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Abstract

We consider a variety of algebras with two binary commutative and associative operations. For
each integer n > 0, we represent the partitions on an n -element set as «-ary terms in the variety.
We determine necessary and sufficient conditions on the variety ensuring that, for each n, these
representing terms be all the essentially n-ary terms and moreover that distinct partitions yield
distinct terms.
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1. Introduction

Following the notation of [4], we denote the set of «-ary term operations on
an algebra A by Clon A. We say that an n-ary term f(xo, •.., x«-i) does not
depend on the variable x,- in A if the identity

. . , Xj-\, y, x , + i , . . . , xn_i)

is satisfied in the algebra A. Otherwise, we say that / depends on x,. Similarly,
if V is a variety of algebras, we say that the term / ( x 0 , . . . , x«_i) does not
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312 Harry Lakser [2]

depend on the variable x, in Y if T satisfies the identity

f(x0, • • • , Xi-u )>, Xi+i, . . . , Xn-i) = f(x0, . . . , X,_i, Z, Xi + i, . . . , Xn-\)

We say that the «-ary term f(x0,..., x«_i) is essentially n-ary if / depends on
all the variables x0,..., xn_\. Following G. Gratzer [2], we denote by Pn(\)
the subset of Clon A consisting of all essentially n-ary term operations of A.

We denote the set of equivalence relations on a set X by Eqv X and, without
further ado, think of them interchangeably as either equivalence relations or as
partitions of X. Note that Eqv 0 = {0}. We denote by Nn the set { 0 , . . . , « - 1 } .
Note that No = 0. We denote by N the set {0, 1,...} of all natural numbers.

By a commutative bisemigroup A we mean an algebra (A, +, •) such that +
and • are binary commutative and associative operations. Let A be a commutative
bisemigroup with a nullary term denoted 0—whether 0 is a nullary fundamental
operation or the value of a constant term of arity > 0 will turn out to be irrelevant.
For each integer n > 0 we define a mapping

*„ :EqvNn - • Clon A

by setting

*o(0) = 0

and, for n > 0 and each a € Eqv Nn, by setting

for each block B of the partition a, and setting

*„(<*) =

the sum being taken over all the blocks B of a. For example, for the unique
partition a of Ni, we have

<!>!(«) =X0,

and, for the partition a = {{0, 2,4}, {1}, {3 }} of N5, we have

$ 5 (a) = x0x2x4 + xi + x-i.

We say that a commutative bisemigroup A is a Bell bisemigroup if, for each
n > 0, the representation $„ is a bijection between EqvNn and Pn(A), that
is, if the essentially «-ary term operations are precisely those term operations
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representing partitions of Nn and distinct partitions yield distinct term operations.
We choose this terminology because the cardinality of Eqv Nn is often called the
Bell number B(n)—see [5, page 33]. Clearly, whether or not the commutative
bisemigroup A is a Bell bisemigroup depends only on the variety Y generated
by A; consequently, we say that a variety of bisemigroups is a Bell variety of
bisemigroups if it is generated by a Bell bisemigroup.

2. Bell varieties of bisemigroups

In this section and the next we characterize Bell varieties of bisemigroups.
We consider the following identities, where 0 denotes a nullary,

(1)
(2)

(3)
(4)

(5)

(6)

(7)

(8)

(9)

(10)

and the identities

(11)

(11')

x+y—y+x

xy = yx

(X + V) + Z = X + (V + z)

(xy)z = x{yz)
0 + x = 0

0x = 0
x + x = 0

xx = 0
x + xy = 0

xy + xz = 0,

(x + y)z = 0,
(x + y)z =xyz.

In this section we prove:

LEMMA 1. If Y is a Bell variety of bisemigroups, then Y satisfies the iden-
tities (1)—(10) and either the identity (11) or (IT).

To prove Lemma 1, let Y be a Bell variety of bisemigroups. Then there is
exactly one nullary term,

0,
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exactly one unary term f(x),
x,

exactly two essentially binary terms f(x, y),

x + y and xy,

and exactly five essentially ternary terms f(x, y, z),

x + y + z, xyz, x + yz, y+xz, xy + z.

Identities (l)-{4) hold by the definition of Bell variety. The key to the proof
is the following lemma:

LEMMA 2. y satisfies one of the identities (11) or (IT).

