements c | 2d at the
final fence yield a reduced difference that compensates for the missing difference d
(or n − d). But this follows as for Theorem 2.9. �

Note 2.10. In the range 3 < n < 1,000, Theorem 2.10 covers only n = 433 and 457.

EXAMPLES 2.10. With n = 433 Theorem 2.10 yields a �431 terrace with (c, d) =
(336, 257). With n = 457 Theorem 2.10 yields a �455 terrace with (c, d) = (426, 295).

3. General constructions, ordn(2) = (n − 1)/k. The first theorem in this section
provides a construction for narcissistic terraces.

THEOREM 3.1. Let n be a prime such that �n \ {0} = 〈2, 3〉 and such that ordn(2)
is even and equal to (n − 1)/k, where k > 1. Suppose that the integers 30 ·
2−1, 3−1 · 2−1, . . . , 3−(k−1) · 2−1 all have the same parity. Then the following sequence,
evaluated as described in §1, is a narcissistic terrace for �n−2:

: (−1)k−13−(k−1) · 2−1 2← : | : (−1)k−23−(k−2) · 2−1 2← : | · · · |
: −3−1 · 2−1 2← : | : 30 · 2−1 30 · 2−2 . . . 30 · (−21) ∗ : | : 30 · 20 2→ : |

: (−1)13−1 · 20 2→ : | : (−1)23−2) · 20 2→ : | · · · | : (−1)k−13−(k−1) · 20 2→ : .

Proof. As ordn(2) is even we have −1 ∈ 〈2〉. The first k − 1 segments are of the
form −u . . . 2u | 3u , where u and 3u, evaluated in [1, n − 1], have the same parity.
By Lemma 1.1, we have u < n/3 or u > 2n/3. If 0 < u < n/3, then the missing difference
u is compensated for by the fence difference. If 2n/3 < u < n, the missing difference is
n − u, and the fence elements (2u − n) | (3u − 2n) give the compensating difference
n − u.

The next segment is | 2−1 . . . −2 ∗ | , which has missing differences (n − 1)/2
and 1; the 1 is compensated for at the next fence. The next segment too has missing
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difference (n − 1)/2. Thereafter, the format is 3u | 2u . . . −u , and the missing and
fence differences again compensate. So we lose (n − 1)/2 twice, as required. �

Note 3.1. Theorem 3.1 covers all primes n ≡ 17 (mod 24) with ordn(2) = (n − 1)/2,
and, subject to the restriction �n \ {0} = 〈2, 3〉, it covers all primes n ≡ 1 or 7 (mod 18)
with ordn(2) = (n − 1)/3. In the range 3 < n < 1,000, the coverage is as follows:

k n
2 17 41 137 401 449 521 569 761 809 857 929 977
3 43 109 277 691 739 811
4 281 353 593
5 971

EXAMPLE 3.1. With (n, k) = (43, 3), Theorem 3.1 yields the following terrace
for �41:

: 12 6 3 23 33 38 19 : | : 7 25 34 17 30 15 29 : |
: 22 11 27 35 39 41 ∗ : | : 1 2 4 8 16 32 21 : |

: 14 28 13 26 9 18 36 : | : 24 5 10 20 40 37 31 : .

THEOREM 3.2. Let n be a prime such that �n \ {0} = 〈2, 3〉 and such that ordn(2)
is even and equal to (n − 1)/k, where k > 2. Suppose that c is an integer satisfying
0 < c < (n − 1)/2 and c ∈ 3−1〈2〉. Suppose further that the integers 30 · 2c, 3−1 · 2c, . . . ,
3−(k−3) · 2c are all even. Then the following sequence, evaluated as described in §1, is a
terrace for �n−2:

−3
2→ | ∗ −2−1 −2−2 . . . −21 ∗ |

30 · c
2← | 3−1 · 22c

2→ | 3−2 · 22c
2→ | · · · | 3−(k−3) · 22c

2→ .

Proof. The first three segments have missing differences (n − 3)/2, (n − 1)/2, 1 and
c. The last two of these are compensated for at the first two fences. The remaining
segments are dealt with as in the proof of Theorem 3.1, and the result follows, as
(n − 3)/2 ≡ −(n − 1)/2, modulo n − 2. �

Note 3.2. In the range 3 < n < 1,000, Theorem 3.2 covers n-values as follows (for
n = 397 we can take c = 135, and for each of the other n-values we can take c = 3k−1):

k n
3 43 109 157 229 277 283 691 733 739 811
4 113 281 353 593 617
5 251 571 971
9 397

The theorem fails, in a ‘near miss’, to provide a terrace with (n, k) = (641, 10).

