CONTINUITÉ DES CARACTÈRES DANS LES ALGÈBRES DE FRÉCHET À BASES

M. AKKAR, M. EL AZHARI ET M. OUDADESS

ABSTRACT. In [1] and [2] T. Husain and J. Liang show the following results: R1. Every character on a Fréchet algebra with a Schauder basis $(x_i)_{i\geq 1}$ such that: $(1)\ x_ix_j=x_jx_i=x_j$ if $i\leq j$, $(2)\ P_i(x_i)\neq 0$ and $P_i(x_{i+1})=0$ (where $(P_i)_{i\geq 1}$ is a denumerable family of semi-norms defining the topology of the algebra) is continuous. R2. Every character on a Fréchet algebra with orthogonal and unconditional Schauder basis is continuous. The proofs of these last results are very long and introduce complex calculation without aid of spectral theory of locally m-convex algebras. We give here short proofs of these results with aid of a characterization of elements of the spectrum in locally m-convex algebras with values of characters.

1. **Introduction.** Nous améliorons le résultat de [2] et simplifions les démonstrations en utilisant le fait que dans une algèbre A, localement multiplicativement convexe commutative complète, pour tout x de A, λ est dans le spectre de x s'il existe un caractère continu F tel que λ est l'image de x par F (cf [3]).

Nous montrons que les algèbres considerées dans [2] sont semi-simples et que l'ensemble des caractères de telles algèbres est équipotent à N. Par ailleurs nous donnons des démonstrations simples des résultats de [1] en utilisant le fait déjà cité.

2. **Préliminaires.** Soit A une algèbre, A est dite une algèbre localement multiplicativement convexe (en abrégé a.l.m.c.) si A est munie d'une topologie définie par une famille $(p_{\lambda})_{\lambda \in \Lambda}$ de seminormes d'espace vectoriel vérifiant en outre $p_{\lambda}(xy) \leq p_{\lambda}(x)p_{\lambda}(y)$ pour tout $\lambda \in \Lambda$ et tous x, y de A.

Une a.l.m.c. complète métrisable est dite une algèbre de Fréchet. On note $M^*(A)$ l'ensemble des caractères algébriques non nuls de A, M(A) désigne l'ensemble des caractères continus non nuls de A.

Soit E un espace vectoriel topologique (en abrégé e.v.t.), E est dit à base s'il existe une suite $(x_i)_{i\geq 1}$ d'éléments de E telle que pour tout x de E il existe

Reçu par la rédaction le 26 mai 1986, et, sous une forme révisée, le 8 juillet 1987. AMS Subject Classification (1980): 46H15.

[©] Canadian Mathematical Society 1986.

une suite unique $(\alpha_i)_{i\geq 1}$ d'éléments de C tel que $x=\lim_{n\to\infty}\sum_{i=1}^n\alpha_ix_i=\sum_{i=1}^\infty\alpha_ix_i$

 $(x_i)_{i\geq 1}$ est dite une base de Schauder si pour tout $i\geq 1$ l'application linéaire $\alpha_i(\alpha_i(x)=\alpha_i)$ est continue, on sait d'après ([4], p. 49) que toute base d'un espace de Fréchet (espace localement convexe métrisable complet) est une base de Schauder.

 $(x_i)_{i \ge 1}$ est dite orthogonale si $x_i x_j = 0$ pour tous i, j tels que $i \ne j$.

3. Algèbres à bases.

PROPOSITION 3.1. Soit A une a.l.m.c. commutative complète à base $(x_i)_{i\geq 1}$ verifiant (1) $x_i x_j = x_j$ $i \leq j$. Alors pour tout $n \geq 2$ sp $x_n = \{0, 1\}$ et pour tout $n \geq 1$ sp $(x_n - x_{n+1}) = \{0, 1\}$.

