Journal of Functional Programming 2 (1): 81-126, January 1992 81

A practical functional program for
the CRAY X-MP*

JAMES M. BOYLE
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

TERENCE J. HARMER
The Queen’s University of Belfast, Department of Computer Science, Belfast BT7 INN, Northern Ireland

Abstract

One can have all the advantages of functional programming — correctness, clarity, simplicity,
and flexibility — without any sacrifice in performance, even for a scientifically significant
computation on a supercomputer. Therefore, why use Fortran? We demonstrate parity —
equality of speed and storage use —between a program generated automatically from a
functional specification and a program written by hand in the procedural style. To our
knowledge, this demonstration of parity is the first for a program that solves a scientifically
significant problem — quasi-linear hyperbolic partial differential equations — on a scientifically
interesting supercomputer —the CRAY X-MP. We use pure Lisp, including higher-order
functions, to express the functional specification for the PDE solver. We designed this
specification for maximal clarity and flexibility, rather than for efficiency. Nevertheless, we
obtain a highly efficient program to solve the PDEs: automated program transformations put
back the missing efficiency as they produce an executable Fortran program from the
specification. The generated Fortran program vectorizes on the CRAY X-MP and runs about
4% faster than a handwritten Fortran program for the same problem. We describe the problem
and the specification, and some of the problem-domain-specific and hardware-specific
transformations that we use to obtain the high-efficiency program.

1 Introduction

A recent report (FCCSET, 1987) of the US Federal Coordinating Council for
Science, Engineering and Technology (FCCSET) outlines a national strategy for
high-performance computing and recommends research ‘to improve basic tools,
languages, algorithms, and associated theory for the scientific *“grand challenges”’.
These grand challenges are fundamental problems of science and engineering
involving computations that are at or just beyond the current limits of the possible.
Such problems range over all the sciences and include problems in computational

fluid dynamics, electronic structure of materials, plasma dynamics, and quantum

* This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, US Department of Energy, under Contract W-31-109-Eng-38.

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

82 J. M. Boyle and T. J. Harmer

theory, as well as symbolic computations in natural language recognition, computer
vision, automated reasoning, and computer-aided design, manufacturing, and
simulation.

It is unlikely that existing computer software can be used to perform the grand
challenge computations. Not only are the problems themselves new (at least on the
scale proposed in the report), but new means are also required to solve them,
including the use of supercomputers having new advanced-vector or massively
parallel architectures. Thus, solving grand challenge problems will almost certainly
entail the development of both new algorithms and new computer programs to
implement these algorithms.

What is the likelihood that functional programming techniques will be used to develop
the programs required to solve these grand challenge problems? Functional pro-
gramming offers significant advantages over programming in conventional, pro-
cedural languages: clarity, conciseness, modularity, ease of proof, ease of introducing
problem-oriented notation, and independence from hardware peculiarities, to name
a few (see Boyle, 1980; Bird and Wadler, 1988; Field and Harrison, 1988; Kelly,
1989; Burton and Kollias, 1989). These advantages are especially important for the
solution of grand challenge problems, which will require programs that are
significantly more complex than existing ones — programs that involve not only
advanced numerical methods but also symbolic computation and complicated data-
and control-structures. Unfortunately, however, functional programming seems
unlikely to be used in the solution of grand challenge problems, because it is perceived
to obtain its advantages at the price of (perhaps greatly) decreased execution speed
and (perhaps greatly) increased storage use when compared to conventional
procedural programs (see, for example, Bloss et al., 1989; Kelly, 1989).

One can imagine that the scientists and applications programmers involved will
argue along the following lines: ‘We believe that solving our problem will require
months of computation on the most advanced available hardware using the most
efficient available computational methods. We can’t afford to lose a factor of 10, or
even of 2, in computation speed because we employed functional programming. We’ll
use Fortran, thank you!’ (Of course, this argument completely ignores both the
possibility that the programs developed in Fortran may contain undetected bugs that
could render their months of computation worthless — bugs that might be avoided if
functional programming were to be used — and the possibility that the total time to
solution of the problem might be reduced if functional programming were to be used.)

We believe that such arguments can be defused by (several) successful demonstrations
of parity between functional and procedural programs. A demonstration of parity is an
experiment that shows that using a functional program for a significant scientific
application can result in code that executes (at least) as fast and uses (at least) as little
storage on a high-performance computer as does a typical handwritten procedural
program for the same application on that hardware. Our goal of making functional
programs execute efficiently on widely available hardware architectures is shared by
at least two other functional programming research groups, the one at Yale (Bloss
et al., 1988, 1989 ; Kelsey and Hudak, 1989) and the one at Lawrence Livermore
National Laboratory and Coloradoe State University (Feo er al., 1990).

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 83

This, then, is what our paper is about: a demonstration of parity between an
automatically derived implementation of a functional program and a handwritten
Fortran program for solving a practical fluid-dynamics problem on the CRAY X-MP
computer. We have achieved parity for this problem by using automatic program
transformations to derive an efficient, vectorizable Fortran program from a (higher-
order) functional program, which serves as a specification. To achieve this result, we
use mainly basic, general-purpose transformations that implement functional
specifications in Fortran, with a few transformations that perform either problem-
domain-oriented or hardware-oriented optimizations interspersed. Indeed, this is one
of the important advantages of using program transformations to perform the
derivation: they make it easy for one to incorporate problem-domain-dependent and
hardware-dependent optimizations to whatever extent is necessary to achieve the
desired level of performance in the implemented program.

We are the first to admit that the problem for which we have demonstrated parity
is still far from the scope and complexity of a grand challenge problem. Nevertheless,
we have taken a step in the direction of demonstrating parity for such problems. We
hope that our results will encourage others to attempt similar demonstrations.

2 The problem

The solution of problems in fluid flow is the subject of the functional specification and
vectorizable code developed in this case study. Technically, the equations to be solved
are conservation laws, or, more generally, first-order, quasilinear, hyperbolic partial
differential equations. The solution of hyperbolic PDEs arises in many practical
applications that involve wave phenomena, including acoustics, elasticity, and
electromagnetism.

In all problems involving hyperbolic PDEs, characteristics play an important role.
Characteristics are curves in space-time along which information propagates from the
initial data. In the case of nonlinear hyperbolic PDEs, characteristics may intersect.
When such intersections occur, the hyperbolic problem no longer has a unique
solution, and a ‘shock’ forms. Shocks, and the discontinuities that accompany them,
can be observed in everyday phenomena — traffic flow (the bunching of cars as faster
moving vehicles overtake slower moving ones), waves breaking, and sonic booms.

The mathematical discontinuity at a shock, of course, creates difficulties for the
designer of algorithms for solving hyperbolic PDEs. In general, algorithms based on
usual mathematical techniques, such as the method of characteristics, provide fast,
accurate solutions in regions well away from shocks but encounter both mathematical
and programming difficulties when shocks occur. On the other hand, algorithms
based on discrete approximations to the molecular dynamics of the physical problem,
such as cellular automata, deal well with shocks, but their convergence is difficult to
prove mathematically.

This complementarity of features and deficiencies makes combining the two
methods attractive: use a cellular automaton to model the regions where shocks occur,
but let the behaviour of the cell be that given by the method of characteristics in the
remaining regions. Such an algorithm has other properties that are interesting for

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

84 J. M. Boyle and T. J. Harmer

high-performance computing — the algorithm exhibits data parallelism, and (as a
result) it also vectorizes well.

A new algorithm for solving hyperbolic PDEs based on this combined approach is
the subject of active research by Garbey and Levine (1990). As in other algorithms
based on the method of characteristics, this combined algorithm does not compute
the solution of the hyperbolic PDEs directly but rather computes the field of
characteristics, from which one can easily derive the solution. In many problems, this
approach is computationally more efficient than computing the solution directly.

This algorithm is an interesting choice for an attempt to achieve parity for a
number of reasons:

@ The algorithm is numerically intensive. Such algorithms are generally regarded
as being outside the area of application of functional programming. Indeed, at
a recent supercomputing working group meeting where our investigation of a
functional solution for this problem was mentioned, the investigation was
regarded as a waste of time, if not a joke.

@ The algorithm is still subject to refinements and changes. To permit easy
evaluation of these refinements and changes, minimizing the cost of recoding
the executable program to incorporate them is important.

@ The performance of the algorithm is being evaluated. Meaningful performance
evaluation demands the use both of large grids (grids with many cells) and of
many time steps, which in turn lead to long execution times. This circumstance
rules out using the functional specification in a rapid prototyping mode,
because naive execution of the specification not only would be slow but also
would require repeated duplication and copying of the grid. Note that in this
situation, even if the execution time of the functional specification were within
a factor of, say, two of the hand-coded program (regardless of the elegance or
ease of modification of the functional specification), the specification would not
be useful, because employing it would double the cost of evaluating the
algorithm on expensive machines. Moreover, we lay great importance on
retaining the freedom to write the functional specification in the clearest
possible form, in order to make it as simple and understandable as possible.
Thus, having to ‘tailor’ the functional specification to increase the economy of
its direct execution is unacceptable.

@ The algorithm, although conceptually simple, requires some difficult coding
and optimization. These difficulties are particularly knotty in the natural
extensions of the algorithm for two and three dimensions, in which the
geometry of the grid (hexagonal in the two-dimensional case) requires intricate
calculations.

@ The algorithm is a candidate not only for vector, but also for parallel — and, in
particular, data-parallel — implementations, because of the large grids it uses.
Indeed, handwritten Fortran implementations of the aigorithm were prepared
both for the data-parallel Connection Machine 2 and for the vector
architectures of the Alliant FX/8 and CRAY X-MP. Thus, multiple
implementations of the same specification, each tailored to a particular

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 85

architecture, are required. Again, because this is an experimental algorithm, the
effort expended to produce these different versions must be minimized to enable
the algorithm to be evaluated on different hardware.

® The algorithm does not require floating-point arithmetic for its execution.
Thus, it can be run with our current transformations and run-time support
system (based on LISP F3 [Nordstrom, 1978]), which were developed to
support functional specifications for symbolic computations and do not
support the floating-point type. (We could have added support for floating-
point data but did not wish to delay this demonstration of parity by doing so.)

In short, we believe that the cellular automation algorithm for hyperbolic PDEs is
difficult enough to represent a good test of the applicability of functional
programming to scientific compuration, and thus is a good example for our case
study. The requirements of ease of modification, efficient execution, and multiple
executable realizations of the same specification provide opportunities for functional
programming to aid the developers of the algorithm. Moreover, the complexity of the
algorithm in the higher-dimensional cases should provide an opportunity to
demonstrate the ability of the modularity inherent in functional programs to ‘factor
out’ complexity. If functional programming is to gain credibility, it should be
demonstrably effective on this sort of problem and in this type of situation.

2.1 Cellular automaton solution of a hyperbolic PDE

The algorithm we are specifying uses a cellular automaton (CA) technique to
compute the characteristics of the solution to a hyperbolic PDE. Cellular automata
have applications ranging from modelling snowflakes to computing a solution (as in
this case) of a partial differential equation. In fluid dynamics computations, CA
methods are usually used as a direct approximation to the molecular dynamics of the
problem, because the automaton gives a simple model for a complex physical process.
That is, each cell in the automaton models the behaviour of a ‘molecule’ in the fluid,
and the transition rules of the automaton correspond to the possible results of
collisions with other molecules. (Wolfram, 1986, discusses many interesting
applications of cellular automata.)

A cellular automaton model consists of many identical cells, each having simple,
locally determined behaviour. Nevertheless, the combined behaviour of the cells can
be complex. The grid for a one-dimensional hyperbolic PDE is a cellular automaton
consisting of a line of cells, each of which has information about the physical state of
the problem. Updating the state information of each cell through a sequence of
discrete time steps computes the characteristics of the solution to the hyperbolic PDE.
At a given time step, the state information of all cells is updated simultaneously
according to the same rule. (In technical terms, the updating of all cells simultaneously
based only on values from the preceding iteration makes this a Jacobi, as opposed to
a Gauss—Seidel, method.) The update rule is said to be ‘local’ because it depends only
on the state information at the cell being updated and that of some set of its
neighbouring cells.

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

86 J. M. Boyle and T. J. Harmer

Timestep +1 f \
/ N\

Timestep

loc -1 loc loc +1
Fig. 1. A characteristic entering an empty cell at loc from its east neighbour.