EXAMPLE 3.2. With (n, k) = (43, 3) and c = 7, Theorem 3.2 yields the following
terrace for �41:

40 37 31 . . . 5 10 20 | ∗ 21 32 16 . . . 35 39 41 ∗ | 7 25 34 . . . 13 28 14.
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THEOREM 3.3. Let n be a prime, n ≡ 1 or 13 (mod 18), such that �n \ {0} = 〈2, 3〉 and
such that ordn(2) is even and equal to (n − 1)/k, where k > 2. Suppose that the integers
3−1, 3−2, . . . , 3−(k−1) are all odd. Then the following sequence, evaluated as described
in §1, is a terrace for �n−2:

3−(k−1) 2← | 3−(k−2) 2← | · · · | 3−1 2← |
: 20 21 . . . −2−1 : | : 2−1 2−2 . . . −21 ∗ : .

Proof. The congruence conditions ensure that 3−1 and 3−2 are both odd. The
first k − 1 segments are each of the form x . . . 2x | 3x , where x and 3x are odd,
and by Lemma 1.2 this ensures that the fence differences compensate for the missing
differences. Thereafter, the missing differences are (n − 1)/2 (twice) and 1; the fence
difference is 1. �

Note 3.3. In the range 3 < n < 1,000, Theorem 3.3 covers (n, k) = (109, 3), (157, 3),
(229, 3), (283, 3), (571, 5), (733, 3), (739, 3) and (811, 3).

EXAMPLE 3.3. With (n, k) = (109, 3), Theorem 3.3 yields the following terrace
for �107:

97 103 . . . 61 85 | 73 91 . . . 74 37 | : 1 2 . . . 27 54 : | : 55 82 . . . 105 107 ∗ : .

THEOREM 3.4. Let n be a prime, n ≡ 1 (mod 6), such that �n \ {0} = 〈2, 3〉 and
such that ordn(2) is even and equal to (n − 1)/k, where k > 2. Suppose that c is an
integer satisfying 0 < c < (n − 1)/2 and c ∈ 3−2〈2〉 [not 3−1〈2〉 as in previous theorems].
Suppose further that the integers 30 · 2c, 3−1 · 2c, . . . , 3−(k−3) · 2c are all even. Then k is
odd, and the following sequence, evaluated as described in §1, is a terrace for �n−2:

3−1 2← | : 20 21 . . . −2−1 : | : 2−1 2−2 . . . −2−1 ∗ : |
30 · c

2← | 3−1 · 22c
2→ | 3−2 · 22c

2→ | · · · | 3−(k−3) · 22c
2→ .

Proof. Suppose that k is even, with k = 2h. Then (n − 1)/k = (n − 1)/2h is even,
so n ≡ 1 (mod 4). But n ≡ 1 (mod 6), so n ≡ 1 (mod 12). But then 3 is a square in �n,
and so 2 is not; thus n ≡ 13 (mod 24), and (n − 1)/4 is odd. But −1 = 2(n−1)/4h is a
square in �n, as n ≡ 1 (mod 4), and 2 is not, so (n − 1)/4h is even. Thus (n − 1)/4 is
even – which gives us a contradiction.

The rest of the proof is similar to the proof of Theorem 3.3. �

Note 3.4. If for some n satisfying n ≡ 1 (mod 6), Theorem 3.2 provides a �n−2

terrace with c = 3γ , then Theorem 3.4 yields a �n−2 terrace with c = γ . In the range
3 < n < 1,000, Theorem 3.4 covers n-values as follows (for n = 397 we can take c = 45,
and for each of the other n-values we can take c = 3k−2):

n 43 109 157 229 277 283 397 571 691 733 739 811
k 3 3 3 3 3 3 9 5 3 3 3 3
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EXAMPLE 3.4. For (n, k) = (43, 3) we can take c = 3, 5, 6, 10, 12, 19 or 20 in
Theorem 3.4. Taking c = 3 yields the �41 terrace

29 36 18 . . . 17 30 15 | : 1 2 4 8 16 32 21 : |
: 22 11 27 35 39 41 ∗ : | 3 23 33 . . . 24 12 6.

THEOREM 3.5. Let n be a prime, n ≡ 1 (mod 24), such that 〈2, 3〉 contains half of the
elements of �n \ {0} and such that ordn(2) is even and equal to (n − 1)/2h where h > 1.
Suppose that c is an integer satisfying 0 < c < (n − 1)/2 and c �∈ 〈2, 3〉. Suppose further
that the integers 3−1, 3−2, . . . , 3−(h−1) are all odd and that the integers 30 · 2c, 3−1 ·
2c, . . . , 3−(h−1) · 2c are all even. Then the following sequences, evaluated as described
in §1, are terraces for �n−2:

(i)

3−(h−1) 2← | 3−(h−2) 2← | · · · | 3−1 2← |
: 20 21 . . . −2−1 : | : 2−1 2−2 . . . −2+1 ∗ : |

30 · c
2← | 3−1 · 22c

2→ | 3−2 · 22c
2→ | · · · | 3−(h−1) · 22c

2→
(ii)

as in (i) above, save that the first h − 1 segments are negated.

