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Semistable reduction for overconvergent F -isocrystals,

II: A valuation-theoretic approach

Kiran S. Kedlaya

Abstract

We introduce a valuation-theoretic approach to the problem of semistable reduction (i.e.
existence of logarithmic extensions on suitable covers) of overconvergent isocrystals with
Frobenius structure. The key tool is the quasicompactness of the Riemann–Zariski space
associated to the function field of a variety. We also make some initial reductions, which
allow attention to be focused on valuations of height 1 and transcendence degree 0.

1. Introduction

This paper is the second of a series starting with [Ked07]. The goal of the series is to prove a
‘semistable reduction’ theorem for overconvergent F -isocrystals, a class of p-adic analytic objects
associated to schemes of finite type over a field of characteristic p > 0. Such a theorem is expected
to have consequences for the theory of rigid cohomology, in which overconvergent F -isocrystals play
the role of coefficient objects.

In [Ked07], it was shown that the problem of extending an overconvergent isocrystal on a variety
X to a log-isocrystal on a larger variety X is governed by the triviality of some sort of ‘local
monodromy’ along components of the complement of X. In this paper, we give a valuation-theoretic
interpretation of this concept, which suggests an approach to the semistable reduction problem to
be pursued later in this series.

The context of this result (including a complex analogue) and a description of potential appli-
cations have already been given in the introduction of [Ked07], so we will not repeat them here.
Instead, we devote the remainder of this introduction to an overview of the results specific to this
paper, and a survey of the structure of the various sections of the paper.

1.1 Valuations and semistable reduction
Let X ↪→ X be an open immersion of varieties over a field k of characteristic p > 0, with X
smooth and X proper, and let E be an F -isocrystal (isocrystal with Frobenius structure) on
X overconvergent along Z = X \ X. The semistable reduction problem, as described in [Ked07,
§ 7], is to show that E admits a logarithmic extension with nilpotent residues after being pulled
back along some generically finite cover of X . When X is a curve, this can be deduced from the
p-adic local monodromy theorem (pLMT) of André [And02], Mebkhout [Meb02], and the present
author [Ked04a]. This derivation is carried out in [Ked03]; the main point is that one can work
locally, constructing the logarithmic extension separately for each point of Z.

When X has dimension greater than 1, one can still apply the pLMT along codimension 1
components of Z, but one only obtains a result that holds after ignoring a proper closed subset
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of the component. This would be fine if one were always able to use a finite cover in the pullback
(by the analogues of Zariski–Nagata purity derived in [Ked07]), but that is not always possible:
the result may be forced not to be smooth, in which case some blowing up is required, producing
additional components of codimension 1 along which it is not clear that any control on monodromy
has been imposed.

To get around this, it is helpful to think of the application of the pLMT as being parametrized
by divisorial valuations, i.e. certain points on the Riemann–Zariski space associated to the function
field of X. One is then naturally led to propose a version of the semistable reduction problem which
is local in Riemann–Zariski space. In this paper, we formulate the local semistable reduction problem
and explain its equivalence to the original semistable reduction problem, using the quasicompactness
of the Riemann–Zariski space. We also perform some simplifying reductions that allow us to focus
on what we call minimal valuations. We defer a direct assault on the local semistable reduction
problem to subsequent papers in this series.

1.2 Structure of the paper
We conclude this introduction with a summary of the structure of the paper.

In § 2, we review some relevant facts from valuation theory, most notably the construction of
Riemann–Zariski spaces.

In § 3, we describe the valuation-theoretic setup in more detail, formulating a local semistable
reduction problem and verifying that it is equivalent to the semistable reduction problem described
in [Ked07, § 7].

In § 4, we show that the local semistable reduction problem can be somewhat simplified. Specif-
ically, we show that it suffices to solve it when k is algebraically closed, and the center valuation is
of height 1 and has residue field k.

2. Review of valuation theory

In this chapter, we review some relevant facts from valuation theory, notably the definition of the
Riemann–Zariski space of a field. We use the summary by Vaquié [Vaq00] as our primary reference;
in turn, Vaquié’s underlying primary reference is Zariski and Samuel [ZS75].

Convention 2.0.1. For A a local ring, let mA denote the maximal ideal of A, and let κA = A/mA

denote the residue field of A.

Convention 2.0.2. By a variety over a field k, we mean a reduced separated (but not necessarily
irreducible) scheme of finite type over k. For X an irreducible variety over k, let k(X) denote the
function field of X over k. By a smooth pair over a field k, we mean a pair (X,Z) consisting of a
smooth irreducible k-variety X and a strict normal crossings divisor Z on X; we will conflate this
pair with the log-scheme it determines.

2.1 Totally ordered groups
We start with some standard facts about totally ordered groups, which are used to discuss valuations.

Definition 2.1.1. By a totally ordered group, we will mean an abelian group Γ written additively,
equipped with a total ordering � with the property that, for a, b, c ∈ Γ, a � b if and only if
a + c � b + c. As usual, we write a < b to mean that a � b but a �= b (so that b �� a); and we write
a � b and a > b to mean b � a and b < a, respectively. Write Γ∞ for the monoid Γ∪ {∞} in which
x + ∞ = ∞ for all x ∈ Γ∞, and extend the total ordering to Γ∞ by declaring that, for all x ∈ Γ,
x < ∞.
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Definition 2.1.2. Let Γ be a totally ordered group. A proper subgroup ∆ of Γ is called an isolated
subgroup if, for any α ∈ ∆, β ∈ Γ with α � β � 0, it follows that β ∈ ∆. It is easily shown that the
isolated subgroups are totally ordered under inclusion; define the rank of Γ, denoted rank(Γ), to be
the cardinality of the set of isolated subgroups of Γ.

Proposition 2.1.3. Let Γ be a totally ordered group. Then the following are equivalent:

(a) Γ is isomorphic, as a totally ordered group, to a subgroup of R with its usual ordering;

(b) rank(Γ) � 1;
(c) Γ is archimedean: that is, for any a, b ∈ Γ with b > 0, there exists an integer n with nb � a.

Proof. See [ZS75, §VI.10, p. 45].

Corollary 2.1.4. A totally ordered group Γ has rank at most n if and only if it is isomorphic to
a subgroup of Rn with its lexicographic ordering.