Timestep +1 f J
/ /

Timestep

loc -1 loc loc + 1
Fig. 2. Shock resulting from a characteristic entering an occupied cell at loc.

In the hyperbolic problem, the state information of each cell in the grid contains
a dependent variable that represents some aspect of the physical state of the system
(velocity, density, etc.). Characteristics move across the grid at a specified speed and
in a specified direction. To model the hyperbolic PDE, each cell holds four pieces of
information:

@ a u value, which is the value of the dependent variable in the cell;

@ an x value, which is the position of the moving characteristic within the cell;

@ a state, which denotes whether a shock has occurred in the cell (as discussed in
the following paragraph); and

@ 2 slope, which denotes the speed and direction of propagation of the
characteristic.

In the specification for the one-dimensional hyperbolic PDE problem, the directions
are west (left) and east (right). In the current specification, the direction of the slope
is kept in a separate component of the cell, called the sign, thereby simplifying certain
computations.

The CA algorithm employs a further discretization in addition to that obtained by
using a grid of cells. Each cell contains a discrete number of internal points at which
the characteristic can be located, as denoted by its x value. In our specification, each
cell contains 100 such points. At each time step, the x value is updated by adding or
subtracting (depending on sign) the value of slope to obtain a new position (time steps
are normalized to 1).

Of course, the interesting behaviour of this simple CA model concerns what
happens when the new x value lies outside the current cell, possibly causing the
characteristics in different cells to intersect and produce a shock. A characteristic
leaves a cell when its x value exceeds the maximum number of internal points in the
cell. For the one-dimensional problem, three specific cases are associated with a
characteristic leaving a cell, two of which lead to the formation of a shock:

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

(M
@

€)

Functional program for the CRAY X-MP 87

Timestep +1

Timestep

loc -1 loc loc +1
Fig. 3. Shock resulting from two characteristics entering an empty cell at loc.

A cell that does not have a characteristic may obtain one if a characteristic
moves into the cell from a neighbouring cell. This case is pictured in fig. 1.
A shock occurs when one cell contains more than one characteristic. This
situation may arise under one of two conditions: when a characteristic enters
a cell that already contains a characteristic (and that characteristic is not
leaving on the same time step), or when two characteristics enter the same cell
at the same time step. These conditions are pictured in figs. 2 and 3.

A shock (‘crossing’ shock) also occurs when two characteristics cross one
another on a cell boundary at some time step. This condition is special because
at no time do the two characteristics actually occupy the same cell. Nevertheless,
this condtion is a shock because more than one characteristic would have
occupied a cell if the cell boundaries of the grid had been differently positioned.
This condition is pictured in fig. 4.

Timestep +1

Timestep

loc ~ 1 loc loc +1

Fig. 4. Crossing shock resulting from two characteristics crossing on the east boundary of a

cell at loc.

In addition to these cases, the update rule for cells also has a case for no shock - the
simple movement of the characteristic within a given cell, as shown in fig. 5. This
computation of the movement corresponds to that of the ordinary (non-CA) method
of characteristics.

Timestep +1 f / \
/ / \

Timestep

loc-1 loc loc + 1
Fig. 5. Characteristic moving within a cell at loc.

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

88 J. M. Boyle and T. J. Harmer

2.2 Pure Lisp with data abstraction as a specification language

For our functional specification language we use pure Lisp (essentially a form of
Church’s lambda calculus [Church, 1941]), together with data abstraction. This
specification language is similar to the pure functional subset of Scheme, as described
in the ‘Little Lisper’ (Friedman and Felleisen, 1986). The specifications that we
express in this language are high-level but still algorithmic and, in fact, executable.
Indeed, we occasionally execute them in specification form in order to carry out rapid
prototyping.

Pure Lisp is simple, even minimalist. It relies on just four basic constructs:
conditional expressions, lambda abstraction (abstraction of an expression with
respect to specified variables), application of lambda abstractions to arguments, and
naming of lambda abstractions (to create recursive functions). Of course, higher-
order functions (functions that take functions as arguments, or that are results of
functions) are included. The great advantage of such a minimalist functional langunage
is that, at least conceptually, it is easy to transform into an implementation ; only the
small number of constructs sketched above need be implemented.

We do not use the native data types of Lisp (except for Boolean and numeric types)
in the upper levels of our specifications. Rather, we use data abstractions appropriate
to the problem being specified. Moreover, we treat these data abstractions as if they
were abstract data types, and we intend that our pure Lisp specifications be strongly
typed, even though pure Lisp itself does not require strong typing.

2.3 A functional specification for the CA algorithm

We present some of the upper-level functions from the pure Lisp specification for the
cellular automaton hyperbolic PDE algorithm outlined in section 2.1, together with
commentary, in the remainder of this section. The complete specification appears in
Appendix A.

One solves a hyperbolic problem by applying a function steptime to an initial gnd
for a specified problem of a specified size, a set of boundary values, an initial time,
and a number of time steps to be performed :

steptime (initgrid (problemtype, gridsize), bv, 1, maxsteps)
The initgrid function (see Appendix A) defines an initial grid representing suitable
initial conditions for the hyperbolic problem. (For our tests, we used Riemann initial
conditions.)

The result of taking a time step is the argument grid if the preceding time step was
the last one; otherwise, the result is that obtained by taking another time step on an
updated grid:

steptime (grid, bv, step, maxsteps) =
if step > maxsteps then
grid
else
steptime (updategrid (grid, bv), bv, step+ 1, maxsteps)

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 89

Mapping a local update rule for a cell over all the cells of the grid produces an
updated grid:

updategrid (grid, bv) =
mapgrid (A grid, loc . updatecell (grid, loc, bv), grid)

The mapgrid operation applies a function (mapgrid’s first argument) to each cellin a
grid (mapgrid’s second argument). For each cell in the grid, mapgrid applies the
function to a pair of arguments — the grid and the location of the cell in the grid. Note
that, under the semantics traditionally associated with ‘map’ functions, the
specification at this point is committed to a Jacobi method, in which the update of a
cell depends only on the values of the cells in the argument grid and not on any newly
updated cells. To specify a Gauss—Scidcl method would require a more compiicated
mapgrid operation; in particular, the order of visiting cells in the grid would have to
be specified, and mapgrid would have to apply its function argument not just to the
grid but also to the (partially completed) new grid.

Updating a cell happens in one of two ways, depending on whether the cell is a
boundary cell or an interior cell:

updatecell (grid, loc, bv) =
if isonboundary (loc, grid) then
updateboundarycell (cellat (loc, grid),
whichboundary (loc, grid), bv)
else
updateinteriorcell (cellat (loc, grid),
neighborsat (loc, grid))

This separation is convenient because the rules for updating boundary cells are
significantly different from those for updating interior cells. The function for
updating a boundary cell uses the boundary values provided as input to the problem
to inject additional characteristics into the model when required (see Appendix A).
Placing the test for being on a boundary here appears to be inefficient — the test is
made within the mapgrid loop. However, as we discuss in section 3.2.2,
transformations ‘hoist’ this test out of the loop, removing the apparent inefficiency.

Note how the modularity inherent in functional programming can be used (by
means of the function neighborsat) to ensure that the updating of a cell depends only
on the characteristic values of that cell and its neighbours, not on the exact location
of the cell in the grid. Note also that at this level of abstraction we have not yet
committed to implementing a cellular automaton algorithm. The preceding functions
can be used just as well in the specification for a traditional 3-point (or, in two
dimensions, 5-point) difference method.

Updating interior cells follows the cases outlined in section 2.1. If a shock or a
crossing shock occurs, the result is an empty cell marked appropriately. If no shock
occurs and a characteristic is entering the empty cell from one of its neighbours, then
the cell was empty, and the result is a cell whose state reflects that a characteristic has

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

90 J. M. Boyle and T. J. Harmer

entered. Otherwise, the result is a cell whose state is computed according to the
method of characteristics:

updateinteriorcell (cell, neighbors) =

if isshocked (cell, neighbors) then
emptymarkedcell (shock ())

else if iscrossingshocked (cell, neighbors) then
emptymarkedcell (crossingshock ())

else if isenteringfrom (neighbors) then
neighborenteredcell (neighbors)

else

timestepedcell (cell)

Note that thus far the dimensionality of the grid has played no role in the
specifications of the functions. Thus, none of the preceding functions need be altered
in going to a specification for a higher-dimensional problem.

The dimensionality of the grid does enter, however, in the specification of the
functions isenteringfrom and neighborenteredcell. For a one-dimensional grid, each
cell has two neighbours, west (left) and east (right). A characteristic is entering a cell
from one of its neighbours (in the one-dimensional case) if the characteristic is leaving
the west neighbour going east or leaving the east neighbour going west:

isenteringfrom (neighbors) =

isexitingeast (west (neighbors)) | isexitingwest (east (neighbors))

If the characteristic is leaving the west neighbour of a cell, that characteristic is the
basis for the updated state of the cell; otherwise, the characteristic from the east
neighbour is the basis:

neighborenteredcell (neighbors) =
if isexitingeast (west (neighbors)) then
movedintocell (west (neighbors))
else

movedintocell (east (neighbors))
A shock occurs in a cell

(1) if the cell will have a characteristic on the next iteration (the cell’s characteristic
is not moving to a neighbouring cell) and if the characteristic of one (or both)
of the cell’s neighbours is entering it; or

(2) if (the cell will not have a characteristic on the next iteration, but) the
characteristics of both of the cell’s neighbours are entering it:

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 91

isshocked (cell, neighbors) =
(hasstatenextiteration (cell)
& (isexitingeast (west (neighbors))
| isexitingwest (east (neighbors))))
| (isexitingeast (west (neighbors))
& isexitingwest (east (neighbors)))
A crossing shock occurs in a cell if the characteristic of the cell is entering one of

its neighbours at the same time as the characteristic of that neighbour is entering the
cell:

iscrossingshocked (cell, neighbors)

I

(isexitingwest (cell) & isexitingeast (west (neighbors)))

| (isexitingeast (cell) & isexitingwest (east (neighbors)))

Note that, as far as the top level of the specification that we discuss in this section is
concerned, the grid itself is still an abstract object; no implementation decisions have
been made about it.

At the next level of detail of this specification, however, we do make an
implementation decision to use an array to implement the grid. As one consequence,
we define the mapgrid function in terms of a primitive function maparraywithindex .
Primitive functions are ones (such as car and cdr) that are supplied by the
implementation. In the case of maparraywithindex, transformations insert a form of
the implementation that is tailored to be efficient on the target hardware. (For
example, a maparraywithindex implementation tailored for a parallel machine might
divide the grid into several blocks, instead of constructing a vector loop, as is done
here.)

Specification of the remainder of the cellular automaton hyperbolic PDE solver
proceeds in a similar manner until all functions (not only computational functions but
also those implementing data abstractions) have been specified ; Appendix A contains
the complete specification.

We claim that this specification is a simple and natural one for this problem ;
indeed, we even believe that this specification is transparently clear. Moreover, we
claim that we have not knowingly biased the specification in the direction of an
efficient final implementation. Indeed, we have tried always to choose naturalness and
clarity over efficiency, as discussed in conjunction with the placement of the
isonboundary test in the updatecell function.

In writing this specification, we have also attempted to make the upper-level
functions independent of the dimensionality of the problem, as pointed out in the
discussion of wupdateinteriorcell. However, since preparing this paper, we have
discovered a way to make the specification almost completely independent of
dimensionality, by representing the neighbours of a point as an index set. We
compare and contrast this new form of the specification to the form presented here
in Boyle and Harmer (1991).

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

92 J. M. Boyle and T. J. Harmer

3 The transformational derivation

From the simple, pure functional specification of the preceding section we
automatically derive an efficient implementation for computers having vector
hardware, such as the Alliant FX/80 or the CRAY X-MP. We use the TAMPR
program transformation system (Boyle, 1970, 1989) to apply a sequence of sets of
program transformations that derive an efficient Fortran program from the higher-
order functional specification. As we indicated in the introduction, most of these are
basic transformations — ones that are needed to impiement any functional spe-
cification in Fortran. These transformations form the framework for the derivation.
Used alone, they do a highly competent job; we have transformed a number of
functio?al specifications for both numeric and nonnumeric problems and have yet to
see an’example for which the derived program was not noticeably faster than
compiled Franz Lisp (Boyle, 1989). Nonetheless, our basic transformations are
applicable to a broad class of functional specifications, and the implementations they
produce, still have the characteristics of implemented functional code: extensive
copying and use of fresh storage, explicit use of a stack (or heap, if functions are used
as first-class objects) to implement recursion, etc.