Proof. The proof is similar to that of Theorem 3.4. At the start the segments
form the pattern x . . . 2x | 3x , and at the end they form the pattern 3x | 2x . . . x .
The condition n ≡ 1 (mod 24) is necessary, as explained in the proof of Theorem 5.6
of [7]. �

Note 3.5: In the range 3 < n < 1,000, Theorem 3.5 covers only (n, h) = (433, 3).
The n-values given by (n, h) = (241, 5), (457, 3) and (673, 7) fail, as they all have 3−2

even.

EXAMPLE 3.5. For (n, h) = (433, 3), we can take c = 5 in Theorem 3.5 to obtain
the following �431 terrace of type (i):

385 409 . . . 241 337 | 289 361 . . . 290 145 |
: 1 2 . . . 108 216 : | : 217 325 . . . 429 431 ∗ : |

5 219 . . . 20 10 | 151 302 . . . 146 292 | 339 245 . . . 193 386.

We now turn to theorems for situations in which ordn(2) is odd.

THEOREM 3.6. Let n be a prime such that �n \ {0} = 〈2, 3〉 and such that ordn(2)
is odd and equal to (n − 1)/2h, where h > 1. Suppose that the integers 30 · 2−1,
3−1 · 2−1, . . . , 3−(h−1) · 2−1 all have the same parity. Then h > 2, and the following
sequence, evaluated as described in §1, is a narcissistic terrace for �n−2:

−3−(h−1) · 2−1 2← | −3−(h−2) · 2−1 2← | · · · | −3−1 · 2−1 2← |
∗ −2−1 −2−2 . . . −21 ∗ | 20 2→ |
3−1 2→ | 3−2 2→ | · · · | 3−(h−1) 2→ .
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Proof. Suppose that h = 2. Then ordn(2) = (n − 1)/4. As n ≡ 1 (mod 4) and 2 is
a square in �n, we have n ≡ 1 (mod 8). But then (n − 1)/4 is even – which gives us a
contradiction. So h > 2.

We next observe that −1 ∈ 3h〈2〉 and that

�n \ {0} =
{

h−1⋃
i=0

3i〈2〉
}

∪
{

h−1⋃
i=0

−3i〈2〉
}

.

The checking of differences is standard. �
Note 3.6. In the range 3 < n < 1,000, Theorem 3.6 covers only (n, h) = (89, 4) and

(223, 3).

EXAMPLE 3.6. With (n, h) = (89, 4), Theorem 3.6 yields the �87 terrace

28 14 . . . 56 | 84 42 . . . 79 | 74 37 . . . 59 | ∗ 44 22 . . . 87 ∗ |
1 2 . . . 45 | 30 60 . . . 15 | 10 20 . . . 5 | 33 66 . . . 61.

THEOREM 3.7. Let n be a prime, n ≡ 1 (mod 6), such that �n \ {0} = 〈2, 3〉 and such
that ordn(2) is odd and equal to (n − 1)/2h, where h > 2. Suppose that c is an integer
satisfying 0 < c < (n − 1)/2 and c ∈ ±3h−1〈2〉. Suppose further that the integers 3−1,
3−2, . . . , 3−(h−1) are all odd and that the integers 30 · 2c, 3−1 · 2c, . . . , 3−(h−2) · 2c are
all even. Then the following sequences, evaluated as described in §1, are half-and-half
terraces for �n−2:

(i) If c ∈ +3h−1〈2〉,

3−(h−1) 2← | 3−(h−2) 2← | · · · | 3−1 2← |
20 21 . . . 2−1 | ∗ −2−1 −2−2 . . . −21 ∗ |

30 · c
2← | 3−1 · 22c

2→ | 3−2 · 22c
2→ | · · · | 3−(h−2) · 22c

2→ .

(ii) If c ∈ −3h−1〈2〉,

as in (i) above, save that the first h − 1 segments are negated.

Proof. The first h − 2 segments form the pattern x . . . 2x | 3x , where x and 3x
have the same parity, whereas the last h − 2 segments form the pattern 3y | 2y . . . y ,
where 3y and y have the same parity. So the differences behave as in previous theorems.

