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A differentiation in locally

convex spaces

Sadayuki Yamamuro

The theory of [I'=finite linear operators developed by Robert T.
Moore is used to construct a differential calculus in locally
convex spaces. This note contains the fundamental theory up to

the implicit function theorem.

This is the first part of a series of notes in which we shall
construct a differential calculus in locally convex Hausdorff spaces. The
aim is to show that it is possible to generalize the Banach space calculus

to locally convex spaces without losing its simplicity and power.

As we have explained in (5, Introductionl, there have been several
difficulties in constructing such a calculus. Some definitions did not
imply continuity. For the definitions which imply continuity, the chain
rules of higher order did not hold. As we have shown in {61, {73, and [§1,
the differentiability of the inverse map always required a complicated
treatment, and, above all, it has been impossible to generalize the inverse
mapping theorem or the implicit function theorem in Banach spaces with

their simple forms retained.

All these difficulties are due to the fact that the derivatives have
merely been assumed to be continuous and linear. Unlike the case of Banach
spaces, the set L(E) of all continuous linear maps on a locally convex
space E with any one of the usual topologies is not suitable for
constructing the caleculus. The difficulty about the chain rules is due to
the fact that the composition in L(E) is not continuous unless FE is

normable. (See [5, Appendix 2].) The difficulty about the inverse maps
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is due to the fact that the inverse operation in the set of all invertible
maps in L(E) is not continucus. In order to construct a simple and
effective calculus on E , we need a theory of linear maps on F which is

free from these difficulties.

As far as we know, there are three candidates. The first is the
theory developed by Marinescu in [2] and other papers, where the main idea
is to assume the existence of a relation between the sets of continuous
semi-norms on the spaces E and F depending on the given map u# : E > F .
Using this idea, he has obtained a form of the implicit function theorem.
The second is the theory of completely bounded maps developed in [!], which
was used to prove an inverse mapping theorem in [5]. The third is the
theory of TI'-finite maps by Moore developed in [3] and other papers.
Although the method used in the definition of the ['-finiteness is a
special case of Marinescu's idea, it provides us with a reasonably simple
and remarkably versatile tool. From the viewpoint that the calculus is
essentially a tool, it is desirable that it stands on a simple theory of

linear maps.

Our differentiation is based mainly on Moore's theory. We shall have
to make only one change, because Moore has considered only self-maps,
whereas we need the I'-finite maps from one space into another in order to

define, for example, the higher differentiability.

In the following, we shall always assume that E, F, and (G denote
locally convex Hausdorff spaces over the real number field R . The real
numbers will be denoted by Greek letters. X and Y will always stand for

open subsets in F and F respectively.

1. Calibrations

A calibration for E 1is a set of continuous semi-norms on E which
induces the topology of E . The set P(E) of all continuous semi-norms
on E 1is obviously a calibration for E . If T is a calibration for

E , then, by the definition, for any p € P(E) , there exist p; €T
(1 =% <= mn) such that

plz) = max(pl(x), RN pn(x)) for all x € E .

The basic idea of the theory developed in this note is to choose a suitable
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calibration depending on the map under consideration.

Let T be a calibration for the product space E X F , TFor p €T ,

we put

pp(x) = plxz, 0) and pgly) = plo, y) ,

which will be called the E-component and the F-component of p
respectively. We also put
FE = {pE,: p € F} and FF = {pF :p €T},

which will be called the F-component and the F-component of T

respectively. It is obvious that T is a calibration for E and TF is

E
a calibration for F . Moreover, each Py € FE is related to some
p2 € FF by the fact that there exists p € T' such that p, = Pg and
P, = Pp -

Conversely, suppose that we have calibrations Fl and F2 for F

and F respectively. PFurthermore, suppose that there is a relation p in

and its range is T_ . If

X Fe such that its domain is T 5

Iy

(pl, p2) € Fl X F2 is p-related, we define a continuous semi-norm

1

[pl, p2] on ExXF by

py> p (e, y) = p (=) +p,(y) for (=, y) €EXF.
Then the set

r={lpy, 2] : (py»p,) €T XTI, and p-related}

is a calibration for FE x F such that Fl =T and T2 =T

E F

It helps to simplify the calculation if the relation between p and
(pE, pF) is clearly indicated. We shall say that [ <8 a calibration for

(E, F) if T 1is a calibration for E X F and

plz, y) = pglx) + pply) if p €T and (v, y) €ExF .