Such an implementation performs well, but in our view it cannot hope to equal the
performance of good handwritten imperative Fortran or C code. For example,
without further optimization such an implementation is prohibitively inefficient in
terms of storage consumption when large arrays are used. Even if general remedies
for such inefficiencies could be found, we believe that the speed of well-written code
comes from taking advantage of properties of both the problem being solved and the
target hardware. It is just this type of knowledge that we can capture and codify in
sets of transformations that are problem-domain-oriented or hardware-oriented (but
not both). We can then apply the problem-domain-oriented transformations as part
of any derivation starting from a specification in the problem area, or we can apply
the hardware-oriented transformations as part of any derivation ending in a program
for the target hardware, to produce high-performance, automatically generated
programs. (Over time, libraries of such transformations will accumulate, enabling
efficient realizations of functional specifications from various problem areas to be
produced easily for many different types of hardware, simply by drawing appropriate
sets of transformations from the library.)

Thus, to transform the specification of the hyperbolic PDE solver into the
implementation that achieves parity, we intersperse into the outline formed by the
basic sets of transformations a few sets of transformations that perform problem-
domain-oriented or hardware-oriented optimizations. These transformations, few in
number but powerful in effect, guide the derivation in the direction of producing code
that will vectorize and that will, when compiled by the Cray Fortran compiler, run
efficiently on the CRAY X-MP hardware.

It is these sets of transformations that we emphasize in this section; however, we
begin with a brief overview of the basic ones to provide a framework for discussion.

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 93

3.1 General outline of the Lisp-to-Fortran derivation

The sets of transformations implementing the basic pure-Lisp-to-Fortran derivation
are designed to carry a pure Lisp specification into a Fortran program in a sequence
of about 20 minor steps. The minor steps can be characterized broadly as belonging
to five major steps:

(1) Canonicalizing the pure Lisp specification (standardization).

(2) Preparing pure Lisp for transformation to Fortran.

(3) Transforming prepared pure Lisp to structured, recursive Fortran.
(4) Transforming recursive Fortran to nonrecursive Fortran.

(5) Cleaning up and implementing the remaining abstractions.

3.1.1 Basic Lisp-to-Fortran transformations

The first major step consists of transformations whose primary effect is to simplify
later transformation steps. Examples include converting multiple-variable lambda
expressions to nests of single-variable ones, and renaming lambda variables to avoid
name clashes (a-conversion).

The second major step uses the algebraic properties of the lambda calculus to
manipulate the pure Lisp specification into a form in which all function applications
have simple arguments (arguments that are variables or constants). This step uses
formal algebraic properties and identities of the lambda calculus to introduce the
temporary variables that are needed to hold the results of functions, conditional
expressions, etc., that are themselves arguments to functions (Boyle, 1989).

The third major step replaces each Lisp function definition with a Fortran one, and
assigns the Lisp expression representing the body of the definition to the Fortran
function identifier. Transformations based on distributive laws for assignment then
change this single assignment statement involving a complicated Lisp expression into
a sequence of assignment statements involving only simple expressions. After this
major step, the transformed program looks like Fortran, but it still assumes that
functions can be called recursively.

The fourth major step implements recursion by introducing a stack to hold
function arguments, local variables, and an indication of the point to which each
function application should return. (This stack is, of course, ultimately represented by
a Fortran array of fixed size; with tail recursion removed, the implementation of this
specification requires only a few dozen stack cells.) The return point is represented by
an integer that is used as an index in a Fortran computed go-to statement.

The fifth major step completes the Fortran implementation by inserting definitions
for certain Lisp primitives, by implementing such ‘structured Fortran’ constructs as
do-end loops, and by tidying up some debris (such as multiple labels on the same
point in the program) left behind by the earlier transformations. At this stage, the
program is expressed completely in standard, nonrecursive Fortran, which for our
purposes plays the role of a portable, high-level assembly language.

A somewhat more detailed discussion of these transformation steps, including
example code fragments at each stage, is given in Boyle (1989); an earler version

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

94 J. M. Boyle and T. J. Harmer

appears in Boyle and Muralidharan (1984). Of course, our derivation is only one of
many possible approaches to converting pure Lisp into procedural code. One might
conduct most of the derivation within the Lisp language, converting to Fortran only
at the final step. For example, steps three and four outlined above could be carried
out using Lisp notation; Harrison and Padua (1989) discuss such derivations.
However, in our view, the virtues of the Lisp language lie in its functional subset ; we
see no advantage to using its procedural constructs over those of Fortran or C. The
TAMPR transformation system provides structured extensions to Fortran in its
subject language, and we choose to use this notation for the procedural stages of the
derivation. Regardless of the notation used, the procedural code derived from pure
Lisp can be guaranteed to have certain properties, which can be used to simplify the
later steps of the derivation.

In a similar vein, one might express tail recursion in terms of continuations, and
then translate the continuations to Fortran. While this approach is certainly feasible,
we again do not see that it offers advantages over our proven approach.

3.1.2 Optional additional Lisp-to-Fortran transformations

Additional sets of transformations of a general nature may be inserted at various
points in this basic derivation to perform desired optimizations. We add three such
sets of transformations: one unfolds data abstractions; another performs tail-
recursion elimination; and the third optimizes arithmetic operations.

As mentioned earlier, a major aspect of our approach to specification is the almost
complete use of data abstractions. That is, except possibly at the lowest level, our
specifications do not use list-processing primitives (for example). At the lowest level
of specification, we may use such primitives to implement the accessors and
constructors that we define for problem-oriented data abstractions. Alternatively, in
a particular derivation we may define the implementation of some accessors and
constructors directly by transformations. This approach has the effect of producing
a very flexible specification for which one can easily change the target implementation
at will.

Of course, such flexibility appears to have a price: if one naively implements the
specification, the resulting program is spectacularly inefficient, because every data
access incurs the overhead of at least one function application. As a first step in
improving the efficiency of the implementation of such specifications, we apply
transformations that result in the unfolding (copying) of the definitions of most
accessors and constructors for data abstractions into the text of the program. The
transformations that do so are general in that they are not keyed to specific data
abstractions, but rather unfold the definitions of all simple functions in place of their
applications.

We apply the transformations that unfold data abstractions fairly early in the
derivation, between steps 1 and 2 discussed in the preceding section. The choice of
when in the derivation to unfold data abstractions must balance two conflicting
demands. On the one hand, eliminating data abstractions early has the advantage of
reducing the number of constructs in the program, because several different abstract

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 95

data types may be implemented in terms of the same primitives, such as those for lists.
This reduction in variety means that simplifications needed in the remainder of the
derivation can be performed by a small set of transformations operating on primitive
functions, rather than by a large set operating on the data abstraction functions. On
the other hand, discarding the (variety of) data abstractions eliminates problem-
oriented information from the derivation. Thus, the definitions of data abstractions
must not be unfolded before problem-domain-oriented transformations that need this
information have had a chance to take advantage of it.

Unfolding the definitions of data abstractions has significance for efficiency far
beyond the elimination of a level of function application, important though that may
be. Unfolding frequently makes other simplifications (optimizations) possible. In the
case of the specification for the hyperbolic PDE solver, the effect of unfolding data
abstractions is dramatic; it reduces the 69 functions in the specification to a driver
program and a single tail-recursive function that updates the grid in a sequence of
time steps. Thus, essentially all of the optimizations are made possible, or at least
detectable, by the transformations that perform unfolding. (In this respect, our
implementation transformations can be thought of as having the goal of converting
a functional specification into a single function (or a very small number of functions)
that has been tailored to a particular specification, rather than having the goal of
making function application highly efficient, as do, for example, Bloss er al. (1988).)

Another important and well-known general transformation for improving
efficiency is tail-recursion elimination. Because tail-recursion elimination introduces
assignment, this transformation must be delayed until those transformations that rely
for their correctness on properties of pure functional code have been applied. Thus,
tail-recursion elimination can be inserted just before step 3 of the main derivation,
which introduces assignment statements in converting to Fortran.

Finally, very late in the derivation, during step S, we apply transformations that
eliminate, where possible, type checking for arithmetic operations. Qur underlying
Lisp implementation, based on that of LISP F3 (Nordstrom, 1978), encodes the type
tag (list, atom, or integer) of a variable as part of its value. These optimizing
transformations eliminate the type-tag manipulations internal to arithmetic ex-
pressions. (In the present implementation, however, we do maintain the tags for integer
values that are the final results of expressions, because such results are placed on the
stack where they could be examined by the garbage collector. An optimization we
might implement in the future would be to eliminate type tags in those derivations,
such as this one, that are both known to be strongly typed and known not to require
type information for garbage collection. Alternatively, switching to a modern,
strongly-typed functional language for our specification language would potentially
remove the need for type-tag optimizations altogether.)

These three optional sets of transformations are useful in many derivations. They
are problem- and hardware-independent in the sense that they represent optimizations
that a competent programmer should apply during coding, even if he is familiar with
neither the problem domain nor the target hardware. Implementing these somewhat
tricky optimizations by transformations guarantees that they will be performed
during the derivation, and performed correctly.

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

96 J. M. Boyle and T. J. Harmer

3.2 Transformations specific to the problem domain and target hardware

The transformations that we discuss in this section comprise those that are problem-
domain-oriented and those that are hardware-oriented, plus a few that are as general-
purpose as those discussed in the preceding section, but whose development was
occasioned by our work on this algorithm and specification.

3.2.1 Problem-domain-oriented transformations

The most important problem-oriented data abstraction in this specification is the grid
on which the algorithm solves the hyperbolic PDE. A natural implementation for the
grid is an array of structures with each structure representing the state of a cell in the
grid. In fact, this implementation is so natural that when one codes a program for
such a problem by hand, one immediately thinks in terms of arrays. Nevertheless, an
abstract conception of grid is useful, not least because abstraction keeps the
dimensionality of the problem from entering the specification too early.

Once one has decided to implement the grid as an array, the array transformations
discussed in this section construct a loop to implement the higher-order map-
arraywithindex function and its function argument; this loop is so constructed that
it ultimately can be vectorized by the CRAY X-MP compiler. In addition, the
transformations handle the important (and general-purpose) matter of arranging to
reuse the old copy of the array instead of allocating a new array for each time step.
Thereby, they reduce the storage complexity of the specification by a factor of
O(maxsteps) in the implementation.

The first step in implementing the loop that updates the array representing the grid
is to split the maparraywithindex operation of the specification into two parts: a
maparraywithindex’ operation that takes an existing array as an additional argument,
and an allocatearray function that creates an array. (Of course, later in the derivation
we intend to implement maparraywithindex’ so that it stores its result in the
additional array, and to implement allocatearray to reserve storage for an array. For
the present, however, we can still think of maparraywithindex’ and allocatearray as
being pure functions.) Initially, after the definitions of updategrid and mapgrid have
been unfolded, the steptime function has the form

steptime (grid, bv, step, maxsteps) =
if step > maxsteps then
grid
else
steptime
(maparraywithindex
(A grid, loc . updatecell (grid, loc, bv), grid),

bu, step+ 1, maxsteps)

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 97

After introduction of maparraywithindex’ and allocatearray, the function has the
form
steptime (grid, bv, step, maxsteps) =
if step > maxsteps then
grid
else
steptime
(maparraywithindex’
(A grid, loc . updatecell (grid, loc, bv), grid,
allocatearray(sizeof (grid))),
bv, step + I, maxsteps)
The transformations now add a formal argument to steptime that serves as a local
name for the new array; an application of allocatearray becomes the corresponding
actual argument, giving
steptime’ (grid, bv, step, maxsteps, newgrid) =
if step > maxsteps then
grid
else
steptime’
(maparraywithindex’
(A grid, loc . updatecell (grid, loc, bv), grid, newgrid),
bv, step+ 1, maxsteps, allocatearray(sizeof (grid)))
Finally, because aliasing of the argument grid (the ‘old grid’) takes place in neither
the initial nor recursive applications of steptime’, there exist no references to the old
grid after the recursive application. Hence, the array to which the variable grid can
points can be used as the actual argument corresponding to newgrid in the recursive
application. This change gives the form
steptime’ (grid, bv, step, maxsteps, newgrid) =
if step > maxsteps then
grid
else
steptime’
(maparraywithindex’
(A grid, loc . updatecell (grid, loc, bv), grid, newgrid),
bv, step+ 1, maxsteps, grid)
Thus, after these transformations there need be only two copies of the array
representing the grid (one created in initgrid and one in the initial invocation of

steptime’), provided that maparraywithindex’ is given an imperative implementation
that actually stores the updated values of the grid cells in the preallocated array

4 FPR 2

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

98 J. M. Boyle and T. J. Harmer

represented by the argument newgrid. (One can see this step as a generalized form of
the finite differencing transformation (Paige and Koenig, 1982), which replaces an
expensive computation that is repeated each time a loop is executed with a cheaper
incremental computation. At present, we are unsure how general this point of view
is; it is obviously a topic for further investigation.) We apply the transformations that
implement these important storage-usage improvements immediately before step 2 of
the basic derivation.