The only significant difference between (i) and (ii) is at the fence immediately
before the entry 20 = 1. In (i) the pattern of the previous segments is followed at that
fence, but in (ii) the missing difference −3−1 = (n − 1)/3 is compensated for at the
fence −2 · 3−1 | 1 , i.e. (2n − 2)/3 | 1 , the fence difference being a reduced difference
n − 2 − ((2n − 2)/3) + 1 = (n − 1)/3. �

Note 3.7. In the range 3 < n < 1,000, Theorem 3.7 covers only n = 31. Failures
arise as follows:

(n, h) (127, 9) (151, 5) (223, 3) (631, 7)
A reason for failure 3−3 is even 3−2 is even 3−2 is even 3−6 is even
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EXAMPLES 3.7. With (n, h) = (31, 3), Theorem 3.7 yields terraces as follows: For
type (i), we can take c = 5 or 9; with c = 5 we obtain the �29 terrace

7 19 25 28 14 | 21 26 13 22 11 | 1 2 4 8 16 |
∗ 15 23 27 29 ∗ | 5 18 9 20 10 | 17 3 6 12 24.

For type (ii), we can take only c = 11, which yields the �29 terrace

24 12 6 3 17 | 10 5 18 9 20 | 1 2 4 8 16 |
∗ 15 23 27 29 ∗ | 11 21 26 13 22 | 25 19 7 14 28.

THEOREM 3.8. Let n be a prime, n ≡ 17 (mod 24), such that �n \ {0} = 〈2, 3〉 and
such that ordn(2) is odd and equal to (n − 1)/2h, where h > 1. Suppose that the integers
−3−1, −3−2, . . . , −3−(h−1) are all odd and that −31, −32, . . . , −3+(h−1) are all even.
Then the following sequence, evaluated as described in §1, is a terrace for �n−2:

20 21 . . . 2−1 | ∗ −2−1 −2−2 . . . −21 ∗ |
−3h−1 · 2−1 2← | −3h−2 · 21 2→ | −3h−3 · 21 2→ | · · · | −31 · 21 2→ |

−3−1 · 21 2→ | −3−2 · 21 2→ | · · · | −3−(h−1) · 21 2→ .

Proof. The conditions on n require 2 to be a square and 3 to be a non-square
in �n, so n ≡ 7 or 17 (mod 24). We take n ≡ 17 (mod 24) to ensure that −3−1 · 2 =
(n − 2)/3 < n/2.

The proof follows the lines of previous proofs, special attention being required
only by the fence −3 | −3−1 · 2 , where the difference must compensate for the missing
difference −3−1. If n ≡ 17 (mod 24), the entries at the fence are n − 3 | (n − 2)/3 ,
which give the reduced difference (n + 1)/3, the same as the missing difference 3−1.
Contrariwise, if we were to try n ≡ 7 (mod 24), we would have n − 3 | (2n − 2)/3 ,
which yields the difference (n − 7)/3, which does not match the missing difference
−3−1 = (n − 1)/3. �

Note 3.8. In the range 3 < n < 1,000, Theorem 3.8 covers only (n, h) = (233, 4)
and (881, 8).

EXAMPLE 3.8. With (n, h) = (233, 4), Theorem 3.8 yields the �231 terrace

1 2 . . . 117 | ∗ 116 58 . . . 231 ∗ | 103 168 . . . 206 | 215 197 . . . 224 |
227 221 . . . 230 | 77 154 . . . 155 | 181 129 . . . 207 | 138 43 . . . 69.

4. Some terraces with segments of irregular lengths. We start this section of the
paper with a construction for half-and-half terraces.

THEOREM 4.1. Let n be a prime, n > 3, that has 2 as a primitive root. Then the
following sequences, evaluated as described in §1, are terraces for �n−2:

(i)

! −3 · 20 −3 · 21 . . . −2−1 ! | ! −3 · 2−1 −3 · 2−2 . . . −21 !

(ii)

as in (i) save that the segments are interchanged.
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For n > 5, the terraces in (i) are half-and-half if and only if 3 ≡ 2i (mod n), where
2 < i < (n − 1)/2, whilst those in (ii) are half-and-half if and only if 3 ≡ 2i (mod n),
where (n + 1)/2 < i < n − 1.

Proof.
(i) If 3 = 2α, then the sequence is

−2α −2α+1 . . . −2n−2 | −2α−1 −2α−2 . . . −21 ,

which includes all −2i except −20 = n − 1. The missing differences are
(n − 1)/2, (n − 3)/2 and 1, and the fence difference is 1. As (n − 1)/2 ≡
−(n − 3)/2 in �n−2, the difference (n − 1)/2 is lost twice, as required.
If the second segment is the longer one, i.e. if α > n/2, it will give 1 as the mth
difference from the right, where n = 2m + 1, i.e. the (m − 1)th difference from
the left of the terrace. But this, with the 1 at the fence, will give 1 twice as a
difference in the left half of the terrace, so that the terrace is not half-and-half.
If α < n/2, the first (n − 1)/2 differences are all different, whence the terrace is
half-and-half.

(ii) The proof is similar to that for (i). In any of the half-and-half terraces, the
longer segment is on the left. �

EXAMPLES 4.1. With n = 11, Theorem 4.1 yields the following �9 terrace, which is
not half-and-half:

! 8 5 ! | ! 4 2 1 6 3 7 9 !.