PREUVE. Remarquons d'abord que A est unitaire d'unité x_1 . Pour tout $n \ge 2$, $x_n^2 = x_n$ d'où $\operatorname{Sp} x_n \subset \{0, 1\}$. x_n est non inversible d'après (1), $0 \in \operatorname{Sp} x_n$. Il reste à prouver que $1 \in \operatorname{Sp} x_n$. Supposons le contraire; il existe $x = \sum_{i=1}^{\infty} \alpha_i x_i \in A$ tel que $(x_1 - x_n) \sum_{i=1}^{\infty} \alpha_i x_i = x_1$. En faisant un calcul simple on obtient $\sum_{i=1}^{n-1} \alpha_i x_i - (\sum_{i=1}^{n-1} \alpha_i) x_n = x_1$. Si n = 2 on aura $\alpha_1 = 1$ et $\alpha_1 = 0$ ce qui est absurde; si $n \ge 3$ on aura $\alpha_1 = 1$ et $\alpha_i = 0$ pour $1 \le i \le n-1$ et $1 \le n-1$

Si $n \ge 1$ on vérifie facilement que $x_n - x_{n+1}$ n'est pas inversible; ainsi $0 \in \operatorname{Sp}(x_n - x_{n+1})$. Si n = 1 on a $x_1 - (x_1 - x_2) = x_2$, d'où $1 \in \operatorname{Sp}(x_1 - x_2)$. Supposons que $1 \notin \operatorname{Sp}(x_n - x_{n+1})$ pour tout $n \ge 2$; il existe $y = \sum_{i=1}^{\infty} \alpha_i x_i \in A$ tel que $(x_n - x_{n+1} - x_1)y = x_1$, en developpant le premier membre de cette égalité on obtient

$$\sum_{i=1}^{\infty} \beta_i x_i = x_1 \text{ avec } \beta_i = -\alpha_i \text{ pour } i \notin \{n, n+1\}$$

$$\beta_n = \sum_{i=1}^{n-1} \alpha_i$$

$$\beta_{n+1} = -\sum_{i=1}^{n+1} \alpha_i.$$

Comme $\sum_{i=1}^{\infty} \beta_i x_i = x_1$, il s'ensuit que $\beta_1 = 1$, $\beta_i = 0$ pour $i \ge 2$. Si n = 2 on aura $\beta_1 = -\alpha_1 = 1$, $\beta_2 = \alpha_1 = 0$ ce qui est absurde. Si n = 3 on aura $\beta_1 = -\alpha_1 = 1$, $\beta_i = -\alpha_i = 0$ pour $2 \le i \le n - 1$ et $\beta_n = \sum_{i=1}^{n-1} \alpha_i = 0$ ce qui est absurde.

Théorème 3.2. Soit A une a.l.m.c. commutative complète à base $(x_i)_{i\geq 1}$ vérifiant

$$(1) x_i x_j = x_j, i \leq j,$$

(2)
$$\sum_{i=1}^{\infty} x_i \in A.$$

Alors A est à caractères continus.

PREUVE. Soit f un caractère algébrique (non nul). Comme $x_i^2 = x_i$, pour tout i, on a $f(x_i) \in \{0, 1\}$. Supposons que $f(x_i) = 1$ pour tout i. On considère l'élément $x = \sum_{i=1}^{\infty} x_i \in A$. On a $f(\sum_{i=k}^{\infty} x_i) \ge 0$ pour tout $k \ge 1$. En effet pour chaque k, il existe un caractère continu F_k tel que:

$$f\left(\sum_{i=k}^{\infty} x_i\right) = F_k\left(\sum_{i=k}^{\infty} x_i\right) = \sum_{i=k}^{\infty} F_k(x_i) \ge 0.$$

Pour tout n on a

$$f(x) = \sum_{i=1}^{n} f(x_i) + f\left(\sum_{i=n}^{\infty} x_i\right)$$
$$= n + f\left(\sum_{i=n}^{\infty} x_i\right).$$