The remaining step in implementing the grid is to transform the maparraywithindex’
operation into a Fortran loop. The transformations construct the loop control
statement so that the loop iterates over the elements of the array in some convenient
order, and construct the body of the loop so that the body applies the first argument
of maparraywithindex’ (the function being mapped) to each element of the array. This
change, of course, eliminates the overhead of a true higher-order implementation of
maparraywithindex’. The change is an example of how our transformations use
information in the specification to construct an implementation that is tailored to the
specification. We apply these transformations during step 3 of the basic derivation.

It is worth remarking that, in comparison with the Fortran implementation of the
CA hyperbolic PDE solver, the indirection (use of a pointer to a value rather than the
value itself) permitted in the implementation of functional languages works to our
advantage in handling the interchange of the grids. In our implementation, the arrays
that ultimately represent grids are aggregated into structures to which the variables
grid and newgrid point. Simply interchanging the roles of these two pointers (which
serve as base addresses for the arrays in the final implementation) thus effects
interchange.

In contrast, the programmer writing Fortran code has at hand no simple mechanism
to aggregate arrays. He can use the indirection mechanism of our implementation,
which involves allocating all problem arrays as subarrays of a single large array, but
this approach quickly makes his program very difficult to write and to read. (The lack
of clarity is no problem in our implementation, because one reads the abstract
program, not the implemented code.) The Fortran programmer is thus usually forced
to choose a relatively high-cost alternative. Among these alternatives are unrolling
the loop to a depth of two, making the second copy of the loop body use the new and
old grids in the opposite sense to the first; replacing the body of the loop by a
(nonrecursive) subroutine call, unrolling the loop to a depth of two, and using the
parameter mechanism of the subroutine call to effect the interchange; increasing the
dimensionality of the arrays used by one (from one to two in the case of a one-
dimensional grid), so that interchanging subscripts effects the interchange ; or copying
the grid. The handwritten code of Garbey and Levine (1990) uses a hybrid form of the
last mechanism, which avoids some of the copying overhead at considerable expense
in clarity.

3.2.2 Hardware-oriented transformations

In this section we turn to a discussion of the hardware-oriented transformations
developed for this derivation, many of which, as noted earlier, are in fact generally
useful transformations. To provide the background for understanding the design of,

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 99

and the motivation for, these transformations, we discuss briefly both the form of the
mapgrid loop after the program has undergone unfolding and conversion to recursive
Fortran, and the form that this loop must have in order to vectorize well.

We restrict our discussion to the vectorization of the relatively simple loops that
arise when solving PDEs using a Jacobi method. Such loops contain no data
dependencies; that is, at a given time step, the computation of values for the cells of
the new grid depends only on the values of the cells of the old grid and, hence, the
values in the new grid are independent of the order in which they are computed. In
the cellular automaton algorithm, the main loop resulting from mapgrid consists of
several cases represented as a nest of if-then-else statements. These cases, of course,
arise from the alternatives in the state transition table of the cellular automaton.

After application of the transformations through step 3 of the derivation, including
the problem-domain-oriented ones discussed in the preceding section, the mapgrid
loop of the hyperbolic PDE solver has a form whose key structural features are
illustrated by the code skeleton

doi=1n
if (i .eq. I) then
{update west boundary
else if (i .eq. n) then
{update east boundary)
else if (P11(i) .and. (P12(i) .or. P13(i))) .or. P14) then
{shock case)
else if (P21(i)) then
{crossing shock case)
else if (P12(i) .or. P13(i)) then
if (P12())) then
{move in west neighbor case)
else
{move in east neighbor case)
end
else
(time step cases)
end
end
Here, P11, P12, etc., are predicates that represent the conditions for executing the
cases. Each of these predicates may require several arithmetic or logical operations
for its evaluation and, hence, each may represent a nontrivial amount of computation.
The first step in improving the efficiency of this form of the mapgrid loop is to apply

the well-known general-purpose transformation of hoisting the computation of the
boundary conditions out of the loop. This transformation reduces execution time on

4-2

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

100 J. M. Boyle and T. J. Harmer

sequential as well as vector machines. It applies to a loop that contains conditional
statements whose conditions represent a simple partition of the index set of the loop.
In effect, the transformation distributes the conditional statements out of the loop
and uses them to partition the index set. This transformation thus produces several
shorter (in this case, degenerate) loops and eliminates testing the conditions within the
loop. In the case of the example skeleton above, this transformation produces the
form

{update west boundary) (i = 1)
{update east boundary) (i = n)
doi=2,n-1
if (P11(GQ) .and. (P12(i) .or. P13(0))) .or. P14) then
{shock case)
else if (P21(i)) then
{crossing shock case)
else if (P12(i) .or. PI13(i)) then
if (P12(i)) then
{move in west neighbor case)
else
{move in east neighbor case)
end
else
{time step cases)
end
end

We apply the hoisting transformation after the maparraywithindex’ operation has
been implemented as a loop (by the transformations added to step 3 of the basic
derivation).

Must anything further be done to enable the loop that remains after the boundary
updates have been hoisted out to vectorize efficiently ? The answer is definitely yes —
experiment showed that the loop does not vectorize at all under version 3.1.2 of the
Cray CFT77 compiler. The loop fails to vectorize because it contains conditional
statements nested in the then-parts of other conditional statements. The compiler
deems a loop containing such statements too complex to vectorize; it vectorizes only
loops containing ‘flat’ nests of conditional statements. (Since we began these
experiments, version 4.0 of the CFT77 compiler has been released. It does vectorize
loops containing conditionals nested in the then-parts of other conditionals. Note,
however, the advantage of using transformations — by writing transformations to
flatten conditionals, we were able to obtain a vectorizable loop within a couple of
hours instead of having to wait months for a new release of the compiler.)

As we discuss in more detail below, one reason for nesting conditional statements
(‘conditionals’) in the then-parts of other conditionals is to protect a test in the nested

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 101

conditional from evaluation in cases where the test would be undefined; protecting
against division by zero and protecting against dereferencing the empty list are typical
examples. In the case of the example program above, however, the nesting is not in
any way fundamental; if the nested conditional evaluates the predicate P12, this
predicate has already been evaluated as part of the expression P12 .or. P13. In the
specification for the hyperbolic PDE solver, the nesting arises simply from the way we
have chosen to write the specification, specifically, from our desire to make it highly
modular.

The next step is thus to flatten the conditionals. The algebra of conditionals can be
used to show that the conditional within the loop in the preceding example is
equivalent to the flattened conditional in the following program skeleton:

doi=2,n—1
if(P11(0) .and. (P12(i) .or. P13(i))) .or. P14) then
{shock case)
else if (P21(i)) then
{crossing shock case)
else if (P12(i) .or. P13(i)) .and. P12(i)) then
{move in west neighbor case)
else if (P12(i) .or. P13(i)) .and. .not. PI12(i)) then
{move in east neighbor case)
else
{time step cases)
end
end
(Here and for the rest of the discussion, we omit from the example the boundary
updates, which have been hoisted out of the loop.) Identities from Boolean algebra
and the algebra of conditionals simplify the expressions used as conditions to produce
doi=2,n—1
if (P11(i) .and. (P12(i) .or. P13(i))) .or. P14) then
{shock case)
else if (P21(Y)) then
{crossing shock case)
else if (P12(Y)) then
{move in west neighbor case)
else if (P13()) then
{move in east neighbor case)
else
(time step cases)
end

end

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

102 J. M. Boyle and T. J. Harmer

As this code illustrates, the flattened conditionals may have conditions that share
common subexpressions. In the case of the hyperbolic PDE solver, these common
subexpressions are relatively expensive computations. One might hope the loop could
be left in this form, expecting the CFT77 compiler to perform common-subexpression
elimination on these computations. Although CFT77 does perform common-
subexpression elimination on arithmetic expressions in a loop, experiment with the
transformed code supports the hypothesis that the compiler does not do so for logical
expressions. Therefore, we can increase the execution speed of the program by using
transformations to perform common-subexpression elimination on the logical
expressions used as conditions.

Applying the common-subexpression-elimination transformations brings the
example program to the form

doi=2,n-—1
112(i) = P12(i)
113(i) = P13())
if (P11(i) .and. (112(i) .or. 113(i))) .or. P14) then
{shock case)
else if (P21(i)) then
{crossing shock case)
else if (112(7)) then
{move in west neighbor case)
else if (113(7)) then
{move in east neighbor case)
else
{time step cases)
end
end

Is this form of the program optimal? No. Experiments with this form show that
speed can be increased even further by extending ‘common’ subexpression
elimination to the point of precomputing all of the conditions, so that each if-test
consists of a simple test of a logical array element:

doi=2,n—1
112() = P12())
113() = P13()
11(5)) = (P11(i) .and. (112()) .or. 113(i))) .or. P4
12() = P21(3)
if (11(i)) then

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 103

{shock case)
else if (12(i)) then

{crossing shock case)
else if (112(i)) then

{move in west neighbor case)
else if (113(i)) then

{move in east neighbor case)
else

(time step cases)
ll”l"

e

end

This form of the program performs more computation than does the preceding one
(all of the logical expressions are evaluated every iteration, whereas P27 was not in
the preceding form), but this form is the more efficient one when vectorized. This
efficiency is not surprising, because a vector processor such as the CRAY X-MP is,
after all, a kind of shared-memory SIMD parallel computer. Hence the general
principle for taking advantage of vectorization is similar to that for taking advantage
of a SIMD machine: increasing the amount of work a program does may nevertheless
increase the program’s speed, if adding the work increases the uniformity of execution
of the program. In this case, because of hardware features of the CRAY X-MP such
as the availability of gather- and scatter-under-mask and compressed-vector in-
structions, and the need to optimize use of memory bandwidth (issues too compli-
cated to discuss further here), precomputing the conditions for the conditionals
reduces the number of distinct cases to be handled in the loop, making it more SIMD-
like; hence, precomputation increases speed.

Unlike flattening conditionals and eliminating common subexpressions, trans-
forming a loop to precompute all conditions is not possible for all loops. In our
example, the form of the program that does not precompute conditions evaluates the
expression P21(i) only for values of i for which the expression represented by 11(i) is
false, whereas the form with precomputation evaluates P21(i) for all i. Thus, the form
with precomputation could be undefined in cases where the earlier form is well
defined.

Actually, the problem runs deeper than the preceding paragraph suggests. Lisp
semantics for and and or require that they be evaluated by using ‘short-circuit’
evaluation. That is, the operands of and and or must be evaluated left to right,
stopping as soon as the value of the connective is determined (as soon as evaluation
produces an operand that is false for and or true for or). Our standard Lisp-to-
Fortran transformations implement these semantics by converting the and and or
connectives to nested conditional expressions.

If we consider the specification for the hyperbolic PDE solver literally to be written
in Lisp and let these standard transformations apply, they would convert uses of and
and or to even more deeply nested conditionals than illustrated in the preceding

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

104 J. M. Boyle and T. J. Harmer

example. In fact, the number of alternatives would be so large that each would
contribute so few elements to the final result vectors that vectorization would produce
little improvement over sequential execution. Thus, to produce a loop that will
vectorize, we must avoid (if possible) the requirement for short-circuit evaluation of
and and or.