With n = 13, Theorem 4.1 yields the following half-and-half �11 terrace:

! 10 7 1 2 4 8 3 6 ! | ! 5 9 11 !.

THEOREM 4.2. Let n be a prime, n ≡ 7 (mod 8), such that ordn(2) = (n − 1)/2. Then
the following sequences, evaluated as described in §1, are terraces for �n−2:

(i) If +3 ∈ 〈2〉,

∗ −21 −22 . . . −2−1 ∗ | ! 20 21 . . . 3 · 2−1 ! | ! 2−1 2−2 . . . 3 !.

(ii) If −3 ∈ 〈2〉,

! 2−1 2−2 . . . −3 ! | ∗ −21 −22 . . . −2−1 ∗ | ! 20 21 . . . −3 · 2−1 !.

Proof. The condition n ≡ 7 (mod 8) ensures that 2 is a square in �n and that −1 is
not. Thus 〈2〉 is the set of squares, −1 /∈ 〈2〉, and �n \ {0} = 〈2〉 ∪ −〈2〉.

(i) Suppose that 3 ∈ 〈2〉. The missing differences are (n − 1)/2, −(n + 3)/2 =
(n − 3)/2, 1 and (n − 1)/2, whereas the fence differences are (n − 3)/2 and
1. So we lose (n − 1)/2 twice, as required.

(ii) Suppose that 3 /∈ 〈2〉. The missing differences are (n − 1)/2 (twice), 1 and
(n − 3)/2, whereas the fence differences are 1 and (n − 3)/2. �
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EXAMPLE 4.2. For n = 23 we have 3 ∈ 〈2〉, so Theorem 4.2 yields the following �21

terrace:

∗ 21 19 15 7 14 5 10 20 17 11 ∗ | ! 1 2 4 8 16 9 18 13 ! | ! 12 6 3 !.

THEOREM 4.3. Let n be a prime, n ≡ 1 (mod 24), such that ordn(2) = (n − 1)/2.
Suppose that c is an integer satisfying 0 < c < (n − 1)/2 and c �∈ 〈2〉. Then the following
sequence, evaluated as described in §1, is a terrace for �n−2:

2c
2→ | ! −21 −22 . . . −3 · 2−1 ! | ! −2−1 −2−2 . . . −3 !.

Proof. The condition n ≡ 1 (mod 24) ensures that 2, 3 and −1 are all squares in
�n. The proof is straightforward. �

Note 4.3. When n ≡ 1 (mod 4), x is a square in �n if and only if n − x is a square.
Accordingly, as c in Theorem 4.3 is to be a non-square with 0 < c < (n − 1)/2, values
of c must exist for all values of n. In the range 3 < n < 1,000, Theorem 4.3 covers
n-values, with specimen c-values, as follows: (n, c) = (97, 7), (193, 5), (313, 7), (409, 7)
and (769, 7).

EXAMPLE 4.3. Taking (n, c) = (97, 7) in Theorem 4.3 yields the following �95

terrace:

14 28 . . . 52 7︸ ︷︷ ︸
48 elements

| ! 95 93 . . . 72 47︸ ︷︷ ︸
18 elements

! | ! 48 24 . . . 91 94︸ ︷︷ ︸
29 elements

!.

THEOREM 4.4. Let n be a prime, n ≡ 1 (mod 6), such that ordn(2) = (n − 1)/3
and �n \ {0} = 〈2, 3〉. Suppose that 5 ∈ 3〈2〉. Then the following sequence, evaluated as
described in §1, is a terrace for �n−2:

! −5 · 20 −5 · 21 . . . −3 · 2−1 ! | ! −5 · 2−1 −5 · 2−2 . . . −3 ! |
∗ −2−1 −2−2 . . . −21 ∗ | 9 · 20 9 · 2−1 . . . 9 · 21.

Proof. We have �n \ {0} = 〈2〉 ∪ 3〈2〉 ∪ 9〈2〉. As ordn(2) is even we have −1 ∈ 〈2〉,
so that −〈2〉 = 〈2〉.

The missing differences are (n − 3)/2, (n − 5)/2, (n − 1)/2, 1 and 9. The fence
differences are 1, n − 3 − ((n − 1)/2) = (n − 5)/2 and 9 (reduced). So we lose (n − 1)/2
and (n − 3)/2. But in �n−2 we have (n − 3)/2 = −(n − 1)/2. �

Note 4.4. In the range 3 < n < 1,000, Theorem 4.4 covers n = 43, 109 and
157.