Definition 2.1.5. Let Γ be a totally ordered group. Define the rational rank of Γ, denoted
ratrank(Γ), to be the dimension of the Q-vector space Γ

⊗
Z

Q.

Proposition 2.1.6. Let Γ be a totally ordered group, let Γ be an isolated subgroup of Γ, and equip
Γ′ = Γ/Γ with the induced total ordering. Then

ratrank(Γ) = ratrank(Γ) + ratrank(Γ′),

rank(Γ) = rank(Γ) + rank(Γ′),

rank(Γ) � rank(Γ) + ratrank(Γ′).

In particular, rank(Γ) � ratrank(Γ).

Proof. See [Vaq00, Proposition 3.5].

2.2 Valuations
Definition 2.2.1. Let R be a ring and let Γ be a totally ordered group. A valuation (or Krull
valuation) on R with values in Γ is a function v : R → Γ∞ satisfying the following conditions:

(a) for x, y ∈ R, v(xy) = v(x) + v(y);
(b) for x, y ∈ R, v(x + y) � min{v(x), v(y)};
(c) we have v(1) = 0 and v(0) = ∞.

We write real valuation as shorthand for ‘Krull valuation with values in R’. We say that the valua-
tions v1, v2 on R, with values in Γ1,Γ2, are equivalent if, for all x, y ∈ R,

v1(x) � v1(y) ⇐⇒ v2(x) � v2(y).

Define the value group Γv of v to be the image of v, as a totally ordered group; equivalent valuations
have isomorphic value groups, and in fact every valuation is equivalent to a surjective valuation (in
which Γ = Γv).

Remark 2.2.2. With notation as in Definition 2.2.1, the inverse image p = v−1(∞) is a prime ideal
of R, and the induced map v : R/p → Γ∞ extends uniquely to a valuation on Frac(R/p); see [Vaq00,
Proposition 2.2].

Definition 2.2.3. For F a field and v : F → Γ∞ a valuation on F , the subset ov = {x ∈ F : v(x) �
0} is a valuation ring of F (a subring of F maximal among local rings with fraction field F under
domination; see [Vaq00, Théorème 1.1] for other characterizations). In this case, we write κv for
the residue field κov . Conversely, every valuation ring of F arises from a unique equivalence class of
valuations [Vaq00, Proposition 2.3]. Let mv = {x ∈ F : v(x) > 0} denote the maximal ideal of ov .
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Definition 2.2.4. For k an integral domain, there is a valuation v : k → {0,∞} with v(x) = ∞ if
and only if x = 0. We call v the trivial valuation (or improper valuation) on k. More generally, if R
is a k-algebra, a valuation on R over k is a valuation which restricts to the trivial valuation on k.

Definition 2.2.5. Define the height (or rank, or real rank) and rational rank of v as the rank and
rational rank, respectively, of the value group of v, and denote these by height(v) (or rank(v))
and ratrank(v), respectively. By Proposition 2.1.6, we have height(v) � ratrank(v). Also, note that
by Proposition 2.1.3, a valuation has height 1 if and only if it is equivalent to a real valuation.

Valuations of height greater than 1 can be written as ‘compositions’ of valuations of smaller
height.

Definition 2.2.6. Let F be a field, and let v : F → Γ∞ be a valuation. For Γ a nontrivial isolated
subgroup of Γv = v(F ), put Γ′ = Γ/Γ, and let v′ : F → Γ′∞ be the composition of v with the
quotient map Γ → Γ′; it is again a valuation. Let v : κv′ → Γ∞ be the map induced by v; it too is a
valuation. In this situation, we write v = v′ ◦ v and say that v is the composition of v′ and v; note
that [Vaq00, Proposition 3.5]

height(v) = height(v′) + height(v),
ratrank(v) = ratrank(v′) + ratrank(v).

Remark 2.2.7. Note that the convention ‘overbars denote reduction’ here applies to the valuation
rings, rather than to the value groups.

Definition 2.2.8. Let E/F be an extension of fields. If w is a valuation on E, the restriction of w
to F is a valuation on F ; if that valuation is v, we say that w is an extension to E of v. Note that
this happens if and only if ow ∩ F = ov; in particular, since every integral domain is contained in a
valuation ring (by a Zornication), every valuation on F admits at least one extension to E.

Definition 2.2.9. Let E/F be a finite extension of fields, let v be a valuation on F , and let w be
an extension to E of v. Define the ramification index

e(w/v) = [Γw : Γv]

and the residual degree
f(w/v) = [κw : κv].

These numbers are both finite and satisfy the fundamental inequality

e(w/v)f(w/v) � [E : F ];

see [Vaq00, Proposition 5.1]. In particular, rank(w) = rank(v) and ratrank(w) = ratrank(v).

2.3 Riemann–Zariski spaces
We now recall the definition of a Riemann–Zariski space, following [Vaq00, § 7].

Definition 2.3.1. Let F be a field and let R be a subring of F . Define the Riemann–Zariski space
SF/R as the set consisting of the equivalence classes of valuations on F which are nonnegative on
R. This set carries two natural topologies, the coarser Zariski topology and the finer patch topology
(or Zariski–Hausdorff topology), in which bases are given by sets of one of the respective forms

Zariski: {v ∈ SF/R : v(x1) � 0, . . . , v(xm) � 0},
patch: {v ∈ SF/R : v(x1) � 0, . . . , v(xm) � 0; v(y1) > 0, . . . , v(yn) > 0},
for x1, . . . , xm, y1, . . . , yn ∈ F . The patch topology is Hausdorff, while the Zariski topology is only
T1 in general. Note that, if E/F is a field extension, then there is a natural surjection SE/R → SF/R
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obtained by restricting valuations from E to F (see Definition 2.2.8 for the surjectivity), which is
continuous for either consistent choice of topologies.

Definition 2.3.2. For F a field, let TF denote the set of functions from F to {0,+,−}, equipped
with the product topology associated to the discrete topology on {0,+,−}. Consider the map from
SF/R to TF that associates to v ∈ SF/R the function fv ∈ TF taking x ∈ F to 0,+,− depending
on whether v(x) = 0, v(x) > 0, or v(x) < 0. This map SF/R → TF is injective because from fv we
can recover ov as {x ∈ F : fv ∈ {0,+}}, and hence can recover v. Moreover, the subspace topology
induced on SF/R is visibly the same as the patch topology. We may similarly recover the Zariski
topology by starting with the topology on {0,+,−} with open sets ∅, {0,+}, {0,+,−}.