PROOF. If the term f(x, y, z) = (x + y)z does not depend on the variable z,
then

(x + y)z = (x + y)(« + v) = (w + v)(x + y) — {u + v)w,

that is, (x + v)z is constant, and so we have (11).
If (x + y)z does not depend on x, then, by the commutativity of +, it also

does not depend on y. Consequently, if (x + y)z is not constant, the identity
(x + y)z — z holds. But then we have the sequence of identities

x + v = (x + z)(x + v ) = (x + y)(x + z ) = x + z ,

contradicting the fact that x + y is essentially binary.
Consequently, either (11) holds and we are done, or (x + v)z is essentially

ternary. In this latter case, by the symmetry in x and y (and the distinctness of
the five essentially ternary terms), V must satisfy one of the identities

(11') (x + y)z=xyz

(12) {x + y)z = x + y + z

(13) (x + y)z=xy + z.

Identity (12) yields

x + y + uv — (x + y)uv = ((x + y)u)v — (x + y + u)v = x + y + u + v,

that is, the contradiction

}, {1}, {2}, {3}}) = <D4«{0}, {1}, {2,3}}) .
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Similarly, identity (13) yields the contradiction

xy + uv = (x + y)uv — ((x + y)u)v = (xy + u)v = xyu + v.

Thus, if (x + y)z is essentially ternary, then identity (11') holds, concluding the
proof of Lemma 2.

We now establish identities (5)-( 10). We first consider the unary term f(x) =
xx. Either (8) holds or we have the identity

xx — x.

But then we have the identity

x + y = (x + y)(x + y).

If (11) holds, then we get the contradiction

x + y = 0.

If (11') holds, then we get the contradiction

x + y — xy(x + y) = (x + y)xy - xyxy = xxyy = xy.

Thus, identity (8) is established.

Similarly, if (7) does not hold, then we have the identity

x + x = x.

But then

xy = (x+x)y.

If (11) holds, we get the contradiction

xy = 0.

Similarly, if (11') holds, then, since (8) was established above,

xy - xxy - Oy,
yielding the contradiction that the term xy does not depend on x. Thus (7) is
established.
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We now establish (6). If (11) holds, then (6) follows immediately from (7):

Ox - (x + x)x = 0.

On the other hand, if (11') holds and (6) does not hold, then we must have the
identity

Ox =x.

But then, using (11'), we get the contradiction

x + y = 0(x + y) = (x + y)0 = xyO = x(yO) = x(0y) = xy.

Thus we have established (6).

We now establish (5). If (5) does not hold, then we have the identity

0 + x -x.

Then
xy = (0 + x)y.

If (11) holds, we get the immediate contradiction

xy = 0.

If (11') holds, then, by (6), we again get the contradiction

xy = xOy = 0.

Thus (5) holds.
We now establish (10). If the term xy + xz does not depend on at least one of

the variables x, y, z, then, substituting 0 for that variable and using (5) and (6),
we get (10). Thus we need only show that the term xy + xz is not essentially
ternary. Assume, to the contradictory, that it is. Then, by the symmetry in y and
z, V must satisfy one of the identities

(14) xy + xz = x + y + z,

(15) xy + xz — xyz,

(16) xy + xz =x + yz.

If (14) holds, we get the identity

x + y + z + u — x(y + z) + xu.
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If y satisfies (11), we then get the contradiction

If y satisfies (IT), we get the contradiction

x + y + z + u= xyz + xu — x + yz + u,

using (14) once more to get the second equality. Thus (14) does not hold.
If (15) holds, then we get the contradiction

xyuv = (xy)u + (xy)v = x(yu) + x(yv) — xyuyv = Oxuv = 0.

If (16) holds, then we get the contradiction

xy + uv = (xy)u + (xy)v = x(yu) + x(yv)

= x + yuyv = x + Ouv = x + 0 = 0.

Consequently, xy + xz is not essentially ternary, and so must be constant,
that is, (10) holds.

Finally, we establish (9). If x + xy is not constant, then y must satisfy one
of the identities

x + xy = xy,
x + xy = x + y,
x + xy — x,

x+xy = y.

But then, substituting uv for x and using (10), we get the respective contradic-
tions

0 = uvy,
0 = uv + y,
0 = uv,
0 = y.

Thus (9) holds, concluding the proof of Lemma 1.
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3. The free Bell bisemigroups

In this section we prove our main result:

THEOREM. There are precisely two Bell varieties of bisemigroups, the variety
38 given by the identities ( l ) - ( l l ) , and the variety 38' given by the identities
( l ) -( lOMll ' ) .

In the process of the proof we shall give a natural representation of the free
algebras on Ko generators in these varieties.