Fortunately, in the specification for the hyperbolic PDE solver, none of the tests
actually used in any condition serves to protect the evaluation of any other test. Thus,
we can implement the specification using non-short-circuit semantics. Interestingly,
we can achieve this effect simply by leaving out the set of transformations that
reexpresses and and or in terms of nested conditionals. Of course, we must add a set
of transformations later in the derivation (late in step 3) to convert the Lisp and and
or functions to the Fortran .and. and .or. operators, respectively.

Once we have established that none of the tests in any condition requires short-
circuit evaluation, we can apply transformations that introduce precomputation of
the complex conditions of the if-then-else statements to the beginning of the loop.
(This introduction of precomputation is essentially similar to eliminating common
subexpressions, except that we introduce precomputation even if there is only one
instance of the expression.) The transformations that introduce precomputation add
Fortran logical array temporaries to hold the results. These temporaries do not need
to be allocated on the heap as do the arrays representing the grid because the logical
arrays are reused every iteration and need not be interchanged. (In what appears to
be a spectacular inefficiency engendered by being forced to communicate with CFT77
in Fortran 77 instead of in a higher-level notation, the thousands of words of storage
represented by these logical temporary arrays are never actually used. The vector
processor executes the loop as a sequence of loops, each computing 64 elements of the
result vectors. In so doing, it is able to keep the values of the logical temporaries in
vector registers, to use them as masks, and never to store them, because they are never
used again. Fortunately, CFT77 recognizes this situation and does not actually
reserve storage for these arrays.)

One more hardware-oriented transformation remains to be discussed. We apply it
during step 3 of the derivation to change the representation of the grid. In the
specification, the grid is a structure of cells, in which each cell has several components.
The natural array implementation of such a grid is a multidimensional array, an array
in which elements of a given kind, such as the x values, are not contiguous. Because
access to an array of contiguous elements can be faster on the Cray than access to
elements separated by a nonunit ‘stride’, we apply transformations that change the
grid representation from an array of structures (the cells) to a structure of arrays.

4 Performance of the derived program

The Fortran program that the transformations outlined in the preceding section
produce automatically from the specification given in Appendix A is shown in
Appendix B. This program is, at least in principle, easily understandable in terms of
the specification and the transformations, and so we do not discuss its structure
further. This version of the program is targeted to a CRAY X-MP 1/8 system having

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 105

the extended memory address, compressed index/gather-scatter, and vector popu-
lation count hardware features.

However, as discussed in the preceding sections, this version of our program is not
the first version whose performance we measured. Rather, this version is the final
result of a sequence of experiments. We began by writing a few sets of ‘hardware-
oriented’ transformations (such as those discussed in the preceding section) based on
our understanding of the operation of the CRAY X-MP. (We put quotation marks
around ‘hardware-oriented’ in the preceding sentence because it soon became
apparent that the lower levels of the hardware-oriented transformations must cater
to the peculiarities of the Cray CFT77 compiler rather than simply to those of the raw
CRAY X-MP hardware.) We then began experimenting. In each experiment, we
derived a Fortran program from the specification using the current version of the
transformations, measured that program’s performance, altered or added hardware-
oriented transformations to produce what we hoped would be a more efficient version
of the program, and performed another experiment.

Do we imagine, based on the experimental approach just described, that every
program specifier who uses the abstract programming and program transformation
methodology will develop his own optimizing transformations? No, of course we do
not; it is not worthwhile to develop special transformations to optimize specifications
for simple problems. However, when using this methodology to solve large, long-
running problems, such as the grand challenges, it may well be worthwhile for
transformation specialists to develop transformations specific to the particular
problem or hardware. Moreover, we believe that developing such optimizing
transformations and adding them to a transformational derivation when using the
TAMPR program transformation system is much easier than would be developing
and adding them to a conventional compiler (which is essentially impossible), for
several reasons:

@® TAMPR exposes the optimization process. It permits one to examine the result
of each step of the derivation of a program at the source-language level. Thus,
it is fairly easy to determine where needed transformations should be inserted
into the derivation.

@® TAMPR transformations are specified in terms of the syntax of the source
language (see Boyle, 1989, for some example transformations). Thus, one need
not understand a complex, compiler-dependent representation of the program
in order to add optimizing transformations to a derivation.

@® TAMPR transformations are rewrite rules. Therefore, each is fairly simple.
Hence, it is easy to see whether a transformation preserves the correctness of the
program being transformed. We have found this property of simplicity to be a
major help in writing correct optimizations.

Finally, problem-oriented transformations tend to be independent of the target
hardware, while hardware-oriented transformations tend to be independent of a
particular problem. For example, flattening conditionals and precomputing logical
expressions are general strategies that will improve the performance on the Cray of
any specification that uses conditionals, regardless of the problem it solves. These

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

106 J. M. Boyle and T. J. Harmer

independence properties permit problem-oriented transformations to be reused in
derivations for many types of hardware, and hardware-oriented transformations to
be reused in derivations for many types of problem. This reuse permits the effort
required to develop sets of transformations to be amortized over a large number of
derivations.

After a number of experiments, we obtained the set of transformations discussed
in the preceding sections and the derived program given in Appendix B. Table 1

Table 1. Program times on CRAY X-MP 1/8 for 16,384 cells, 1000 time steps,
Riemann initial conditions

CRAY X-MP
Program version time (sec)
Functional specification
transformed to Fortran 7-283
Handwritten Fortran 7-551

presents the timing comparison between this version of our derived program and
Garbey and Levine’s (1990) program. While Garbey and Levine did not make a large
investment in tuning their program for the CRAY X-MP, they did write the program
with the architecture in mind and with the intent of getting decent vector performance
on that machine.

The data in Table 1 were obtained using the Cray Fortran compiler CFT77, version
4.0.1.11, on a CRAY X-MP 1/8. We omitted tail-recursion elimination from the
derivation of the timed program, because we discovered that with tail recursion
eliminated the program runs slightly slower than the recursive version! (Do these data
imply that Garbey and Levine’s program would run faster if they recoded it so that
the time-step loop is represented by simulated recursion? We do not know ...)

These data show that our version certainly achieves parity with the handwritten
program. In fact, our version is about 4% faster than the handwritten program.
Determining exactly why our version is faster is difficult without a detailed timing
analysis of the compiler-generated assembly language code. A cursory reading of the
assembly language indicates, however, that our derived program is better than the
handwritten program at overlapping the use of the multiple functional units of the
Cray during the precomputation of the conditions for the if-statements in the main
loop.

Of course, use of the experimental approach we have described invites the question
of whether we have simply ‘lucked out’ in achieving parity by managing to
manipulate the specification into a form that takes advantage of the sophisticated
optimizations performed by the Cray CFT77 compiler. Could we do as well
generating code for a less sophisticated compiler? One way (at least partially) to
answer this question is to compare the performance of the derived program with that
of the handwritten one on a typical sequential machine. (Of course, one should not
set too much store by such a comparison, because both programs are, in fact, tuned
for the Cray vector architecture.) We performed this experiment on a Sun 3/110C

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 107

Table 2. Program times on Sun 3/110C (16-67 M Hz) for 16,384 cells,
100 time steps, Riemann initial conditions

Sun 3/110C
Program version time (sec)
Functional specification
transformed to Fortran 136-880
Handwritten Fortran 131-712

Table 3. Program times on Sun 3/110C (1667 MHz) and CRAY X-MP for

Yl‘lf\

16,384 cells, 100 time steps, Riemann initiai conditions

Sun 3/110C CRAY X-MP
Program version time (sec) time (sec)

Functional specification

transformed to Fortran 136-880 0-729
Functional specification,

transformed to Fortran without

redundant pre-computation of

predicates 119-560 0-829
Handwritten Fortran 131-712 0757

with 68020 and 68881 processors, running Sun OS 4.2 and the Unix f77 Fortran
compiler. Table 2 gives the timing results for these runs. (Note that we have timed the
programs for 100 time steps in Table 2 rather than for 1000 as in Table 1, in order
to obtain reasonable running times on the Sun.) Indeed, on the Sun our program is
about 4% slower than the handwritten program.

Do these results show that we have achieved our goal of catering to some of the
properties of the Cray hardware and compiler in our hardware-oriented trans-
formations? Or, could it not be that they simply produce very poor code, which the
Cray compiler ‘covers’ with its sophisticated optimizations, but which the relatively
unsophisticated Sun compiler exposes? Our first guess, based on the latter hypothesis,
was that the most obvious inefliciencies in our program over the handwritten one are
repeated references to the stack and repeated car operations within the loop. We
prepared a version of our program with common subexpression elimination
performed on these operations, but this version was slightly slower than the Cray
version on the Sun. Evidently we had to look elsewhere for the cause of the
inefficiency.

What is another possible explanation for this outcome? We have pointed out that
some of our Cray optimizations increase the amount of work performed by the Cray-
tailored version of the program. These optimizations result in fast execution on the
Cray, but ought to be ‘pessimizations’ on the Sun. To test this hypothesis, we
rederived our program, omitting the transformations that introduce redundant

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

108 J. M. Boyle and T. J. Harmer

precomputation of the complicated predicates in the if-conditions. The middle line of
Table 3 gives the performance of this version on both the Sun and the Cray.

Comparing the Sun times for the version without redundant precomputation to
those for the handwritten program shows that the version without redundant
precomputation exceeds parity on the Sun. On the other hand, comparing its times
on the Cray with those of our Cray-optimized version shows that the version without
redundant precomputation has much-reduced performance on the Cray; in fact, this
version has fallen substantially behind the performance of the handwritten program
on the Cray. These results indicate that the code-movement transformation is the key
hardware-oriented transformation that we perform —it is an optimization on the
Cray and a pessimization on the Sun.

5 Other demonstrations of parity

We know of no other attempts to demonstrate parity between pure functional and
handwritten code on vector supercomputers such as the CRAY X-MP, although the
SISAL (Streams and Iterations in a Single-Assignment Language) project (Feo et al.,
1990) has attempted a parallel (nonvector) implementation on this machine and plans
to construct a vectorizer for the SISAL compiler. Of course, one of the advantages
of transforming a functional specification into a widely available language such as
Fortran or C is that implementing the resulting program on any machine having the
required compiler is simple. Moreover, transforming to a widely-available language
enables one to reuse, instead of having to reproduce, the immense effort that has gone
into producing sophisticated optimizing compilers for these languages on super-
computers.

Leaving aside the question of performance of functional programs on vector
supercomputers for the moment, one may ask whether other approaches to
implementing functional languages have demonstrated parity, regardless of the target
computer architecture. There are two principal approaches to implementing
functional languages: one involves direct implementation of lambda expressions by
transformations or conventional compiler techniques; the other is based on
combinatoric graph-reduction techniques.

Simon Peyton-Jones’s (1987) book contains an excellent survey and description of
combinatoric graph-reduction implementation techniques. These techniques have a
strong theoretical foundation from the lambda calculus and combinatory logic, and
they were originally thought to promise high efficiency, especially when implemented
on special-purpose hardware (the ‘G-machine’) designed to carry out graph
reductions efficiently.

Although attractive in principle, very few special-purpose graph-reduction
machines have actually been built, and none is widely available. Even if a successful
graph-reduction machine were built and achieved parity with good procedural
programs, such a machine is unlikely to be a cost-effective alternative to conventional
machines. In our opinion, barring a nearly complete conversion to the use of
functional programming (a desirable but improbable event!), the inability to amortize
the design, development, and software costs of special-purpose architectures over

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 109

large production runs will always prevent such machines from being competitive with
general-purpose commodity chip sets.

If one accepts that existing von Neumann architectures must be employed because
of their cost-effectiveness, graph-reduction implementation techniques can still be
used, with the graph-reduction engine simulated by interpretation or compilation.
Interpretive execution of graph-reduction implementations is exceedingly inefficient ;
a straightforward implementation executes about two orders of magnitude more
slowly than conventional procedural code (Augustsson and Johnsson, 1989). Peyton-
Jones discusses compilation of G-machine code into native code for conventional
hardware; such an implementation of course performs better than an interpreter. The
fastest implementation based on graph-reduction techniques of which we are aware
is the Chalmers Lazy ML compiler {Augustsson and Johnsson, 1989). In effect, this
system produces from each functional program a compiled special-purpose graph
reducer tuned to that program. This compiler has achieved performance within
factors of 1'5 to 5 of procedural (C language) code for simple benchmarks (8 queens,
Fibonacci, prime numbers to 300, KWIC index). Such performance is impressive,
especially in light of the fact that LML is a functional language having not only
higher-order functions, but also lazy evaluation and pattern matching.