The fundamental property of Riemann–Zariski spaces is the following result (see the proofs
of [Vaq00, Théorème 7.2] and [ZS75, Theorem VI.40]).

Theorem 2.3.3. Let F be a field and let R be a subring of F . Then SF/R with the patch topology
is a closed subset of TF . Consequently (by Tykhonov’s theorem) SF/R is compact under the patch
topology and quasicompact under the Zariski topology.

2.4 Centers of valuations
Definition 2.4.1. Let F be a field, let v : F → Γ∞ be a valuation on F , and let A be a subring
of ov. The center of v on A is the ideal A ∩ mv in A; it is prime because it is the contraction of a
prime ideal of ov . If A is a local ring and F = Frac(A), we say that v is centered in A if the center
of v on A equals mA; it is equivalent to say that the valuation ring of v dominates A.

The concept of the center of a valuation also extends to schemes.

Definition 2.4.2. Let X be an integral scheme, and let v be a valuation on the function field
of X. Then the set of points x whose local rings OX,x are contained in the valuation ring ov is
an irreducible or empty closed subset of X (see [Vaq00, Proposition 6.2]); we call this set (or the
corresponding reduced closed subscheme) the center of v on X. Note that the generic point of
the center of v is the unique point x such that v is centered in OX,x. If the center of v on X is
nonempty, we say that v is centered on X. If X is proper over a field, then v is always centered on
X; see [Vaq00, Proposition 6.3]. (See also Lemma 2.4.5 below.)

Proposition 2.4.3. Let X be a proper irreducible variety over a field k, and let v be a valuation on
k(X) over k. Then the dimension of the center of v on X is at most trdeg(κv/k). Moreover, there
exists a blowup Y of X such that the center of v on Y has dimension equal to trdeg(κv/k), and the
same is true of any further blowup Y ′ of Y .

Proof. The equality occurs whenever the local ring on Y of the generic point of the center of v
contains elements lifting a transcendence basis of κv over k; this clearly occurs for some Y and
continues to occur after further blowing up. Compare [Vaq00, Proposition 6.4].

Note the following relationship to the Riemann–Zariski space [Vaq00, Proposition 7.4].

Proposition 2.4.4. Let X be an integral noetherian scheme over a field k. Then the set of valuations
v ∈ Sk(X)/k with nonempty center on X is an open subset U(X) of Sk(X)/k for the Zariski topology,
and the map U(X) → X carrying v ∈ U(X) to the generic point of its center is continuous for the
Zariski topology on Sk(X)/k and the usual (Zariski) topology on X.

Lemma 2.4.5. Let f : X ′ → X be a proper morphism between irreducible varieties over k. Let w
be a valuation on k(X ′) over k, and let v be the restriction of w to k(X). Let Y be the center of v
on X, and let Y ′ be the center of w on X ′. Then the generic point of Y ′ maps to the generic point
of Y .
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Proof. The proof is a relative version of [Vaq00, Proposition 6.3]. In the diagram

Spec k(X ′) ��

��

X ′

f

��
Spec ow

��

���
�

�
�

�
X

the lower horizontal arrow factors as the surjection Specow → Spec ov followed by the map Spec ov

→ X whose image of the closed point of Spec ow is the generic point of Y . By the valuative criterion
for properness, into the diagram we can insert a map Specow → X ′, whose image of the closed
point of Spec ow is the generic point of Y ′. This proves the claim.

2.5 Abhyankar’s inequality
We recall a fundamental result of Abhyankar [Vaq00, Théorème 9.2].

Definition 2.5.1. We say that a valuation v is discrete if its value group is isomorphic to Zd

under the lexicographic ordering, for some nonnegative integer d. Note that this is more inclusive
than the layman’s definition of a ‘discrete valuation’; that concept corresponds in standard valuation-
theoretic terminology to a divisorial valuation. See Definition 2.5.3.

Theorem 2.5.2 (Abhyankar). Let A be a noetherian local ring, and put F = Frac(A). Let v : F →
Γ∞ be a valuation on F centered in A.

(a) The following inequality holds:

ratrank(v) + trdeg(κv/κA) � dim(A). (2.5.2.1)

(b) If equality holds in (a), then Γ ∼= Zratrank(v) (as an abstract group) and κv is a finitely generated
field extension of κA.

(c) If rank(v) + trdeg(κv/κA) = dim(A), then v is discrete.

Definition 2.5.3. Let A be a noetherian local ring, and put F = Frac(A). Let v : F → Γ∞ be a
valuation on F whose valuation ring contains A. We say that v is an Abhyankar valuation if equality
holds in (2.5.2.1). We say a valuation v is divisorial if

rank(v) = 1, trdeg(κv/κA) = dim(A) − 1.

We say that v is monomial if

rank(v) = 1, ratrank(v) = dim(A), κv = κA;

beware that some authors may prefer not to include the rank restriction.

Remark 2.5.4. For k a field, any valuation v over k on a finitely generated field K over k is subject
to Abhyankar’s inequality. That is because we may choose a proper variety X over k with function
field K, on which v will be centered (see Definition 2.4.2). In particular, v is centered on some affine
chart of X, whose coordinate ring is noetherian, as is its localization at the center of v.

3. The local approach to semistable reduction

In this chapter, we recall the statement of the semistable reduction problem, then demonstrate its
equivalence with a formally weaker form which is in some sense local at a valuation.

Convention 3.0.1. Throughout this section, let k be a field of characteristic p > 0, and fix a power
q of the prime p. Let K be a discretely valued field of characteristic 0 with residue field k. Assume
that there exists a continuous endomorphism σK : K → K lifting the q-power Frobenius morphism
on k, and fix a choice of σK .
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Remark 3.0.2. The restriction to K discretely valued is necessitated in part by that restriction in the
work of Shiho [Shi00, Shi02] invoked in [Ked07], and in part by that restriction in the construction
of slope filtrations for Frobenius modules [Ked04a], which will intervene at more than one point in
this series.

We retain notation and terminology as set in [Ked07]; for convenience, we recall some of the less
standard notation.