This convention is made only for the sake of convenience. Instead of

taking the sum, we may take max(pE(x), pF(y)) without causing any change
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in the statement of theorems.
We shall denote by [ = (Fl, F2) the fact that T is a calibration

for (E, F) and its components are Tl and F2 .

Let Fl and F2 be calibrations for (E, F} and (F, G)
respectively. For p € Fl and q € F2 ,» define a continuous semi-norm
pogq on EXG by

(pog)(x, z) = py(x) + q(z) for (x, z) €ExG .

We put

roor,={pog: (p, q) €T xT, and pp=gqp},
and, if Fl 0 F2 is a calibration for (E, G) , we shall say that Fl and
I'_ are composable and Fl o F2 *will be called the composition of Fl and

2

F2 . It is obvious that, if Fl and F2 are composable and

p Ogq € Fl o] F2 , then
(poq)y = Py and (pOg), = q;, .

Finally, we set up two rules.

(1). When E =F , then any calibration I for (E, F) shall always
satisfy the following condition: Pg = Pp for every p €T . In this case
we denote its components by the same symbol T .

(2). When F is a normed space, we shall always assume that FF
congists of the single element that is the norm of F . In this case,
again, we denote FE by the same symbol T . The same rule applies to the

case when E 18 a normed space.

The second rule implies, in particular, that all calibrations for

(B, F) and (F, G¢) are composable if F 1is a normed space.

2. T-limits

Let T be a calibration for (E, F) , f: X+ F , and a € X . 1If,

for any € > 0 , there exists &§ > 0 such that
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pF(f(x)—b] <e if = €X, pE(x—a) <8 ,and p €T,
then, we say that b is the [I'-limit of f as « ~ a and denote this
fact by

' - 1im f(x) = b .
x>a

Obviously, the T[I-limit is unique if it exists.

(2.1). Let f;:X~>F (£ =1, 2). If

I’—limfi(x)=bi (7:=132):
x>

then

I' -~ lim (afl+8f‘2) () = ab) + BD, .
xra

(2.2). Let Iy and T, be composable calibrations for (E, F) and
(F, G) respectively and T = r,of,. Let f:X~F and g:Y¥>G,
where f(x)c Y. Then, if

Fl - lim flz) = b and Fg - limgly) = e,
xra y*b

then
I' - 1lim (gof)(zx) = ¢ .
xra
3. The T-continuity
Let T be a calibration for (&, F) .
Amap f : X+ F is said to be T-continuoug at a € X if

T - 1im flx) = fla) .

a
Obviously, the T[~continuous maps are continuous.

(3.1). A linear map u : E > F is T-continuous at a point if and

only if there exists o > 0 such that

polulx)) = wpg(x) if x €E and p €T .

Proof. If u 1is T-continuous at a € E , there exists § > 0 such
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that

pF(u(a+x)-u(a)) <1 if pE(x) <8 and p €T ,

or

pF(u(x)) <1 if pg(x) <8 and p €T .

Then, for o = (%6)_1 , we have the required inequality.
The converse is obvious.

This fact shows that the T'-continuity coincides, for linear maps,
with the I'~-finiteness introduced by [3], where the set of [-finite linear
maps of E into E was denoted by FF(E) . We shall use the same
notation: FF(E’ F) will denote the set of all T'-continuous linear maps
of E into F .

By (2.1), FF(E’ F) 1is a normed space with the norm:

HuHF = sup{pF(u(x)) : pE(x) =1 and p € F}

Therefore,

pF[u(m)) < HuHFpE(x) if u € FF(E’ F) and p €T ,

The following fact was observed by [3] in the case when E = F .
(3.2). If F 1is sequentially complete, FF(E’ F) s a Banach space.
The following fact was also observed by [3] in the case when E = F .

We shall add a proof to show how to choose a calibration which is suitable

to the given map.
(3.3). If u:E~=>F 4is a completely bounded linear map, then, there
exists a calibration I for (E, F) such that u € FF(E’ F) .