We first note the following two lemmas:

LEMMA 3. Let Y be one of the varieties 38, 38', and let f(x0, ..., xn-i) be a
term in which the variable xit 0 < / < n, appears. Then Y satisfies the identity

f(x0, . . . , j : M , O , X i + l , . . . , V i ) = 0 .

PROOF. The proof follows in a straight-forward manner from identities (5)
and (6) by induction on the complexity of the term / .

LEMMA 4. Let Y be one of the varieties 38, 38', and let f(x0,... ,xn-i) be a
term in which all of the variables x 0 , . . . , xn_\ appear. Then either V satisfies
the identity

f(x0,..., *„_!) = 0

or there is an a 6 Eqv NB such that Y satisfies the identity

f(xo,...,xn_i) = <*>„(«)•

PROOF. The proof follows in a straight-forward manner from each of the sets
of identities ( l ) - ( l l ) and (1)—(10), (IT) by induction on the complexity of the
term / . More precisely, we prove the following inductively:

Let n > 1 and let <p : Nn —>• N, the set of natural numbers, be an injection. If
f is a term involving all of the variables xv^0), • • • > -*«>(«-o and no others, then
either Y satisfies the identity

/ = 0

or there is ana € Eqv Nn such that Y satisfies the identity

f — 8(X<p(0)> • • • > xy(n-\))>
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where g = <£>n(a).

The details are left to the reader. We remark only that in both 88 and 88' we
have the identities

f + 8 = fg = 0
whenever the terms / and g have a variable in common. Thus, in view of
identities (5) and (6), if any two subterms of / have a variable in common, we
get the identity

/ = 0.

Now let W be a proper subvariety of ~V — 88 or 88', and let

f = g
be an identity satisfied in W but not in V. Without loss of generality, we may
assume that / is not constant in V and so that / = f(x0,..., xn_i) for n > 1,
where all the variables x 0 , . . . , xn_i occur in / . Applying Lemma 4 to / , we
get an a e Eqv Nn such that W satisfies the identity

not satisfied by V. If there is a variable occurring on one side of this identity
and not the other, then, substituting 0 for that variable and applying Lemma 3,
we see that <J\,(a) is constant in W, that is, that W is not Bell. Otherwise, the
variables x0,..., xn^\ are precisely the variables occurring in g, and, applying
Lemma 4 to g, we have a j?e Eqv Nn such that the identity

holds in W but not in ~V. Then a ^ ft, and so <!>„ is not injective in W, that is,
again, W is not Bell. Thus no proper subvariety of 8$ or 3& is Bell. In view of
Lemma 1, the proof of the theorem will be complete if we exhibit algebras in
8$ and 88' in which, for each n > 1, the term operations in <J>«(Eqv Nn) are all
essentially «-ary and are all distinct. We proceed to this task.

Let the sets F = F' denote the set of all ordered pairs

where X is a finite subset of N and a € Eqv X. We define two algebraic
structures F = (F, +, •) and F' = (Fr, +, •). In both F and F' we set

(17) (0, 0) + (a, X) = (a, X) + (0, 0) = (0, 0)
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and
(18) (0, 0) (a, X) = (a, X) (0, 0) = (0, 0)

for all (a, X).
For any other pair (a, X), {P, Y), that is, when X ^ 0, 7 ^ 0, the sum is

defined the same way in both algebras:

(19) (a, X) + (P, Y) = , {0> 0 )

where a U )S is the ordinary set union, and has the same effect whether we regard
a and P as equivalence relations, that is, subsets of X2, Y2, respectively, or as
partitions, that is, sets of subsets of X, Y, respectively; since the sets X and Y
are disjoint, a U j 8 e E q v ( X u y ) .

The product is defined differently for F and F'. If X ^ 0, Y ^ 0, then in F
we set

(20) (a, X){P, Y) = , „ , - , . tU .
N MK (0,0) otherwise,

where, for each set X, ix (or simply i when the context is clear) denotes the
equivalence relation X2, equivalently, the partition with only one block.

For F' we set

nu i YMR Y\-\ (1XUY,XUY) ifXnr = 0,
(21) { a , X ) ( p , Y } - ^ ( 0 0 ) ifXnr#0,

whenever X ^ 0 and Y ̂  0. Note that in both F and F' we have

(0, 0) = 0.

LEMMA 5. F e

PROOF. We need only show that F satisfies the identities ( l ) - ( l l ) and that
F' satisfies the identities (1)—(10) and (11'). This is safely left to the reader.
However, in order to preserve a modicum of honesty and at the dire risk of
boring the reader, we present the verification of (4) for both F and F', along with
the verification of (11) for F and (11') for F'.