Definition 3.0.3. Let Γ∗ be the divisible closure of |K∗|. We say that an interval I ⊆ [0,+∞) is
aligned if each endpoint at which I is closed is either zero or an element of Γ∗. For I an aligned
interval, let Am

K(I) denote the admissible subspace of the rigid analytic m-plane with coordinates
t1, . . . , tm, consisting of points where |ti| ∈ I for i = 1, . . . ,m. We drop the parentheses around
I when it is written out explicitly; for instance, we write Am

K [0, 1) for the open unit polydisc. If
we need to specify the name t of the family of dummy variables, we add it to the notation as a
subscript, e.g. Am

K,t(I).

3.1 Alterations
Before proceeding further, we recall the fundamental concept of alterations, from [DJ96, § 2.20].

Definition 3.1.1. For X a noetherian integral scheme, an alteration of X is a proper dominant
morphism f : X1 → X with X1 irreducible and f generically finite, i.e. there exists U ⊆ X open
dense such that f−1(U) → U is finite.

Definition 3.1.2. Let X be an irreducible k-variety, and let Z be a proper closed subset of X.
A quasiresolution of the pair (X,Z) consists of:

(i) an alteration f : X1 → X over k, which is required to be generically étale if k is perfect; and
(ii) an open immersion j : X1 ↪→ X1 over k, with X1 projective over k;

such that (X1, j(f−1(Z))∪ (X1 \ j(X1))) form a smooth pair. By a quasiresolution of X, we mean
a quasiresolution of the pair (X, ∅).

In terms of this definition, de Jong’s alterations theorem is as follows [DJ96, Theorem 4.1].

Theorem 3.1.3. Let X be an irreducible k-variety, and let Z be a proper closed subset of X. Then
the pair (X,Z) admits a quasiresolution.

3.2 The semistable reduction problem
We now formulate the semistable reduction problem, following Shiho [Shi02, Conjecture 3.1.8].
(This was done once already in [Ked07, Conjecture 7.1.2].)

Definition 3.2.1. Let (X,Z) be a smooth pair, and let E be a convergent isocrystal on U = X \Z.
We say that E is log-extendable (on X) if E extends to a convergent log-isocrystal F with nilpotent
residues on the log-scheme (X,Z), in the sense of Shiho [Shi00, Shi02].

The following alternate formulation is [Ked07, Theorem 6.4.5] (the main result of [Ked07]).

Theorem 3.2.2. Let (X,Z) be a smooth pair, and let E be an isocrystal on U = X\Z overconvergent
along Z. Then E has unipotent monodromy along Z in the sense of [Ked07, Definition 4.4.2] if and
only if E is log-extendable on X. Moreover, the restriction functor, from convergent log-isocrystals
with nilpotent residues on (X,Z) to isocrystals on U overconvergent along Z, is fully faithful; in
particular, a log-extension with nilpotent residues is unique if it exists, and any Frobenius on E also
acts on such an extension.
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Remark 3.2.3. Let (X,Z) and (X ′, Z ′) be smooth pairs, and let f : X ′ → X be a morphism with
f(X ′\Z ′) ⊆ X \Z. If E is a convergent isocrystal on X \Z which is log-extendable on X, then f∗E is
log-extendable on X ′; this follows from the existence of pullbacks in Shiho’s category of convergent
log-isocrystals.

Definition 3.2.4. Let X be a smooth irreducible k-variety, and let E be an overconvergent
F -isocrystal on X. We say that E admits semistable reduction if there exists a quasiresolution
(f : X1 → X, j : X1 ↪→ X1) of X such that f∗E is log-extendable on X1.

We now recall, in the present terminology, the formulation of Shiho’s conjecture [Shi02, Conjec-
ture 3.1.8] given earlier in this series [Ked07, Conjecture 7.1.2].

Conjecture 3.2.5. Let X be a smooth irreducible k-variety and let E be an overconvergent
F -isocrystal on X. Then E admits semistable reduction.

Actually, Shiho’s original conjecture only required k perfect; however, the distinction between
this and the general case is illusory. In fact, one may even reduce to considering algebraically closed
base fields, as follows.

Proposition 3.2.6. Let X be a smooth irreducible k-variety, and let E be an overconvergent
F -isocrystal on X. Let Kunr be the maximal unramified extension of K, and let K ′ be the completion
of the direct limit Kunr σK−−→ Kunr σK−−→ · · · . Let E ′ be the overconvergent F -isocrystal on X ′ =
X ×k kalg, with coefficients in K ′, obtained by base extension from E . If E ′ admits semistable
reduction, then so does E .

Proof. If E ′ admits semistable reduction, then there exists a quasiresolution (f ′ : X ′
1 → X ′, j :

X ′
1 ↪→ X ′

1) such that (f ′)∗E ′ is log-extendable on X ′
1. Since specifying the data of this quasiresolution

only involves a finite number of elements of kalg, we can realize it over some finite extension k′ of k.
This means that we can produce an alteration f1 : X1 → X such that X1 ×k k′ is a disjoint
union of copies of X ′

1. Unfortunately, X1 need not be smooth over k; however, if we construct a
quasiresolution (f2 : X2 → X1, j2 : X2 ↪→ X2), then the base extension of (f2 ◦ f1)∗E ′ to kalg is
log-extendable on X2 ×k kalg. Since local unipotence can be checked after a field extension [Ked07,
Remark 3.4.4], we may apply Theorem 3.2.2 to deduce that (f2 ◦ f1)∗E is also log-extendable on
X2. Hence E admits semistable reduction.

3.3 Local semistable reduction
We next formulate a local version of semistable reduction, then relate it to global semistable reduc-
tion via the quasicompactness of Riemann–Zariski spaces.

Definition 3.3.1. Let X be a smooth irreducible k-variety, and let E be an overconvergent F -
isocrystal on X. For v a valuation on the function field k(X) over k, we say that E admits local
semistable reduction at v if there exists a quasiresolution (f : X1 → X, j : X1 ↪→ X1) of X such
that f∗E is log-extendable on some open subscheme of X1 on which each extension of v to k(X1) is
centered.

Remark 3.3.2. If g : Y → X is any alteration, and g∗E admits local semistable reduction at every
extension of v to k(Y ), then E admits local semistable reduction at v.