Among techniques based on transformation and compilation of lambda ex-
pressions are the work described here and that of the Yale Lisp and Functional
Programming Research Group. The Yale group has developed a number of compilers
for various functional languages. One is the Orbit compiler (Kranz, 1988; Kranz
et al., 1986) for T, a lexically scoped dialect of Scheme. This compiler has achieved
parity with procedural (Pascal) code for several benchmarks similar to those used to
benchmark LML.

Another Yale compiler is the one (Bloss et al., 1988, 1989) for ALFL, a nonstrict
functional language similar to SASL. The most recent version of this compiler, which
incorporates strictness analysis and collected termination analysis, has achieved near-
parity (within factors of 1 to 2) with the T compiler, which in turn is at or near parity
with procedural code.

The ALFL compiler and our approach can be compared by observing that in
ALFL the goal is to make the application of a function (including higher-order
functions) as efficient as possible, whereas in our approach the goal is to eliminate as
many function applications as possible (by unfolding). Of course, this observation is
an oversimplification; our implementation does not eliminate all function ap-
plications, and the ALFL compiler does eliminate some.

Compiling optimally efficient code for function applications requires extensive
global analysis of the program. Our approach of unfolding function definitions at
points of application avoids the need for such analysis, at the expense of expanding
the size of the generated code. Fortunately, unfolded function definitions can often
be simplified, so that the code growth is not so great as might be expected. (In
practice, we find that the code often shrinks!) Moreover, because our transformations
unfold and simplify function applications, we can use such higher-order constructs as
map, reduce, and filter in specifications without incurring any overhead at all. Each use
of such a construct is replaced by code tailored to the particular function that is being

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

110 J. M. Boyle and T. J. Harmer

mapped, performing the reduction, or acting as the filter. On the other hand, in some
situations producing tailored versions of unfolded functions requires not only
unfolding, but also folding. Our current transformations do not attempt to fold
simplified function definitions; indeed, folding is notoriously difficult to control in
automatic transformation.

Work at MIT and UC Berkeley by Arvind, Nikhil, Traub, Hicks, Culler, and others
on the Id language and its compilation aims at generating efficient code for parallel
machines, especially dataflow machines, from flexible, high-level specifications. The
Id language emphasizes explicit use of arrays, records, and other ‘data-parallel’
structures. In the dataflow context, Id treats the computation of each element of such
a structure as an independent parallel process (Nikhil, 1991). In addition to functional
representations for such structures, Id provides two other representations, M-
structures and I-structures (Barth et al., 1991). M -structures and I-structures are non-
functional constructs. Compared to functional constructs, the use of M-structures
and I-structures in some parallel applications can lead to sequential bottlenecks that
limit parallel execution, while in others these structures may permit increased parallel
execution.

Recently, this group has begun to investigate the problem of compiling Id into
efficient code for non-dataflow architectures. To provide good performance on
sequential machines, an Id compiler must perform sequentialization analysis and a
type of flow analysis somewhat similar to strictness analysis. The compiler uses the
results of these analyses to coalesce instructions into sequential threads. One Id
compiler for sequential machines has achieved speeds within a factor of 2-5 of
programs written in C (Culler et al., 1991), excellent performance for code generated
from a non-strict specification.

Another project having the goal of achieving parity for significant scientific
computations on non-special-purpose hardware is the SISAL project. The SISAL
language permits one to write code that looks much like ordinary procedural code
while still guaranteeing that the code is referentially transparent.

Most of the work on SISAL has been directed toward constructing parallel
implementations of SISAL programs. A highly optimizing compiler for the Sequent
Balance shared-memory MIMD parallel processor has been implemented. This
compiler makes extensive use of program analysis techniques to remove storage
copying operations, etc. Of course, the necessary analysis is greatly facilitated by the
referential transparency of the SISAL language. (We are indebted to an anonymous
referee for pointing out the humour of this statement: it is because functional
languages are referentially transparent that the analysis facilitated by this
transparency is needed!) This compiler has achieved or exceeded parity with Fortran
code using one processor for several of the Livermore Loops benchmark programs,
which represent kernels of typical scientific calculations. Moreover, when run in
parallel on the Sequent, these programs achieve good speedups. The current version
of SISAL does not include higher-order functions, however, and makes some other
concessions to efficient implementation (Feo et al., 1990).

We have also applied our transformational techniques to the derivation of parallel
realizations of functional specifications. As in this demonstration of parity, our

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 111

transformations have produced excellent results for shared memory machines — using
16 processors, speedups of 8 over the best sequential code, for real applications
(Dritz and Boyle, 1987; Boyle, 1989).

6 Conclusions, critique, and further work

In the preceding sections, we have discussed how we used functional programming
coupled with program transformation to enjoy the advantages of writing a clear,
simple functional specification for a significant scientific computation without having
to pay any price in terms of supercomputer performance compared to a handwritten
Fortran program for the same application. In fact, the performance of the program
derived from our functional specification slightly outstrips that of the handwritten
program on the CRAY X-MP vector processor. This better-than-parity performance
may be partly a matter of luck — the compiler is able to implement our derived
program in a way that fortuitously overlaps certain computations to avoid delays in
waiting for the operands to arrive.

Or is it luck ? Because of the flexibility and ease of writing program transformations,
we were able to experiment with a number of variant implementations of our
specification. This experimentation enabled us to find one with excellent performance.

Such experimentation can be very difficult, if not impossible, when writing
programs in procedural languages. From the writing of the first few lines, a Fortran-
level program is committed to representations of the data and control flow that
necessarily must be chosen in advance of any experimentation with that program’s
behaviour. Only rarely, and then only at high cost, is it possible to alter significantly
these decisions once experiments have been performed. In contrast, writing a
functional specification and implementing it by program transformations commits
one only gradually to representations of data and control. Moreover, the various
commitments tend to be independent of one another, and hence one can be easily
modified without sacrificing the work done on the others.

Did we did purchase the advantages of deriving an efficient program from a
functional specification at a high price in human effort? No. Preparing the problem-
domain-oriented and hardward-oriented transformations that we wrote specifically
for this application required less than one man-week. (This time does not include the
time required to perform timing experiments on the Cray, which would be necessary
no matter what methodology were used, assuming such experiments could be done at
all.)

What type of expertise is required to develop program transformations? The
principal skill required to write transformations is the ability to generalize — to
express one’s knowledge of how to write a particular program in such a way that that
knowledge applies to all similar programs, not just to the one. Two important
principles can be used to guide the development of the transformations: they must
preserve correctness, and they must make progress toward a goal (by constructing
canonical forms; see Boyle, 1989).

Beyond this skill, developing the hardware-oriented transformations for vector
processors, and developing those specifically for the CRAY X-MP, requires

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

112 J. M. Boyle and T. J. Harmer

knowledge of the operation of the hardware and compiler. But, this knowledge is no
different from that which an experienced Cray programmer must apply while writing
a program in order to obtain peak performance from this machine. Using this
knowledge to write transformations, however, has a much more valuable result than
using it to write a program, because the hardware-oriented transformations can be
applied in the derivation of many different programs. They thus provide a way to
capture hardware-specific knowledge and make it available for reuse in other
applications.

Have we biased the outcome of this experiment, either by the way we wrote our
functional specification or by the way we wrote the transformations? In regard to the
specification, we believe the answer is a resounding no! The specification is available
for examination in its entirety in Appendix A. We believe that an examination will
show that where we faced a choice between a specification having clarity, simplicity,
and generality and one having efficiency, we have chosen the former.

The test for bias, or specificity, in the transformations is more subtle, because we
do believe that some transformations need to embody problem-domain-dependent
information. Is it possible, however, that we wrote transformations so specific to the
hyperbolic PDE solver that they would not be applicable to any other specification?
One way to try to answer this question is to determine whether the transformations
can be used to obtain similar performance from specifications for other PDE solution
methods. We have striven to make the transformations as general as possible (except
where explicitly noted in the preceding sections), and we are in the process of writing
a functional specification for another PDE solver to evaluate the generality of the
transformations.

Where do we plan to go from here? We are beginning to modify the lower levels of
the specification for solving the one-dimensional hyperbolic problem to produce a
specification for solving the two-dimensional problem. One of the challenges in this
problem is representing the computations in the hexagonal geometry of the two-
dimensional grid. We expect to have to develop a few additional transformations, or
variants of some of the ones we have implemented, to obtain efficient performance
from this specification.

Modifying the specification is not the only direction for future work. We can also
modify the transformations. Using program transformations to derive a program
from a specification makes it easy to retarget the derivation to other computer
architectures radically different from the Cray. In the case of this hyperbolic PDE
solver, Garbey and Levine’s original motivation for developing the algorithm was to
produce a program that could take advantage of the SIMD architecture of the
Thinking Machines Corporation Connection Machine 2 (CM-2). As time permits, we
plan to write alternative transformations for the later stages of our derivation to
produce code for the CM-2. Of course, such transformations, if properly written,
would be useful not only for the specification for the hyperbolic PDE solver, but also
for functional specifications for other computations.

In conclusion, we believe that studies demonstrating parity between functional and
handwritten programs on significant problems are important steps toward a goal —
the goal of making functional programming useful to the wide audience of scientists

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 113

and engineers badly in need of techniques to help them quickly write clear, correct,
and efficient programs. We invite others to report on similar experiments.

Appendices
A Functional specification

The complete specification for the cellular automaton hyperbolic PDE solver, given in ordinary
Lisp notation, rather than in the infix notation used in section 2.3, is

(defun driver ()
((lambda (ol)
(steptime
(initgrid (car ol) (car (cdr ol)))
(makebv (car (cdr (cdr (cdr ol)))) (car (cddr (cddr ol))))
1
(car (cdr (cdr ol)))

(read)
)
)

(defun initgrid (option gridsize)
(mapgrid
(lambda (grid loc)
(riemann (quotient (car (cdr ol)) 2) grid loc))
(newcellgrid gridsize)
)
)

(defun riemann (midpoint grid index)
(cond
((or (lessp index midpoint) (eq index midpoint))
(composecell
(withstate) (signforeast) (maxpointsincell)
(maxpointsincell) (midpointincell)
)
)
(
(composecell
(withstate) (nullsign) (nullslope) (nullu) (zerox)
)
)
)
)

(defun steptime (grid bv step maxsteps)
(cond
((greaterp step maxsteps) grid)
(t (steptime (updategrid grid bv) bv (plus step 1) maxsteps))

)
)

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

114 J. M. Boyle and T. J. Harmer

(defun updategrid (grid bv)
(mapgrid (lambda (grid loc) (updatecell grid loc bv)) grid)
)

(defun updatecell (grid loc bv)
(cond
((isonboundary loc grid)
(updateboundarycell (cellat loc grid) (whichboundary loc grid) bv)

)
(t (updateinteriorcell (cellat loc grid) (neighborsat loc grid)))

)

(defun updateboundarycell (cell whichboundary bv)
(cond
((iswestboundary whichboundary)
(updatewestboundaryelement cell (westbv bv))
)
(t (updateeastboundaryelement cell (eastbv bv)))
)
)

(defun updateinteriorcell (cell neighbors)
(cond
((isshocked cell neighbors) (emptymarkedcell (shock)))
((iscrossingshocked cell neighbors) (emptymarkedcell (crossingshock)))
((isenteringfrom neighbors) (neighborenteredcell neighbors))
(t (timestepcell cell))
)
)

(defun timestepcell (cell) (timestepelement cell))

(defun isenteringfrom (neighbors)
(or (isexitingeast (west neighbors)) (isexitingwest (east neighbors)))

)

(defun neighborenteredcell (neighbors)
(cond
((isexitingeast (west neighbors)) (moveintocell (west neighbors)))
(t (moveintocell (east neighbors)))
)
)

(defun moveintocell (cell) (moveelement cell))

(defun isshocked (cell neighbors)
(or (and (hasstatenextiteration cell)
(or (isexutingeast (west neighbors))
(isexitingwest (east neighbors))))
(and (isexitingeast (west neighbors))
(isexitingwest (east neighbors)))

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 115

(defun iscrossingshocked (cell neighbors)
(or
(and (isexitingwest cell) (isexitingeast (west neighbors)))
(and (isexitingeast cell) (isexitingwest (east neighbors)))
)
)