EXAMPLE 4.4. Theorem 4.4 yields the �41 terrace

! 38 33 23 3 6 12 24 5 10 20 ! | ! 19 31 37 40 ! |
∗ 21 32 16 8 4 2 1 22 11 27 35 39 41 ∗ |
9 26 13 28 14 7 25 34 17 30 15 29 36 18.
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5. Theorems for n = p r, r > 1. Our first theorem in this section is similar to
Theorem 5.3 of [6].

THEOREM 5.1. Let n = 3r, where r > 2. Then the following sequence, evaluated as
described in §1, is a terrace for �n−2:

: 1 2 . . . (n − 1)/2 : | : (n + 1)/2
2← n − 2 ∗ : | 3r−1 2 · 3r−1 |

4 · 3r−2 2→ | 4 · 3r−3 2→ | · · · | 4 · 3
2→ .

Proof. The element 2 is a primitive root of 3i for all i ≥ 1. The missing differences
are (n − 1)/2 (twice), 1, 3r−1, 2 · 3r−2, . . . , 2 · 3. The fence differences are precisely these
values apart from (n − 1)/2 (twice). �

EXAMPLE 5.1. With r = 3, Theorem 5.1 yields the following �25 terrace:

: 1 2 . . . 20 13︸ ︷︷ ︸
9 elements

: | : 14 7 . . . 23 25︸ ︷︷ ︸
8 elements

∗ : | 9 18 | 12 24 21 15 3 6.

Note 5.1. If r = 2, the �7 terrace from Theorem 5.1 consists of the first three
segments only:

: 1 2 4 : | : 5 7 ∗ : | 3 6.

THEOREM 5.2. Let n = p2, where p is a prime, p > 3, such that 2 is a primitive root
of both p and n. Write s = (n − p)/2 = p(p − 1)/2, and let c be an integer satisfying
0 < c < p/2. Then the following sequences, evaluated as described in §1, are terraces for
�n−2:

(i)

: 20 21 . . . 2s−1 : | : 22s−1 22s−2 . . . 2s+1 ∗ : | 2p−1cp 2p−2cp . . . 21cp

(ii)

! −3 · 20 −3 · 21 . . . −2−1 ! | ! −3 · 2−1 −3 · 2−2 . . . −21 ! | 2p−1cp 2p−2cp . . . 21cp

Proof. For (i) we have 2s ≡ −1 (mod n). The missing differences are
(n − 1)/2 (twice), 1 and cp. The last two of these are compensated for by the fence
differences. �

EXAMPLE 5.2. With (n, p, c) = (25, 5, 1), Theorem 5.2 yields the following terraces
for �23:

(i)

: 1 2 4 . . . 3 6 12︸ ︷︷ ︸
10 elements

: | : 13 19 22 . . . 17 21 23︸ ︷︷ ︸
9 elements

∗ : | 5 15 20 10

(ii)

! 22 19 13 1 2 4 . . . 3 6 12︸ ︷︷ ︸
13 elements

! | ! 11 18 9 17 21 23 ! | 5 15 20 10
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THEOREM 5.3. Let n = p2, where p is a prime, p ≡ 7 (mod 24), such that ordp(2) =
(p − 1)/2 and ordn(2) = (n − p)/2. Write s = (n − p)/2, and let c be any integer satisfying
both 0 < c < p/2 and c �≡ 1 (mod 3). Then the following sequence, evaluated as described
in §1, is a terrace for �n−2:

20 21 . . . 2s−1 | ∗ −2s−1 −2s−2 . . . −21 ∗ |
2(p−1)/2cp 2(p−3)/2cp . . . 21cp | 3−1 · 22cp 3−1 · 23cp . . . 3−1 · 21cp.

Proof. As p ≡ 7 (mod 12), the element 3 is not a square in �p. As p ≡ 7 (mod 8), the
element 2 is a square whereas −1 is not. Thus �p \ {0} = 〈2〉 ∪ 3−1〈2〉, and 〈2〉 ∪ −〈2〉
is the set of units in �n.

Consider 3−1 · 2c . If c ≡ 0 (mod 3), we have 3−1 · 2c = 2c/3; if c ≡ 1 (mod 3), it
is (p + 2c)/3, and if c ≡ 2 (mod 3) it is (2p + 2c)/3. For the construction to work, the
missing difference at the end of the final segment has to be compensated for by the fence
difference at the start of that segment. If c ≡ 0 (mod 3), both differences are 2cp/3,
which is less than n/2, and if c ≡ 2 (mod 3) they are both p(p − 2c)/3. However, when
c ≡ 1 (mod 3), the missing difference is p(p + 2c)/3 if c < p/4 and 2p(p − c)/3 if c >

p/4, whereas the fence difference is n − 2 − {2p(p + 2c)/3 − 2pc} = {p(p + 2c)/3} − 2
if c < p/4 and is similarly {2p(p − c)/3} − 2 if c > p/4. �

EXAMPLE 5.3. For (n, p, c) = (49, 7, 2), Theorem 5.3 yields the following terrace
for �47:

1 2 4 . . . 43 37 25︸ ︷︷ ︸
21 elements

| ∗ 24 12 6 . . . 41 45 47︸ ︷︷ ︸
20 elements

∗ | 14 7 28 | 35 21 42.