Lemma 3.3.3. Let X be a smooth irreducible k-variety, let (f : X1 → X, j : X1 ↪→ X1) be a
quasiresolution of X, and let U be an open subscheme of X1. Then the set of v ∈ Sk(X)/k, all of
whose extensions to k(X1) are centered on U , is an open subset of Sk(X)/k for the patch topology.
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Proof. Let A be the set of valuations on k(X1) centered on U ; then A is open in Sk(X1)/k. Put B =
Sk(X1)/k \A, which is thus closed for the patch topology; since Sk(X1)/k is compact by Theorem 2.3.3,
then so is B. Let C be the image of B under the restriction map Sk(X1)/k → Sk(X)/k; then C is
quasicompact since it is the image of a quasicompact topological space under a continuous map.
Since Sk(X)/k is Hausdorff under the patch topology, C is Hausdorff, hence compact, hence closed.
The set we are looking for is the complement of C, so we are done.

Proposition 3.3.4. Let X be a smooth irreducible k-variety, and let E be an overconvergent
F -isocrystal on X. Suppose that E admits local semistable reduction at every valuation on k(X)
over k. Then E admits semistable reduction.

Proof. Consider the Riemann–Zariski space Sk(X)/k equipped with the patch topology. By hypoth-
esis, for each vi ∈ Sk(X)/k, we may choose a quasiresolution (fi : Xi → X, ji : Xi ↪→ Xi) of X such
that f∗

i E is log-extendable on some open subscheme Ui of Xi containing the center of each extension
of vi to k(Xi). Let Bi be the set of valuations w ∈ Sk(X)/k each of whose extensions to k(Xi) is
centered in Ui; by Lemma 3.3.3, Bi is an open neighborhood of vi in Sk(X)/k.

By Theorem 2.3.3, Sk(X)/k is compact, so there exist finitely many valuations v1, . . . , vn ∈ Sk(X)/k

such that B1 ∪ · · · ∪ Bn = Sk(X)/k. Apply Theorem 3.1.3 (to the closure in X1 ×k · · · ×k Xn of an
irreducible component of X1 ×X · · · ×X Xn) to produce a smooth pair (Y ,E) with Y projective,
admitting maps gi : (Y ,E) → (Xi, Xi \ Xi) for i = 1, . . . , n. Let Y be the inverse image of
X1 ×X · · ·×X Xn in Y , so that Y is open dense in Y and the gi induce a projective map g : Y → X.
Then by Remark 3.2.3, g∗E = (gi ◦ fi)∗E is log-extendable on g−1

i (Ui) for each i.
Let H be a component of E; then H corresponds to a divisorial valuation on k(Y ), whose

restriction to k(X) must lie in one of the Bi. For any such i, g−1
i (Ui) meets H, so by the easy

direction of Theorem 3.2.2 plus [Ked07, Proposition 4.4.4], g∗E has unipotent local monodromy
along H. Since this is true for each H, we may apply the other direction of Theorem 3.2.2 to deduce
that g∗E is log-extendable on Y . Hence E admits semistable reduction, as desired.

Since we are now using a local strategy, it is sensible to refer to unipotent local monodromy in
terms of valuations rather than divisors.

Definition 3.3.5. Let E be an overconvergent F -isocrystal on a smooth irreducible k-variety X,
and let v be a divisorial valuation on k(X) over k. We say that E has unipotent local monodromy
along v if there exists a birational morphism f : X ′ → X such that v is centered on a smooth
divisor Z of X ′, and f∗E has unipotent local monodromy along Z. By [Ked07, Proposition 4.4.1],
the same will then be true for any other choice of f . Similarly, it is well defined to say that E
acquires unipotent local monodromy along v over a finite separable extension of k(X).

3.4 Partial compactifications

In some applications, it may be helpful to have some sort of semistable reduction even for isocrystals
which are only partially overconvergent. Here is the correct formulation of the global and local
problems.

Definition 3.4.1. Let X be a smooth irreducible k-variety, and let X be a partial compactification
of X (i.e. X is a k-variety equipped with an open immersion X ↪→ X). Let E be an F -isocrystal
on X overconvergent along X \ X. We say that E admits semistable reduction if there exists a
quasiresolution (f : X1 → X, j : X1 → X1) of the pair (X, X \X) such that f∗E is log-extendable
to X1. As in Proposition 3.2.6, it is sufficient to check semistable reduction after extending scalars
from k to its algebraic closure.
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Conjecture 3.4.2. Let X be a smooth irreducible k-variety, let X be a partial compactification
of X, and let E be an F -isocrystal on X overconvergent along X \ X. Then E admits semistable
reduction.

Definition 3.4.3. Let X be a smooth irreducible k-variety, let X be a partial compactification of
X, and let v be a valuation on k(X) centered on X . Let E be an F -isocrystal on X overconvergent
along X \ X. We say that E admits local semistable reduction at v if there exists a quasiresolution
(f : X1 → X, j : X1 → X1) of the pair (X, X \ X) such that f∗E is log-extendable to some open
subset of X1 on which v is centered.

Remark 3.4.4. Note that, if X is proper, then E is just an overconvergent F -isocrystal, and the
two possible interpretations of semistable reduction (Definitions 3.2.4 and 3.4.1) are consistent;
similarly, the two possible interpretations of local semistable reduction (Definitions 3.3.1 and 3.4.3)
are consistent. More generally, equivalent partial compactifications in the sense of [Ked07, Defini-
tion 4.1.2] give rise to equivalent categories of F -isocrystals, and to equivalent notions of global and
local semistable reduction.

Proposition 3.4.5. Let X be a smooth irreducible k-variety, and let X be a partial compactification
of X. Let E be an F -isocrystal on X overconvergent along X \ X. Suppose that E admits local
semistable reduction at every valuation on k(X) over k centered on X . Then E admits semistable
reduction.

Proof. As in Proposition 3.3.4.

4. Simplification of the local problem

In this section, we demonstrate that the local semistable reduction problem need only be considered
around valuations of height 1, by an inductive argument. We also show that valuations whose
residue fields have positive transcendence degree over the base field need not be treated separately,
by comparison between an isocrystal and its ‘generic fibre’.

4.1 Étale covers of affine spaces
Besides de Jong’s alterations theorem, it will also be useful to have a method for pushing forward
isocrystals onto simple spaces. The following result [Ked05, Theorem 2] (based on a technique of
Abhyankar for constructing finite étale morphisms in positive characteristic) will be of use in this
regard.