(defun isonboundary (loc grid)
(or (iswestelement loc grid) (iseastelement loc grid))

)

(defun whichboundary (loc grid)
(cond
((iswestelement loc grid) (signforwest))
(1 (signforeast))
)
)

(defun iseastboundary (whichboundary) (eq whichboundary (signforeast)))
(defun iswestboundary (whichboundary) (eq whichboundary (signforwest)))
(defun isexitingwest (cell) (isgoingwest cell))
(defun isexitingeast (cell) (isgoingeast cell))

(defun updatewestboundaryelement (element bvw)
(cond
((or (hasnostate element)
(isleavingcell (newxvalue element))
(and (hasstate element) (greaterp bvw (uof element)))
)
(composecell (withstate) (signforeast) bow bow (smallestpartofcell))

)
)
(¢

(composecell (stateof element) (signof element)
(slopeof element) (uof element) (newxvalue element)
)
)
)
)

(defun updateeastboundaryelement (element bve)
(cond
((or (hasnostate element)
(isleavingcell (newxvalue element))
(and (hasstate element) (lessp bve (uof element)))

)

(composecell (withstate) (signforwest) (difference 0 buve) bve (smallestpartofcell))
)
(
(composecell (stateof element) (signof element)
(slopeof element) (uof element) (newxvalue element)
)
)

)
)

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

116 J. M. Boyle and T. J. Harmer

(defun timestepelement (element)
(cond
((hasstate element)
(cond
((isleavingcell (newxvalue element))
(composecell (nullstate) (nullsign) (nullslope)
(nullu) (zerox)

)

)
(¢
(composecell (withstate) (signof element)
(slopeof element) (uof element) (newxvalue element)
)
)
)

)
@
(composecell (nullstate) (nullsign) (nullslope) (uof element) (xof element))
)
)
)
(defun moveelement (element)
(composecell (withstate) (signof element) (slopeof element)
(uof element) (containedxvalue (newxvalue element))
)
)

(defun hasstatenextiteration (element)
(and (hasstate element) (not (isleavingcell (newxvalue element))))
)
(defun isgoingeast (element)
(greaterp (times (newxvalue element) (signof element)) (eastmostpoint))
)
(defun isgoingwest (element)
(lessp (times (newxvalue element) (signof element)) (westmostpoint))

)

(defun emptymarkedcell (mark) (emptymarkedelement mark))

(defun emptymarkedelement (mark)
(composecell (nullstate) (nullsign) (nulislope) mark (zerox))

)
(defun newcellgrid (size) (newarray size ml))
(defun mapgrid (fn grid)
(maparray-withparams-withindex grid (sizeafarray grid) fn)

)
(defun cellat (loc grid) (elementvalueofarray grid loc))

(defun neighborsat (loc grid)
(makeneighborset (elementvalueofarray grid (westelement loc))
(elementvalueofarray grid (eastelement loc))

)
)

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 117

(defun westelement (cellposition) (difference cellposition 1))
(defun eastelement (cellposition) (plus cellposition 1))
(defun iswestelement (elementposition elgrid) (eq elementposition 1))

(defun iseastelement (elementposition elgrid)
(eq elemeniposition (sizeofarray elgrid))

)

(defun makeneighborset (westelement eastelement)
(cons westelement eastelement)

)

(defun west (neighborset) (car neighborset))

(defun east (neighborset) (cdr neighborset))

(defun makebv (westelement eastelement) (cons westelement eastelement))
(defun westbv (bv) (car bv))

(defun eastbv (bv) (cdr bv))

(defun composecell (state sign slope u x)
(cons state (cons sign (cons slope (cons u x))))

)

(defun stateof (cell) (car cell))

(defun signof (cell) (car (cdr cell)))

(defun slopeof (cell) (car (cddr cell)))

(defun uof (cell) (cadr (cddr cell)))

(defun xof (cell) (cddr (cddr cell)))

(defun nulislope () 0)

(defun nullu () 0)

(defun zerox () 0)

(defun maxpointsincell () 100)

(defun midpointincell () 50)

(defun smallestpartofcell () 10)

(defun isleavingcell (x) (greaterp x (maxpointsincell)))
(defun shock () 12345)

(defun crossingshock () 54321)

(defun nullsign () 0)

(defun signforwest () —I)

(defun signforeast () 1)

(defun hasstate (element) (eq (stateof element) (withstate)))
(defun hasnostate (element) (not (eq (stateof element) (withstate))))
(defun withstate () 1)

(defun nulistate () 0)

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

118 J. M. Boyle and T. J. Harmer

(defun newxvalue (element) (plus (xof element) (slopeof element)))
(defun containedxvalue (xvalue) (difference xvalue (maxpointsincell)))
(defun eastmostpoint () 100)

(defun westmostpoint () — 100)

B Derived code

The following code is the Cray Fortran program derived from the pure Lisp specification in
Appendix A. We omit the definition for a large common block and various runtime support
routines whose roles should be obvious from their names. Of course, this Fortran program is
not intended to be readable or understandable; nevertheless, we display it simply to show the
code that our transformations produce.

We omitted the transformations that eliminate tail recursion from the derivation of this
program. For reasons we do not understand (but which presumably are related to the CFT77
compiler’s global optimization strategy), the version with tail recursion eliminated runs slightly
slower on the CRAY X-MP than does this version.

The comment lines containing CDIRS ivdep instruct the Cray compiler to ignore what
appear to be vector dependencies within a loop; without these directives, the compiler will not
vectorize a loop containing such apparent dependencies. (The main loop that implements the
optimized mapgrid function begins after the second of these directives.)

subroutine driver
#include * common™
integer plus , diff , times , quot , rmndr, time ,
& second , cons
logical g148 (16384)
integer gl61
integer g162
integer gl63
integer g164
integer g165
integer gl66
logical gi44 (16384)
logical g145 (16384)
logical g146 (16384)
logical g147 (16384)
logical g149 (16384)
logical g150 (16384)
integer g160
integer g159
integer g158
integer gl57
integer gl43
mjp = jp
¢ assert ($stackref (stack (mjp)))
mjp = mjp — 11
if (mjp .le. ip) call stkerx
Jp = mjp
stack (mjp) = mknum (— 100)
stack (mjp + 1) = mknum (— 1)
stack (mjp + 2) = mknum (54321)

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP

stack (myp + 3) = mknum (12345)
stack (mjp + 4) = mknum (10)
stack (mjp + 5) = mknum (0)
stack (myp + 6) = mknum (2)
stack (mjp + 7) = mknum (50)
stack (mjp + 8) = mknum (100)
stack (mjp + 9) = mknum (1)
stack (ip + 1) =1

goto 138

139 continue

[

stack (mjp + 10) = stack (jp — 1)
mjp = myp + 11

Jp = mjp

return

assert (g108)

138 continue

c

4

&

Rs

&

ip=ip+ 1

assert ($stackref (stack (jp)))

jp=ip—8

if (jp .le. ip) call stkerx

call read

stack (jp + 6) = stack (jp — 1)
continue

assert (maparray .ne. nil)

stack (jp + 4) = newarray (car (cdr (stack (
Jp+6))))

stack (jp + 3) = newarray (car (cdr (stack (
Jjp+6))))

stack (jp + 2) = newarray (car (cdr (stack (
jp+6))))

stack (jp + 1) = newarray (car (cdr (stack (
Jjp+6))))

stack (jp) = newarray (car (cdr (stack (jp
+6))))

stack (jp + 5) = cons (stack (jp + 4),
cons (stack (jp + 3), cons (stack (
jp+ 2),cons (stack (jp + 1),
stack (jp)))))

g166 = stack (jp + 6)

g165 = stack (jp + 1)

gl64 = stack (jp)

gl63 = stack (jp + 2)

gl62 = stack (jp + 3)

gl6l = stack (jp + 4)

if (— numadd + car (cdr (stack (jp + 6))
) .t. 1) goto 170

CDIRS ivdep

&

&
&

do 169 i = 1, (car (cdr (stack (jp +
6))) — numadd)

gl48 (i) = i .ge. (— numadd + (car (cdr (
g166)))) /2 .and. i .ne. (— numadd +
(car (cdr(gl66))))/ 2

if(gl48 (i)) goto 167

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

119

https://doi.org/10.1017/S0956796800000289

120 J. M. Boyle and T. J. Harmer

car (gl165 + i) = 100 + numadd
car (gl64 + i) = 50 + numadd
car (gl63 + i) = 100 + numadd
car (gl62 + i) = 1 + numadd
car (gl6l + i) = 1 + numadd
goto 168

167 continue
car (gl65 + i) = numadd
car (gl64 + i) = numadd
car (gl63 + i) = numadd
car (g162 + i) = numadd
car (g6l + i) = 1 + numadd

168 continue
169 continue
170 continue
stack (jp — 2) = stack (jp + 5)
stack (jp — 3) = cons (car (cdr (cdr (cdr
(stack (jp + 6))))), car (cdr(
edr (cdr (cdr (stack (jp + 6))))
1))
stack (jp — 4) = 1 + numadd
stack (jp — 5) = car (cdr (cdr (stack (jp
+6))))
stack (jp — 6) = cons (newarray (car (cdr (
stack (jp + 6)))), cons (newarray (
car (cdr (stack (jp + 6)))), cons
(newarray (car (cdr (stack (jp + 6)
))), cons (newarray (car (cdr (stack
(jp +6)))), newarray (car (cdr (
stack (jp +6))))))))
stack (ip + 1) =1
write (*,98000) igetnm(car(cdr(stack(jp + 6)))),
igetnm(car(cdr(cdr(stack(jp + 6)))))
98000 format (‘ Using', i6, ‘ cells and performing’, il0, ‘iterations.)
itime = isecnd(0)
goto 140
141 continue

R R R R

R R RR

itime = isecnd (0) — itime
write (*,98001) itime
98001 format (‘ Time in msec: ’, i10)
stack (jp + 7) = stack (jp— 1)

jp=Jjp+38
irlab = stack (ip)
ip=ip~—1

goto (139) , irlab
¢ assert (steptime)
140 continue
ip=ip+ 1
¢ assert ($stackref (stack (jp)))
Jp=Jjp—16 -2
if (jp .le. ip) call stkerx
if (stack (jp + 14) .le. stack (jp + 13))
& goto 189

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP

stack (jp + 16 + 1) = stack (jp + 16)
goto 190

189 continue

4

&

R R

continue
assert (maparray .ne. nil)

stack (jp + 1) = cdr (cdr (cdr (cdr (stack
(jp+12)))))

stack (jp + 2) + car (cdr (cdr (cdr (stack
(p +12)))))

stack (jp + 3) = car (cdr (cdr (stack (jp
+12))))

stack (jp + 4) = car (cdr (stack (jp + 12
)))

stack (jp + 5) = car (stack (jp + 12))

stack (jp) = stack (jp + 12)

stack (jp + 6) = car (stack (jp + 16))

stack (jp + 7) = cdr (cdr (cdr (cdr (stack
(jp+16)))))

stack (jp + 8) = car (cdr (cdr (stack (jp
+16))))

stack (jp + 9) = car (cdr (cdr (cdr (stack
(Jp+16)))))

stack (jp + 10) = car (cdr (stack (yp + 16
)))

assert (left$boundary$condition)

if (car (stack (jp + 6) + 1) .eq. I +
numadd .and. — numadd + car (stack (jp + 7
) + 1) — numadd + car (stack (jp + 8)
+ 1) .le. 100 .and. (car (stack (jp +
6)+ 1) .ne. I + numadd .or. car (stack
(jp + 15)) .le. car (stack (jp + 9)
+ 1)))goto 171

car (stack (jp + 5) + 1) = 1 + numadd

car (stack (jp + 4) + 1) = 1 + numadd

car (stack (yjp + 3) + 1) = car (stack (jp

+15))
car (stack (jp + 2) + 1) = car (stack (jp
+ 15))
car (stack (jp + 1) + 1) = 10 + numadd
goto 172

171 continue

&

&

&

&

&
&

car (stack (jp + 5) + 1) = car (stack (jp
+6)+ 1)

car (stack (jp + 4) + 1) = car (stack (jp
+10) + 1

car (stack (jp + 3) + 1) = car (stack (jp
+8)+ 1)

car (stack (jp + 2) + 1) = car (stack (jp
+9)+1)

car (stack (jp + 1) + 1) = car (stack (jp
+ 7) + 1) — numadd + car (stack (jp +
8)y+ 1)