On aura $f(x) \ge n$ pour tout n ce qui est absurde, d'où l'existence d'un certain m tel que $f(x_m) = 0$. Comme pour tout $i \ge m$ $x_i = x_i x_m$ on aura que $f(x_i) = 0$ pour tout $i \ge m$, soit k + 1 le plus petit entier tel que $f(x_{k+1}) = 0$, on a que

$$f(x_i) = \begin{cases} 1 & 1 \le i \le k \\ 0 & i > k. \end{cases}$$

On considère l'élément $x_k - x_{k+1}$, comme $Sp(x_k - x_{k+1}) = \{0, 1\}$ d'après Proposition 3.1, il existe un caractère continu F tel que

$$F(x_k - x_{k+1}) = F(x_k) - F(x_{k+1}) = 1,$$

il s'ensuit que $F(x_k) = 1$ et $F(x_{k+1}) = 0$, ainsi on a mis en evidence un caractère continu F tel que

$$F(x_i) = \begin{cases} 1 & 1 \le i \le k \\ 0 & i > k \end{cases}$$

soit

$$x = \sum_{i=1}^{\infty} \alpha_i x_i \in A, x = \sum_{i=1}^{k} \alpha_i x_i + x_{k+1} \sum_{i=k+1}^{\infty} \alpha_i x_i,$$

d'où $f(x) = \sum_{i=1}^k \alpha_i$ de même $F(x) = \sum_{i=1}^k \alpha_i$ donc f(x) = F(x) pour tout x i.e. f = F.

REMARQUE 3.3. Le théorème 3.2 constitue une amélioration du résultat de [2] affirmant que toute algèbre A de Fréchet à base $(x_i)_{i\geq 1}$ vérifiant

$$(1') x_i x_i = x_i x_i = x_i i \le j$$

(2')
$$p_i(x_i) \neq 0 \text{ et } p_i(x_{i+1}) = 0$$

est à caractères continus. L'algèbre A est commutative, car elle est à produit continu et, pour tous i, j, $x_ix_j=x_jx_i$, (1') et (2') entrainent que $p_i(x_j)=0$ pour i < j, d'ou pour toute suite $(x_i)_{i \ge 1}$ dans $\mathbb C$ on a que $\sum_{i=1}^\infty \alpha_i x_i \in A$ en particulier $\sum_{i=1}^\infty x_i \in A$.

REMARQUE 3.4. On peut ne pas utiliser la condition $p_i(x_i) \neq 0$ dans [2]. En effet, on montre que pour tout $x = \sum_{i=1}^{\infty} \alpha_i x_i \in A$, $f(x) = \sum_{i=1}^{k} \alpha_i$, k dépend seulement de f; ainsi on a $f(x) = \sum_{i=1}^{k} \alpha_i(x)$. Or puisque l'algèbre est de Fréchet les α_i sont continues, d'ou f est continu, car $f = \sum_{i=1}^{k} \alpha_i$.

4. Propriétés.

Proposition 4.1. Soit A une a.l.m.c. commutative complète à base $(x_i)_{i\geq 1}$ vérifiant

$$(1) x_i x_i = x_i i \le j$$

$$(2) \sum_{i=1}^{\infty} x_i \in A$$

alors card $M^*(A) = \text{card } N$.

PREUVE. Soit $f \in M^*(A)$. Alors il existe $k \ge 1$ (k est unique) tel que $f(x_i) = 0$ i > k, $f(x_i) = 1$ $1 \le i \le k$. On définit l'application ψ par

$$\psi: M^*(A) \to N \setminus \{0\}$$

$$f \to \psi(f) = k$$

 ψ est injective, en effet $\psi(f) = \psi(g)$ entraine que $f(x_i) = g(x_i)$ pour tout $i \ge 1$. Soit

$$x = \sum_{i=1}^{\infty} \alpha_i x_i, \quad x = \sum_{i=1}^{k} \alpha_i x_i + x_{k+1} \cdot \sum_{i=k+1}^{\infty} \alpha_i x_i$$

d'ou on obtient que f(x) = g(x) pour tout x de A, i.e. f = g. ψ est surjective; en effet, soit $k \in N \setminus \{0\}$; on considère l'élément $x_k - x_{k+1}$; d'après Proposition 3.1, il existe $f \in M^*(A)$ tel que $f(x_k - x_{k+1}) = 1$. Il s'ensuit que $f(x_k) = 1$ et $f(x_{k+1}) = 0$ d'ou $\psi(f) = k$.