Proposition 4.1.1. Let X be an irreducible k-variety of dimension n, let x ∈ X be a smooth point
(whose existence forces X to be geometrically reduced), and let D1, . . . ,Dm be smooth irreducible
divisors in X meeting transversely at x. Then there exists an open neighborhood U of x in X and
a finite étale morphism f : U → An

k such that D1, . . . ,Dm map to coordinate hyperplanes.

The relevance of Proposition 4.1.1 to our study comes from the following observation.

Lemma 4.1.2. Let (X,Z) be a smooth pair over k, put U = X \ Z, let f : Y → X be a finite étale
morphism of k-varieties, and let E be an isocrystal on f−1(U) overconvergent along f−1(Z). Then
E is log-extendable to Y if and only if f∗E is log-extendable to X.

Proof. By [Ked07, Theorem 6.4.5], we may check log-extendability by checking unipotence along
each component of the boundary divisor. On the one hand, if f∗E has unipotent local monodromy,
then so does f∗f∗E ; however, E injects into f∗f∗E by adjunction (see [Ked07, Definition 2.6.8]), so
by [Ked07, Proposition 3.2.20] it too has unipotent local monodromy. On the other hand, suppose
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E has unipotent local monodromy; we can then push forward a log-extension of E to obtain a
log-extension of f∗E .

4.2 Composite valuations
We next show that the semistable reduction problem can be reduced to the restricted local semistable
reduction problem which is only centered at valuations of height 1.

We first formulate an extension of the full faithfulness theorem for overconvergent-to-convergent
restriction [Ked04b, Theorem 1.1]. Although we only need the case of a smooth pair, for future
reference we formulate the general theorem and prove it using a descent argument.

Theorem 4.2.1. Let U ↪→ X be an open immersion of k-varieties with dense image, with U smooth.
Then the restriction functor from F -Isoc†(U,X/K) to F -Isoc(U/K) is fully faithful.

Proof. Let Hom(OU , E ;U,X/K) and Hom(OU , E ;U/K) be the morphisms from OU to E in the
categories F -Isoc†(U,X/K) and F -Isoc(U/K). (These morphisms can be identified with F -invariant
horizontal sections on appropriate realizations of E .) For any E ∈ F -Isoc†(U,X/K), restriction
induces an injection Hom(OU , E ;U,X/K) → Hom(OU , E ;U/K), and the desired result is that this
arrow is always surjective.

First suppose that (X,X \ U) is a smooth pair (this is the only case that will be used in this
paper). Then this statement follows from [Tsu02, Proposition 6.2.1], under the assumption of [Tsu02,
Conjecture 2.3.2]. However, the latter conjecture is verified by [Ked04b, Theorem 5.1], so we may
unconditionally deduce the desired result.

In the general case, we may assume that X is irreducible. Choose a quasiresolution (f : X1 →
X, j : X1 ↪→ X1) of the pair (X,X \ U), and put U1 = f−1(U). Then (U1,X1) is a smooth pair;
hence given E ∈ F -Isoc†(U,X/K), we may apply the previous paragraph to show that the map
Hom(OU1 , f

∗E ;U1,X1/K) → Hom(OU1 , f
∗E ;U1/K) is bijective.

Suppose we are given v ∈ Hom(OU , E ;U/K); we can pull v back to Hom(OU1 , f
∗E ;U1/K). By

the previous paragraph, this element lifts to Hom(OU1 , f
∗E ;U1,X1/K). Let U ′ be the subscheme of

U over which f is finite étale, and put U ′
1 = f−1(U ′). We can restrict v to Hom(OU ′

1
, f∗E ;U ′

1,X1/K),
which by adjunction for finite étale morphisms (see [Ked07, Definition 2.6.8] and [Tsu02, § 5.1]) maps
to Hom(OU ′ , E ;U ′,X/K). (Note that we are overloading notation slightly, by using E and f∗E to
refer also to the restrictions to F -Isoc†(U ′,X/K) and F -Isoc†(U ′

1,X1/K), respectively.)
By [Ked07, Theorem 5.2.1], v lifts to a morphism in Isoc†(U,X/K). Since we can check compat-

ibility with Frobenius over U ′, we have v ∈ F -Isoc†(U,X/K), as desired. (A proof using Tsuzuki’s
cohomological descent theorem [Tsu03, Theorem 2.1.3] is also possible.)

We next verify a particular geometric instance of the general statement we are after; ultimately
we will reduce back to this case.

Lemma 4.2.2. Put Am
k = Spec k[t1, . . . , tm] and put D = SpecV (t1 · · · tm) ⊂ Am

k . Put An
k =

Speck[u1, . . . , un] and put E = SpecV (u1 · · · un) ⊂ An
k . Let E be an F -isocrystal on (Am

k \ D) ×
(An

k \E) overconvergent along D× (An
k \E)∪ (Am

k \D)×E, with unipotent monodromy along each
component of D × (An

k \ E). Apply Theorem 3.2.2 to extend E to a convergent log-isocrystal on
(Am

k × (An
k \ E),D × (An

k \ E)), then restrict to {0} × (An
k \ E). Let F be the resulting convergent

F -isocrystal, and suppose that F is log-extendable to {0} × An
k . Then, for any sufficiently large

integer N , E is log-extendable to

Speck[t1(u1 · · · un)−N , . . . , tm(u1 · · · un)−N , u1, . . . , un].

Proof. To check log-extendability of E to

Speck[t1(u1 · · · un)−N , . . . , tm(u1 · · · un)−N , u1, . . . , un],
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by Theorem 3.2.2 it suffices to check unipotence along V (uj) for j = 1, . . . , n. By generization in
the sense of [Ked07, Proposition 3.4.3] (or more precisely, from [Ked07, Proposition 4.4.1]), we may
reduce to the case n = 1.

We may realize E as a ∇-module on a space of the form Am
K,t[ε, 1] × A1

K,u[δ, 1] for some δ, ε ∈
(0, 1) ∩Γ∗. By [Ked07, Lemma 5.1.1(b)], for suitable δ, we can extend E to a log-∇-module E ′ with
nilpotent residues on Am

K,t[0, 1] × A1
K,u[δ, 1].