172 continue

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

121

https://doi.org/10.1017/S0956796800000289

122 J. M. Boyle and T. J. Harmer

¢ assert (right$boundary$condition)
if (car (stack (jp + 6) — numadd + car (car
(stack (jp + 16)))) .eq. 1 + numadd
.and. — numadd + car (stack (jp + 7) —
numadd + car (car (stack (jp + 16)))
) — numadd + car (stack (jp + 8) —
numadd + car (car (stack (jp + 16)))
) .le. 100 .and. (car (stack (jp + 6)
— numadd + car (car (stack (jp + 16))
)) .ne. 1 + numadd .or. cdr (stack (jp +
15)) .ge. car (stack (jp + 9) —
numadd + car (car (stack (yjp + 16)))
))) goto 173
stack (jp + 11) = — 1 + numadd
car (stack (jp + 5) — numadd + car (car (
& stack (jp + 16)))) = | + numadd
car (stack (jp + 4) — numadd + car (car (
& stack (jp + 16)))) = stack (jp + 11
&)
car (stack (jp + 3) — numadd + car (car (
& stack (jp + 16)))) = 0 — (— numadd
& + (cdr (stack (ygp + 15)))) +
& numadd
car (stack (jp + 2) — numadd + car (car (
& stack (jp + 16)))) = cdr (stack (
& jp+15))
car (stack (jp + 1) — numadd + car (car (
& stack (jp + 16)))) = 10 + numadd
goto 174
173 continue

Ro R R R R R R R R R

car (stack (jp + 5) — numadd + car (car (

& stack (jp + 16)))) = car (stack (
& Jjp + 6) — numadd + car (car (stack (jp
& +16))))

car (stack (jp + 4) — numadd + car (car (
& stack (jp + 16)))) = car (stack (
& jp + 10) — numadd + car (car (stack (
& Jjp+16))))

car (stack (jp + 3) — numadd + car (car (
& stack (jp + 16)))) = car (stack (
& Jjp + 8) — numadd + car (car (stack (jp
& +16))))

car (stack (jp + 2) — numadd + car (car (
stack (jp + 16)))) = car (stack (
Jp + 9) — numadd + car (car (stack (jp
+16))))

car (stack (jp + 1) — numadd + car (car (
stack (jp + 16)))) = car (stack (
Jjp + 7)) — numadd + car (car (stack (jp
+ 16)))) — numadd + car (stack (jp
+ 8) — numadd + car (car (stack (jp +

& 16})))

174 continue

& &

R Ro R R

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 123

g143 = — numadd + car (car (stack (jp + 16)
&)) -1

gi57 = stack (jp + 7)
gl158 = stack (jp + 8)
g159 = stack (jp + 10)
g160 = stack (jp + 6)
gl6l = stack (jp + 5)
g162 = stack (jp + 4)
g163 = stack (jp + 3)
g164 = stack (jp + 2)
g165 = stack (jp + 1)

g166 = stack (jp + 9)
if (g143 .it. 2) goto 188

CDIRS ivdep
do 187 i = 2 ,gl43
gl44 (i) = — numadd + car (g157 + 1) —

& numadd + car (g158 + i) .le. 100

gl47 (i) = car (gI60 + i) .eq. I + numadd
gl45(i) = (— numadd + (car (gI57 + 1 — 1

&) — numadd + car (gi58 + i —1)))*
& (— numadd + (car (gI59 +i—1)))
& le. 100

gl46 (i) = (— numadd + (car (g157 + i + 1
&) — numadd + car (gi58 + i+ 1)))*
& (— numadd + (car (gI59 + i+ 1)))
& .ge. — 100

gl49 (i) = (.not. (gi47 (i) .and. gl44 (i
)) .or. gl45 (i) .and. gl46 (i))
.and. (gl45 (i) .or. gl46 (1))
g150 (i) = ((— numadd + (car (g157 + i)
~ numadd + car (g158 +i)))*(—
numadd + (car (g159 + i))) .ge. — 100
cor. g145 (1)) .and. ((— numadd + (
car (g157 + i) — numadd + car (g158 + i
)))*(— numadd + (car (g159 + i)
)) .le. 100 .or. g146 (i))
if (gl49 (i)) goto 185
car (gl6l + i) = numadd
car (gl62 + i) = numadd
car (g163 + i) = numadd
car (gl64 + i) = 12345 + numadd
car (gl65 + i) = numadd
goto 186
185 continue
if (g150 (i)) goto 183
car (gl61 + i) = numadd
car (g162 + i) = numadd
car (gl63 + i) = numadd
car (gl64 + i) = 54321 + numadd

& &

ISR Y

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

124 J. M. Boyle and T. J. Harmer

car (gl65 + i) = numadd
goto 186
183 continue
if(gl45(i)) goto 181
car (gl6l + i) = 1 + numadd
car (gl62 + i) = car (gl159 + i — 1)
car (g163 + i) = car (gl58 + i — 1)
car (gl64 + i) = car (gl66 + i — 1)
car (gl65 + i) = car (gl57 + 1 — 1) —
& numadd + car (gI58 + i — 1) — 100
goto 186
181 continue
if (g146 (i)) goto 179
car (gl6l + i) = 1 + numadd
car (gl62 + i) = car (gl59 + 1+ 1)
car (g163 + i) = car (gIS8 + 1 + 1)
car (gl64 + i) = car (gl66 + i + 1)
car (gl65 + i) =car (gl57 + i + 1)
& numadd + car (gI58 + i + 1) — 100
goto 186
179 continue
if (gl47 (i)) goto 177
car (gl61 + i) = numadd
car (gl62 + i) = numadd
car (gl63 + 1) = numadd
car (gl64 + i) = car (gl66 + i)
car (gl65 + i) = car (g157 + i)
goto 186
177 continue
if(gi44 (i)) goto 175
car (gl6l + i) = numadd
car (gl62 + i) = numadd
car (gl63 + i) = numadd
car (gl64 + i) = numadd
car (gl65 + i) = numadd
goto 186
175 continue
car (gl6l + i) = 1 + numadd
car (gl62 + i) = car (gl59 + i)
car (g163 + i) = car (gl58 + i)
car (gl64 + i) = car (gl66 + i)
car (g165 + i) = car (gl57 4+ i) — numadd +
& car (g158 + i)
186 continue

187 continue

188 continue
stack (jp — 2) = stack (jp)
stack (jp — 3) = stack (jp + 15)
stack (jp — 4) = stack (jp + 14) + 1

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

Functional program for the CRAY X-MP 125

stack (jp — 5) = stack (jp + 13)
stack (jp — 6) = stack (jp + 16)
stack (ip + 1) =2
goto 140
142 continue
stack (jp + 16 + 1) = stack (jp — 1)
190 continue
jp=jp+ 16 + 2
irlab = stack (ip)

ip=u1p—1
goto (141, 142) , irlab
end

Acknowledgments

We are indebted to both David Levine and Marc Garbey for explaining their
algorithm and the difficulties of implementing it, and to Hans Kaper for encouraging
us to work on this problem.

References

Augustsson, L. and Johnsson, T. 1989. The Chalmers Lazy-ML compiler. Computer J., 32 (2):
127-41.

Barth, P., Nikhil, R. S. and Arvind. 1991. M-Structures: Extending a parallel, non-strict,
functional language with state. MIT Computation Structures Group Memo 327,
MIT/Laboratory for Computer Science, Cambridge, MA, USA. (To appear in Proc.
Functional Programming and Computer Architecture, Cambridge, MA, USA. (To appear in
Proc. Functional Programming and Computer Architecture, Cambridge, MA (Aug. 28-30
1991).)

Bird, R. and Wadler, P. 1988. Introduction to Functional Programming. Prentice-Hall, New
York.

Bloss, A., Hudak, P. and Young, J. 1988. Code optimizations for lazy evaluation. Lisp and
Symbolic Computation, 1: 147-64.

Bloss, A., Hudak, P. and Young, J. 1989. An optimizing compiler for a modern functional
language. Computer J., 32 (2): 152-61. —

Boyle, J. M. 1970. A Transformational Component for Programming Language Grammar.
ANL-7690, Argonne National Laboratory, Argonne, IL, USA (July).

Boyle, J. M. 1980. Program adaptation and program transformation. In R. Ebert, J. Lueger,
and L. Goecke (editors), Practice in Software Adaptation and Maintenance, pp. 3-20, North-
Holland, Amsterdam.

Boyle, J.M. and Muralidharan, M. N. 1984. Program reusability through program
transformation. /EEE Trans. Software Eng., 10 (5): 574-88 (Sept.).

Boyle, J. M. 1989. Abstract programming and program transformations —an approach to
reusing programs. In T.J. Biggerstaff and A.J. Perlis (editors), Software Reusability,
Volume I, pp. 361-413, Addison-Wesley, New York.

Boyle, J. M. and Harmer, T. J. 1991. Functional specifications for mathematical computations.
In B. Moeller (editor), Proc. IFIP TC2/WG2.1 Working Conf. on Construction Programs
from Specifications, Pacific Grove, California (May 13-16), Elsevier, Amsterdam.

Burton, F. W. and Kollias, J. Y. G. 1989. Functional programming with quadtrees. /[EEE
Software, 6: 90-97 (Jan.).

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

126 J. M. Boyle and T. J. Harmer

Church, A. 1941. The Calculi of Lambda Conversion. Princeton University Press.

Culler, D. E,, Sah, A., Schauser, K. E., von Eicken, T. and Wawrzynek, J. 1991. Fine-grain
parallelism with minimal hardware support: A compiler-controlled threaded abstract
machine. In 4th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems.

Dritz, K. W. and Boyle, J. M. 1987. Beyond ‘Speedup’: Performance Analysis of Parallel
Programs. Argonne National Laboratory Technical Report ANL-87-7, Argonne, IL, USA
(Feb.).

Federal Coordinating Council for Science, Engineering and Technology. 1987. A research and
development strategy for high performance computing. Executive Office of the President,
Office of Science and Technology Policy, Washington, DC (Nov. 20).

Feo, J. T., Cann, D. and Oldehoeft, R. R. 1990. A report on the SISAL language project.
J. Parallel and Distributed Computing (Dec.).

Field, A. J. and Harrison, P. G. 1988. Functional Programming, Addison-Wesley, New York.

Friedman, D. P. and Felleisen, M. 1986. The Little LIS Per, Science Research Associates, Inc.,
Chicago, IL, USA.

Garbey, M. and Levine, D. 1990. Massively parallel computation of conservation laws. Parallel
Computing, 16: 293-304.

Harrison, L. and Padua, X. 1989. Parcel: Project for the automatic restructuring and
concurrent evaluation of Lisp. In Proc. 1988 Int. Conf. on Supercomputing, pp. 527-38, ACM
Press, New York.

Kelly, P. 1989. Functional Programming for Loosely-Coupled Multiprocessors, Pitman
Publishing/MIT Press, London/Cambridge, MA, USA.

Kelsey, E. and Hudak, P. 1989. Realistic compilation by program transformation. In Proc.
16th ACM Symposium on Principles of Programming Languages (Jan.).

Kranz, D. 1988. ORBIT: An Optimizing Compiler for Scheme. Yale University Technical
Report YALEU/DCS/RR-632, Yale University, New Haven, CT, USA.

Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams, N. 1986. ORBIT: An
optimizing compiler for Scheme. SIGPLAN Notices, 21 (7) (July).

Nikhil, R. S. 1991. The parallel programming language Id and its compilation for parallel
machines. In Proc. Workshop on Massive Parallelism, Amalfi, Ttaly. Academic Press, New
York.

Nordstrom, M. 1978. LISP F3, Users Guide. Report, Datalogilaboratoriet, Uppsala
University, Uppsala, Sweden (June).

Paige, R. and Koenig, S. 1982. Finite differencing of computable expression. ACM Trans.
Programming Lang. and Syst., 4 (3): 402-54 (July).

Peyton-Jones, S. L. 1987. The Implementation of Functional Programming Languages, Prentice-
Hall, New York.

Wolfram, S. 1986. Theory and Applications of Cellular Automata, World Scientific, Singapore.

https://doi.org/10.1017/50956796800000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000289