We first verify (4). In both F and F' both sides are 0 — (0, 0) if at least one
of x, y, or z is 0. Otherwise, we may set x = {a, X), y — (P, Y), z = (y, Z)
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for nonempty X, Y, Z. Then, for both F and F' the left hand side of (4) is 0
unless X n Y # 0 and (X U Y) n Z ^ 0, that is, unless

xny^0,xnz#0, and y n z ̂  0.

From (20) it follows that in F

(xy)z = and a — ix, P = iy, V
0 otherwise,

which is exactly the computation for x{yz).
Similarly, using (21), we compute in F' that

(xy)z — | Q otherwise,

which is exactly the computation for x{yz).
This verifies (4) in F and in F'.
Wenowverify(ll)forF. Again, we set* = {a,X),y = (^, Y),z = {y, Z).

If one of X, Y is 0, then (11) follows immediately from (17) and (18). Otherwise,
since aU)3 can then not be IXUY, we again get

(x + y)z = 0,

concluding the verification of (11) for F.
To verify (11') for F' we note both sides are (0, 0) unless X, Y, Z are all

nonempty and Xr\Y = Xr\Z = YHZ = 0, in which case

x + y = (a U /J, X U F>

and so

which is precisely xyz, as derived above.
This concludes Lemma 5.

Now let X be an n-element subset of N and let <p: Nn —> X be a bijection.
For each a e Eqv X we denote by <p*a the corresponding partition on Nn,

cp*a = {(x,y)

The following lemma is then immediate from the definitions:
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LEMMA 6. Let X be an n-element subset ofN, let(p:Nn —• X be a bijection,
and let a € Eqv X. Then, in both the algebras F and F',

{a, X) = 4>n(<p*a)({i, {cp(O) }> , . . . , (t, {<p(n - 1)})).

We can now conclude the proof of the theorem. Indeed, it follows easily
from Lemma 6 that F and F' are Bell bisemigroups. Let n > 1 and let a ^ ft be
partitions of Nn. Then, applying Lemma 6 with (p the identity mapping, we get

that is, <!>„ is injective. The variables that occur in <tn(a) are precisely
jc0 , . . . , xn_!. If 4>n(a) did not depend on one of these variables, then, sub-
stituting 0 = (0, 0) for that variable and appealing to Lemma 3, we would
derive the contradiction

Thus the image of <f>n is a subset of the essentially «-ary term functions of F,
respectively of F'. That the image is precisely the set of essentially n-ary term
functions follows immediately from Lemma 4. Consequently, F and F' are Bell
bisemigroups, concluding the proof of the theorem.

For the proof of the Theorem it would suffice to state Lemma 6 with X =
Nn and <p the identity map. We chose the more general statement because it
then follows immediately that F and F' are the free algebras generated by the
countable set

in SB and SB', respectively.

4. Concluding remarks

hi terms of the concept of pn sequence, [2], we have presented a representation
of the sequence with

pn - B(n), n ^ 1,

and

Pi =
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(The condition on p\ is quite natural, since in any nontrivial algebra the term
XQ is always essentially unary—py was defined, somewhat artificially, as 1 less
than the number of essentially unary terms in order that, a priori, every sequence
of natural numbers be possible.) What is new here is the naturality of the
representation; since p0 ^ 0, the general theory of pn sequences trivially yields
(nonnatural) representations of this sequence. Essentially, one introduces as
many fundamental operations as one needs and then cuts down the number of
essentially «-ary terms by identifying any extra terms to a constant. The variety
38 is very much in this spirit, but SB' is not.

A more interesting problem, and indeed not yet solved in general, is that
of representing sequences with p0 = p\ — 0, that is, characterizing the pn

sequences of idempotent algebras with no constants. In the spirit of this paper,
since B(l) = 1, we can consider the problem of presenting the sequence

(0,0,2,..., B(n),...),

that is, modifying our results so that we have no constants. However, general
results in the literature show that this is impossible. Indeed, let us assume that
the algebra A represents the above sequence. Since B(2) = 2, A has exactly
two essentially binary term functions. If one of them is commutative, then so is
the other, that is, A has two commutative binary term operations. But then, by
aresultofDudek[l],

p3(A) > 9 > 5 = BO).

Thus, A has no binary commutative term functions. Then, by Kisielewicz [3,
Theorem 4.1], there are natural numbers au a2 with

consequently, p4 is divisible by 4, and so cannot be B(4) = 15. Thus the
sequence is not representable.
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