REMARQUE 4.2. On n'a pas utilisé le fait que A est à caractères continus.

PROPOSITION 4.3. Soit A une a.l.m.c. commutative complète à base $(x_i)_{i \ge 1}$ telle que $(1)x_ix_j = x_j$, $i \le j$. Alors A est semi-simple (i.e. Rad A = (0)).

PREUVE. Soit

$$x \in \text{Rad } A, x = \sum_{i=1}^{\infty} \alpha_i x_i$$

on écrit x sous la forme

$$x = \alpha_1 x_1 + x_2 \sum_{i=2}^{\infty} \alpha_i x_i,$$

d'après Proposition 3.1, il existe un caractère f tel que $f(x_1) = 1$ et $f(x_2) = 0$. Comme $f(x) = \alpha_1$ et $x \in \text{Rad } A$ on a $\alpha_1 = 0$. En répétant ceci jusqu'à l'ordre n - 1, on aura

$$x = \alpha_n x_n + x_{n+1} \sum_{i=n+1}^{\infty} \alpha_i x_i$$

le même procédé en traine que $\alpha_n = 0$ d'ou Rad A = (0).

EXEMPLE. Soit l'algèbre $\mathbb{C}^{\mathbb{N}}$ des suites complexes munie de la topologie définie par la famille de semi-normes $(q_i)_{i \in \mathbb{N}}$

$$q_n((x_i)_{i\in\mathbb{N}}) = |x_n|$$

 $\mathbb{C}^{\mathbb{N}}$ est une algèbre de Fréchet à base $(e_n)_{n \in \mathbb{N}}$

$$e_n = (\underbrace{0, 0, \dots, 0}_{n \text{ termes}}, 1, 1 \dots)$$

et on a $e_n e_m = e_m$ pour $n \le m$.

5. Algèbres à bases orthogonales.

Théorème 5.1. Soit A une algèbre de Fréchet à base $(x_i)_{i\geq 1}$ orthogonale telle que (1) $\sum_{i=1}^{\infty} a_i \alpha_i x_i \in A$ dès que $\sum_{i=1}^{\infty} \alpha_i x_i \in A$ et $|a_i| \leq 1$. Alors A est à caractères continus.

PREUVE. On peut supposer que $x_i^4 = x_i^3$ pour tout $i \ge 1$ (cf [1]). Soit f un caractère, s'il existe un certain $k \ge 1$ tel que $f(x_k) \ne 0$ ($f(x_k) = 1$), pour tout $x = \sum_{i=1}^{\infty} \alpha_i x_i \in A$ on a $f(x) = \alpha_k$ car $xx_k = \alpha_k x_k^2$, ainsi f est continu puisque l'algèbre est de Fréchet. Il reste à montrer que si $f(x_i) = 0$ pour tout $i \ge 1$, alors f est nulle. Soit $x = \sum_{i=1}^{\infty} \alpha_i x_i \in A$ avec $(\alpha_i)_{i\ge 1}$ ne possédant aucune sous suite constante non nulle. Supposons que $f(x) \ne 0$, on a $f(x) = f(\sum_{i=k}^{\infty} \alpha_i x_i)$ pour tout $k \ge 1$; pour chaque $k \ge 1$, il existe un caractère continu F_k tel que

$$f\left(\sum_{i=k}^{\infty} \alpha_i x_i\right) = F_k\left(\sum_{i=k}^{\infty} \alpha_i x_i\right)$$
$$= \alpha_r \text{ avec } r \ge k$$

d'ou pour tout $k \ge 1$ il existe $r \ge k$ tel que $\alpha_r = f(x)$ ce qui est contradictoire, donc f(x) = 0.