THEOREM 5.4. Let n = p2, where p is a prime, p ≡ 17 (mod 24), such that ordp(2) =
(p − 1)/2 and ordn(2) = (n − p)/2. Write s = (n − p)/2, and let c be any integer satisfying
0 < c < p/6. Then the following sequence, evaluated as described in §1, is a terrace
for �n−2:

−3 · 20 −3 · 21 . . . −3 · 2s−1 | ∗ −2s−1 −2s−2 . . . −21 ∗ |
3 · 2(p−1)/2cp 3 · 2(p−3)/2cp . . . 3 · 21cp | 22cp 23cp . . . 21cp.

Proof. As p ≡ 5 (mod 12), the element 3 is not a square in �p or �n. As p ≡ 1
(mod 4), the element −1 is a square and therefore lies in 〈2〉. Thus −〈2〉 ∪ −3〈2〉 is the
set of units (in �p or �n).

The missing differences are (n − 3)/2, (n − 1)/2, 1, 3cp and 2cp. The fence
differences compensate for the last three of these. The result follows as, in �n−2, we
have (n − 3)/2 = −(n − 1)/2. �

EXAMPLE 5.4. With (n, p, c) = (289, 17, 1), Theorem 5.4 yields the following terrace
for �287:

286 283 . . . 216 143︸ ︷︷ ︸
136 elements

| ∗ 144 72 . . . 285 287︸ ︷︷ ︸
135 elements

∗ |

51 170 85 187 238 119 204 102 | 68 136 272 255 221 153 17 34.
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6. Ad hoc constructions. By judicious use of reduced differences, we have been
able to construct �n−2 terraces, via �n, for n = 73, 151, 331 and 641, thereby filling
some of the gaps left by the succession of constructions in preceding sections of this
paper. We now present these terraces in forms so similar to those used heretofore that
the reader should need no further explanations of them save that in each terrace, a
reduced difference occurs at the fence immediately following the element d:

n = 73, with c = 7, d = 54:

−3−1 2← −2 · 3−1 | 1
2→ 2−1 | ∗ (n − 1)/2

2← n − 2 ∗ |
2−1d

2← d |
33 · 2c

2→ 33c | 32 · 2c
2→ 32c | 31 · 2c

2→ 31c | 30 · 2c
2→ 30c.

n = 151, with c = 103, d = 40:

3
2→ 2−1 · 3 | 2−1 2← 1 | ∗ (n − 1)/2

2← n − 2 ∗ |
32 · 2−1d

2← 32d | 31 · 2d
2→ 31d | 30 · 2d

2→ 30d |
33 · 2c

2→ 33c | 32 · 2c
2→ 32c | 31 · 2c

2→ 31c | 30 · 2c
2→ 30c.

n = 331, with c = 3, d = 270:

+3−1 2← +2 · 3−1 | : 1
2→ −2−1 : | : +2−1 2← −21 ∗ : |

31 · 2−1d
2← 31d | 30 · 2d

2→ 30d |
36 · 2c

2→ 36c | 35 · 2c
2→ 35c | · · · | 30 · 2c

2→ 30c.

n = 641, with c = 635, d = 374:

: 1
2→ −2−1 : | : +2−1 2← −21 ∗ : |

2−1d
2← d |

37 · 2c
2→ 37c | 36 · 2c

2→ 36c | · · · | 30 · 2c
2→ 30c.

7. Table. We now give a table showing which theorems or section of the paper
cover each of the primes n in the range 3 < n < 1,000. Theorems producing narcissistic
terraces for �n−2 are marked with an asterisk.

n Theorems
5 2.1∗, 4.1
7 2.2∗, 4.2

11 2.1∗, 4.1
13 2.1∗, 4.1
17 2.3, 2.4, 3.1∗

19 2.1∗, 4.1
23 2.2∗, 4.2
29 2.1∗, 4.1
31 2.8, 3.7
37 2.1∗. 4.1
41 2.3, 2.4, 3.1∗

n Theorems
43 2.5, 2.6, 3.1∗, 3.2, 3.4, 4.4
47 2.2∗, 4.2
53 2.1∗, 4.1
59 2.1∗, 4.1
61 2.1∗, 4.1
67 2.1∗, 4.1
71 2.2∗, 4.2
73 §6
79 2.2∗, 4.2
83 2.1∗, 4.1
89 3.6∗
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n Theorems
97 2.3, 4.3