The restriction of E ′ to {0} × A1
K,u[1, 1] is isomorphic to F , which we assumed admits a log-

extension G. By Theorem 4.2.1, again for suitable δ the restriction of E ′ to {0} × A1
K,u[δ, 1] is

isomorphic to a corresponding restriction of G. (Here we are using that the restriction of E ′ is over-
convergent with respect to u1; this follows from the same fact on E ′ itself. By [Ked07, Lemma 3.1.6],
we may check this after restriction to the subspace on which |t1| = · · · = |tn| = 1, where we are
given that E is overconvergent.)

Pick any η ∈ (ε, 1)∩Γ∗. By [Ked07, Proposition 3.5.3], there exists δ ∈ (0, 1)∩Γ∗ such that E is
unipotent on Am

K,t[η, η1/q ]×A1
K,u[δ, 1]. In other words, on that space, E is isomorphic to a successive

extension of ∇-modules pulled back from A1
K,u[δ, 1]. By the hypothesis on the log-extendability of

F , plus [Ked07, Proposition 3.6.9], we can choose δ so that the resulting ∇-modules on A1
K,u[δ, 1]

all become unipotent on A1
K,u[δ, 1). Hence E admits a filtration with trivial successive quotients on

{(t1, . . . , tm, u1) ∈ Am+1
K : δ � |u1| < 1; η � |ti| � η1/q (i = 1, . . . ,m)}.

In particular, for any N with η1/N � δ (which holds for N sufficiently large), this space contains

{(t1, . . . , tm, u1) ∈ Am+1
K : η1/N � |u1| � η1/(qN); |ti/uN

1 | = 1 (i = 1, . . . ,m)},
so E is unipotent on the latter. By applying Frobenius repeatedly, we see that, for each nonnegative
integer h, E is unipotent on

{(t1, . . . , tm, u1) ∈ Am+1
K : η1/(qhN) � |u1| � η1/(qh+1N); |ti/uN

1 | = 1 (i = 1, . . . ,m)}.
By glueing, E is unipotent on

{(t1, . . . , tm, u1) ∈ Am+1
K : η1/N � |u1| < 1; |ti/uN

1 | = 1 (i = 1, . . . ,m)}.
Hence E has unipotent monodromy along the subspace V (u1) in Spec k[t1/uN

1 , . . . , tm/uN
1 , u1], so

Theorem 3.2.2 yields the desired result.

We now state a partially restricted version of the local semistable reduction problem; we will
restrict even further in Conjecture 4.3.3.

Conjecture 4.2.3. Let X be a smooth irreducible k-variety, let X be a partial compactification
of X, and let E be an F -isocrystal on X overconvergent along X \X. Then E admits local semistable
reduction at any valuation v on k(X) over k of height 1 centered on X .

Proposition 4.2.4. Suppose that Conjecture 3.4.2 holds for all varieties of dimension less than n,
and that Conjecture 4.2.3 holds for all varieties of dimension n. Then Conjecture 3.4.2 also holds
for varieties of dimension n. In particular, Conjecture 4.2.3 (for a given k and K) implies Conjec-
ture 3.4.2 (for the same k and K).

Proof. Let X be a smooth irreducible k-variety of dimension n, let X be a partial compactification
of X, and let E be an F -isocrystal on X overconvergent along X \ X. By Proposition 3.4.5, it
suffices to show that, for any valuation v on k(X) of height greater than 1 centered on X , E admits
local semistable reduction at v. As in Definition 2.2.6, write v as a composition v′ ◦ v, where v′ is a
valuation on X of height 1 centered on X .

We establish a series of reductions of this statement to more restrictive versions. To begin with,
we may assume by Proposition 3.2.6 that:
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(a) The field k is algebraically closed.

Note that, at any point, we may pull back along an alteration and replace v by each of its extensions
in turn; Lemma 2.4.5 guarantees that these stay centered in the right places. By Theorem 3.1.3, we
may thus assume that:

(b) There exists a smooth pair (Y ,D), such that X = Y \ D for Y the complement of a union of
components of D and D = Y ∩ D, such that v′ is centered on Y and v is centered on Y .

Note also that the condition that E is log-extendable to an open subset of Y on which v is centered
is local on Y , thanks to the full faithfulness aspect of Theorem 3.2.2.

By the hypothesis that Conjecture 4.2.3 holds for all varieties of dimension n, we know that E
admits local semistable reduction at v′. Hence by passing up a suitable quasiresolution and shrinking,
we may thus assume that:

(c) The isocrystal E is log-extendable to Y .

By shrinking Y and enlarging D, we can ensure that:

(d) The intersection E of all of the components of D is nonempty and irreducible, and the center
of v′ on Y is equal to E.

By shrinking X and Y , then applying Proposition 4.1.1 and Lemma 4.1.2, we can ensure that:

(e) We have Y = Am
k × X ′ and Y = Am

k × Y ′, and writing Am
k = Spec k[t1, . . . , tm], we have

D = V (t1 · · · tm).

By Theorem 3.1.3 again (applied this time to (Y ′, Y ′ \ X ′)), we may assume that:

(f) There exists a smooth pair (Y ′,D′) with X ′ = Y ′ \ D′, such that v is centered on Y ′.

By applying Proposition 4.1.1 and Lemma 4.1.2, we can ensure that:

(g) We have Y ′ = An−m, and writing An−m
k = Speck[u1, . . . , un−m], we have D′ = V (u1 · · · un−m).

By [Ked07, Lemma 5.1.1] (applied on affine subspaces of Pm
k ×Pn

k), we may realize the log-extension
of E to Y as a log-∇-module with nilpotent residues on Am

K,t[0, 1]×An−m
K,u [δ, 1] for some δ ∈ (0, 1)∩Γ∗,

which is convergent with respect to the parameters t1, . . . , tm, u1, . . . , un−m. The restriction of this
log-∇-module to {0}×An−m

K,u [δ, 1] represents an F -isocrystal on X ′ overconvergent along D′. Let F
denote the underlying convergent F -isocrystal on X ′; since v is a well-defined valuation on k(X ′)
and dim(X ′) < n, we may invoke the induction hypothesis in order to ensure that:

(h) The isocrystal F is log-extendable to Y ′.

This disturbs restriction (g), but we may apply Proposition 4.1.1 and Lemma 4.1.2 to re-establish it
without losing any of the other restrictions. The desired result in this case follows from Lemma 4.2.2.

4.3 Positive transcendence degree
We now give an argument to eliminate the need for separately treating valuations whose residue
fields are not algebraic over k. This again amounts to generization; as in the previous section, we
calculate in a simple geometric setting and then reduce the general case back to the simple one.