On note par (P) la propriété suivante : si $f(x) \neq 0$ il existe un caractère continu (non nul) tel que f(x) = F(x).

Soit $x = \sum_{i=1}^{\infty} \alpha_i x_i \in A$ (x est quelconque), supposons $f(x) \neq 0$; on considère $I = \{i \geq 1/\alpha_i = f(x)\}$. En utilisant (P), il existe $e \geq 1$ tel que $f(x) = \alpha_e$, ainsi $I \neq \emptyset$ si I est fini, il existe $k \geq 2$ tel que $I \subset \{1, \ldots, k-1\}$. $f(x) = f(\sum_{i=k}^{\infty} \alpha_i x_i) = \alpha_e e \geq k$ d'après (P) ainsi $e \notin I$ ce qui contredit la définition de I.

Si I est infini, soient $(a_i)_{i\geq 1}$ et $(b_i)_{i\geq 1}$ deux suites définies par

$$a_i = 1 \text{ si } i \in I, \quad b_i = 1 \text{ si } i \notin I,$$

 $a_i = 0 \text{ si } i \notin I, \quad b_i = 0 \text{ si } i \in I.$

On a d'après (1) que $\sum_{i=1}^{\infty} a_i \alpha_i x_i$ et $\sum_{i=1}^{\infty} b_i \alpha_i x_i$ sont des éléments de A

$$\sum_{i=1}^{\infty} \alpha_i x_i = \sum_{i=1}^{\infty} a_i \alpha_i x_i + \sum_{i=1}^{\infty} b_i \alpha_i x_i.$$

Posons $\alpha = \alpha_i$ pour tout $i \in I$

$$\sum_{i=1}^{\infty} a_i \alpha_i x_i = \alpha \sum_{i=1}^{\infty} a_i x_i,$$

d'après (1) on a

$$f\left(\sum_{i=1}^{\infty} a_i x_i\right) = f\left(\sum_{i=1}^{\infty} \frac{1}{i} a_i x_i\right) + f\left(\sum_{i=1}^{\infty} \left(1 - \frac{1}{i}\right) a_i x_i\right)$$

d'ou

$$f\left(\sum_{i=1}^{\infty} a_i x_i\right) = 0 \operatorname{car}\left(\frac{1}{i} a_i\right)_{i \ge 1}, \left(\left(1 - \frac{1}{i}\right) a_i\right)_{i \ge 1}$$

ne possèdent pas de sous suites constantes non nulles.

Donc $f(x) = f(\sum_{i=1}^{\infty} b_i \alpha_i x_i)$, en utilisant (P) $f(x) = b_e \alpha_e = \alpha_e$ ce qui entraine que $e \in I$, ce qui est contradictoire car si $e \in Ib_e$ serait nulle.

Donc f est nulle.

COROLLAIRE 5.2. Soit A une algèbre de Fréchet à base $(x_i)_{i\geq 1}$ orthogonale telle que pour toute suite $(\alpha_i)_{i\geq 1}$ de C, $\sum_{i=1}^{\infty} \alpha_i x_i \in A$ alors A est à caractères continus.

RÉFÉRENCES

- 1. T. Husain and J. Liang, Multiplicative functionals on Fréchet algebras with bases, Can. J. Math. Vol XXIX n° 2 (1977), pp. 270-276.
- 2. T. Husain and J. Liang, Continuity of multiplicative linear functionals on Fréchet algebras with bases, Bull. Soc. Roy. Sc Liège 46 (1977), pp. 8-11.
- 3. E. A. Michaël, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
 - 4. H. H. Schaefer, Topological vector spaces (MacMillan New York 1964).

ÉCOLE NORMALE SUPÉRIEURE AVENUE OUED AKREUCH TAKADDOUM, RABAT, B.P. 5118 MAROC