101 2.1∗, 4.1
103 2.2∗, 4.2
107 2.1∗, 4.1
109 2.5, 2.6, 3.1∗ 3.2, 3.3, 3.4, 4.4
113 2.7, 3.2
127 –
131 2.1∗, 4.1
137 2.3, 2.4, 3.1∗

139 2.1∗, 4.1
149 2.1∗, 4.1
151 §6
157 2.5, 2.6, 3.2, 3.3, 3.4, 4.4
163 2.1∗, 4.1
167 2.2∗, 4.2
173 2.1∗, 4.1
179 2.1∗, 4.1
181 2.1∗, 4.1
191 2.2, 4.2
193 2.3, 4.3
197 2.1∗, 4.1
199 2.2∗, 4.2
211 2.1∗, 4.1
223 2.8, 3.6∗

227 2.1∗, 4.1
229 2.5, 2.6, 3.2, 3.3, 3.4
233 3.8
239 2.2∗, 4.2
241 –
251 3.2
257 –
263 2.2∗, 4.2
269 2.1∗, 4.1
271 2.2∗, 4.2
277 2.5, 2.6, 3.1∗, 3.2, 3.4
281 2.7, 3.1∗, 3.2
283 2.5, 2.6, 3.2, 3.3, 3.4
293 2.1∗, 4.1
307 2.6
311 2.2∗, 4.2
313 2.3, 4.3
317 2.1∗, 4.1
331 §6
337 –
347 2.1∗, 4.1
349 2.1∗, 4.1
353 2.7, 3.1∗, 3.2
359 2.2∗, 4.2

n Theorems
367 2.2∗, 4.2
373 2.1∗, 4.1
379 2.1∗, 4.1
383 2.2∗, 4.2
389 2.1∗, 4.1
397 3.2, 3.4
401 2.3, 2.4, 3.1∗

409 2.3, 4.3
419 2.1∗, 4.1
421 2.1∗, 4.1
431 –
433 2.10, 3.5
439 2.9
443 2.1∗, 4.1
449 2.3, 2.4, 3.1∗

457 2.10
461 2.1∗, 4.1
463 2.2∗, 4.2
467 2.1∗, 4.1
479 2.2∗, 4.2
487 2.2∗, 4.2
491 2.1∗, 4.1
499 2.6
503 2.2∗, 4.2
509 2.1∗, 4.1
521 2.3, 2.4, 3.1∗

523 2.1∗, 4.1
541 2.1∗, 4.1
547 2.1∗, 4.1
557 2.1∗, 4.1
563 2.1∗, 4.1
569 2.3, 2.4, 3.1∗

571 3.2, 3.3, 3.4
577 2.7
587 2.1∗, 4.1
593 2.7, 3.1∗, 3.2
599 2.2∗, 4.2
601 –
607 2.2∗, 4.2
613 2.1∗, 4.1
617 2.7, 3.2
619 2.1∗, 4.1
631 –
641 §6
643 2.6
647 2.2∗, 4.2
653 2.1∗, 4.1
659 2.1∗, 4.1

https://doi.org/10.1017/S0017089509990164 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990164


SOME �n−2 TERRACES FROM �n POWER-SEQUENCES 85

n Theorems
661 2.1∗, 4.1
673 –
677 2.1∗, 4.1
683 –
691 2.5, 2.6, 3.1∗, 3.2, 3.4
701 2.1∗, 4.1
709 2.1∗, 4.1
719 2.2∗, 4.2
727 2.9
733 2.5, 2.6, 3.2, 3.3, 3.4
739 2.5, 2.6, 3.1∗, 3.2, 3.3, 3.4
743 2.2∗, 4.2
751 2.2∗, 4.2
757 2.1∗, 4.1
761 2.3, 2.4, 3.1∗

769 2.3, 4.3
773 2.1∗, 4.1
787 2.1∗, 4.1
797 2.1∗, 4.1
809 2.3, 2.4, 3.1∗

811 2.5, 2.6, 3.1∗, 3.2, 3.3, 3.4
821 2.1∗, 4.1
823 2.2∗, 4.2
827 2.1∗, 4.1

n Theorems
829 2.1∗, 4.1
839 2.2∗, 4.2
853 2.1∗, 4.1
857 2.3, 2.4, 3.1∗

859 2.1∗, 4.1
863 2.2∗, 4.2
877 2.1∗, 4.1
881 3.8
883 2.1∗, 4.1
887 2.2∗, 4.2
907 2.1∗, 4.1
911 –
919 2.9
929 2.3, 2.4, 3.1∗

937 –
941 2.1∗, 4.1
947 2.1∗, 4.1
953 –
967 2.2∗, 4.2
971 3.1∗, 3.2
977 2.3, 2.4, 3.1∗

983 2.2∗, 4.2
991 2.2∗, 4.2
997 2.6
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