Lemma 4.3.1. Let v be a valuation on k(t1, . . . , tm, u1, . . . , un) over k, with center on Am+n
k =

Am
k × An

k equal to {0} × An
k ; note that this implies that v is trivial on 	 = k(u1, . . . , un). Put

D = V (t1 · · · tm) ⊂ Am
k and D� = V (t1 · · · tm) ⊂ Am

� . Let E be an F -isocrystal on (Am
k \ D) × An

k

overconvergent along D × An
k . Let L be the p-adic completion of K(u1, . . . , un), and let F be the
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induced isocrystal on Am
� \ D� overconvergent along D�, with coefficient field L (as in [Ked07,

Proposition 3.4.3]). If F admits local semistable reduction at v, then so does E .

Proof. Choose a quasiresolution (f1 : X1 → (Am
� \ D�), j1 : X1 ↪→ X1) of Am

� \ D�, such that f∗
1F

is log-extendable on an open subset on which each extension of v to 	(X1) is centered. Note that
each such valuation has center equal to a closed point; by Theorem 3.2.2, f∗

1F has unipotent local
monodromy along any divisor passing through that point.

Choose a quasiresolution (f2 : X2 → Am+n
k , j2 : X2 ↪→ X2) of the pair (Am+n

k ,D × An
k),

such that k(X2) contains the maximal separable subextension of the normal closure of 	(X1) over
	(t1, . . . , tm) = k(t1, . . . , tm, u1, . . . , un). Put U = f−1

2 ((Am
k \ D) × An

k), so that (X2, X2 \ U) is a
smooth pair and f∗

2E is an F -isocrystal on U overconvergent along X2 \ U .
Let w be any extension of v to k(X2); we may view w also as an extension of v to 	(X1) over

	. Let Y be the center of w on X2; by Lemma 2.4.5, f2(Y ) = {0} × An
k . Let E be a component

of X2 \ U containing Y , and let wE be the corresponding divisorial valuation on k(X2). Let vE be
the restriction of wE to k(t1, . . . , tm, u1, . . . , un); then the center of vE on Am+n

k contains f2(Y ) =
{0} × An

k .
We deduce that vE is trivial on 	; we may thus view wE as a divisorial valuation on 	(X1)

over 	, whose center contains the center of w. As noted above, this means that f∗
1F has unipotent

local monodromy along the center of wE . By [Ked07, Proposition 3.4.3], f∗
2E has unipotent local

monodromy along E.
By Theorem 3.2.2, we may conclude that f∗

2E is log-extendable to a subscheme of X2 on which
each extension of v to k(X2) is centered. This implies that E admits local semistable reduction at
v, as desired.

Definition 4.3.2. Let X be an irreducible variety over k. By a minimal valuation on X, we mean
a valuation v on the function field k(X) over k such that height(v) = 1 and trdeg(κv/k) = 0.

We now give our most refined version of the local semistable reduction problem.

Conjecture 4.3.3. Let X be a smooth irreducible k-variety, let X be a partial compactification of
X, and let E be an F -isocrystal on X overconvergent along X \X. Then E admits local semistable
reduction at any minimal valuation v on k(X) centered on X.

Theorem 4.3.4. Suppose that for some integer n, Conjecture 4.3.3 holds for varieties of dimension
at most n for all algebraically closed k. Then Conjecture 3.4.2 holds for varieties of dimension at
most n for all k.

Proof. We proceed by induction on n; we may thus assume Conjecture 3.4.2 for all varieties of
dimension less than n. Let X be a smooth irreducible k-variety of dimension n, let X be a partial
compactification of X, and let E be an F -isocrystal on X overconvergent along X \X. By Proposi-
tion 4.2.4, it suffices to show that, for any valuation v on k(X) of height 1 centered on X, E admits
local semistable reduction at v. This follows from the assumption of Conjecture 4.3.3 in the case
trdeg(κv/k) = 0, so hereafter we assume instead that trdeg(κv/k) = d > 0.

As in the proof of Proposition 4.2.4, we make a sequence of reductions, again starting by applying
Proposition 3.2.6 to reduce to the case where:

(a) The field k is algebraically closed.

By Theorem 3.1.3, we may assume that:

(b) There exists a smooth pair (Y,D) with X = Y \ D, such that v is centered on Y .

By Proposition 2.4.3 (plus Theorem 3.1.3 again), we can blow up X and Y to ensure that:
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(c) The dimension of the center of v on Y is equal to d.

By shrinking X and Y , we may assume that:

(d) D consists of n − d components whose intersection E is the center of v on Y .

By Proposition 4.1.1 and Lemma 4.1.2, we may assume that:

(e) Y = An
k = Spec k[t1, . . . , tn] and D = V (t1 · · · tn−d).

The desired result now follows from Lemma 4.3.1.

Remark 4.3.5. Theorem 4.3.4 and the p-adic local monodromy theorem imply that local semistable
reduction holds at any divisorial valuation. One way to interpret Theorem 3.2.2 is that local
semistable reduction at a general valuation v is equivalent to uniform local semistable reduction at
all divisorial valuations in some neighborhood of v.

Remark 4.3.6. One can deduce refinements of Theorem 4.3.4 by inspecting its proof and the proof
of Proposition 4.2.4. For instance, local semistable reduction for all Abhyankar valuations follows
from local semistable reduction for all monomial valuations.
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And02 Y. André, Filtrations de type Hasse–Arf et monodromie p-adique, Invent. Math. 148 (2002),
285–317.

DJ96 A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83
(1996), 51–93.

Ked03 K. S. Kedlaya, Semistable reduction for overconvergent F -isocrystals on a curve, Math. Res. Lett.
10 (2003), 151–159.

Ked04a K. S. Kedlaya, A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93–184.
Ked04b K. S. Kedlaya, Full faithfulness for overconvergent F -isocrystals, in Geometric aspects of Dwork

theory (de Gruyter, Berlin, 2004), 819–835.
Ked05 K. S. Kedlaya, More étale covers of affine spaces in positive characteristic, J. Algebraic Geom. 14

(2005), 187–192.
Ked07 K. S. Kedlaya, Semistable reduction for overconvergent F -isocrystals, I: Unipotence and logarithmic

extensions, Compositio Math. 143 (2007), 1164–1212.
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