Proof. A linear map u : F > F 1is completely bounded if and only if
there exists an absolutely convex neighbourhood U of zero in F such

that u(U) is a bounded subset of F . Let pO be the continuous semi-
norm corresponding to- U . Then, for any g € P(F) , there exists Xq >0

such that
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q(u(x)] < )\qpo(x) for all x € E .

Let ' be the set of all continuous semi-norms on F X F which are in the

following form: p(x) + q{y) , where p = quo .

(3.4). Let E = B X E, and u : E, xE,>F be a bilinear map.

Let T be a calibration for (E, F) such that Iy = (I‘E , T Then
1

B
u tis T-continuous at (0, 0) <If and only if there exists o > 0 such
that

pF(u(xl, xg)) < apEl(xl)pEz(xg) for all (xl,.xg) €E XE, .

Proof. Assume that u is I'-continuous at (0, 0) . Then, there

exists 6 > 0 such that

pF(u(xl, xe)] <1 if pE(xl, x2] <8 and p €T .

We prove that the inequality holds for a = (%5)2 .
If pEI(xl) =0 , then, for every z, € E2 , there exists B8 > 0 such
that

pplEx s Bx,) <8 for all £ >0
Hence, Pp(u(ﬁxl’ Bxg)) <1 for all & >0 , which implies that
pF(u(xla .’272)) =0.

In the same way, we see that pEz[xg) = 0 implies pF(u(xl, xg]) =0.

. -1 _ -1 _
Finally, assume that Xl = pEl(xl) £ 0 and X2 pEz(xz) #£0 .
Then,

1 1
pp(36h zys $8A2,) < 6,

from which it follows that

1042
pF(u(xl’ .’L‘2)) < ("3'6) pEl (xl)pEz (m2)
Conversely, assume that the inequality holds and € > 0 . Then, if

p[xl, x2) < § , where § < min{l, %-E) , then
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wg, (o))pg, (=) =3 |pp, (=) S, (xz)z) =5 bp

PR MR

pE(xl, x2) <E.
Hence, u is T-continuous at (0, 0) .

A calibration T for (E, F) determines the calibration [FE, H-HF)
for [E, FF(E’ F)) . For the sake of convenience, we shall denote this
calibration by the same symbol T . Hence, u € FF(E, FF(E’ F)) means
that there exists o > 0 such that

Hu(x)lll, = apE(x) for all x* €E and p €T .

(3.5). u € FF(E, FF(E’ F)) if and only if there exists o > 0 such

that

pp(ule)(y)) < ap () (y) <f =,y €EF and p €T .

Proof. If wu € FF(E, FF(E, F)) , then, since u(x) € FF(E’ F) ,
pplul@) (@) = lu()lpyly) it p €T,
from which it follows that
pplulz) (@) = IIuHFoPE(x)pE(y) ,
where FO is the calibration (FE, H'Hr] for (E, FF(E’ )
The converse is obvious.
This fact has an abvious extension to the case where the number of FE

is % = 2 . Let us denote the set Fr@,.”,E,FﬂE,FL..J by
FF(Ek, F) . VWhen u € FF(Ek, F) , uﬁxl) is an element of FF(Ek'l, F)

and u(ml)(xg] is an element of FF(Ek_g, F) . We shall denote

u(xl)(x2) N (xk] by u(m 3 vees xk) . Then, we can easily show that
u € FF(Ek, Fﬂ if and only if there exists o > 0 such that

pF(u(xl, cens xk)} = apE(xl] - pE(xk] if p el ,
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For u € Fr(Ek, F) , we put

HuHr = sup{pF(u(xl, cees xk)] : pE(xi) <1 and p €T}

(3.6). Let ry and T, be composable calibrations for (E, F) and

2

(F, G) respectively and T =T, oT_ . Then, if u € FI‘1(E’ F) and

1 2
v € Frz(F’ G) , then v Ou € FF(E’ G) and HvOuHF < ”u”FIHU”FZ

From this and (3.2), we have a fact, observed by [3], that, if F is
sequentially complete, FF(E’ E) 1is a Banach algebra with the unit.
Hence, if u € FF(E’ E) and HuHF <1, then 1 - u has the TI-continuous

inverse which is expressed as the series of C. Neumann. Later, we shall

need one of its consequences in the following form. We denote by GF(E’ F)
the set of all ['-isomorphisms of E onto F ; that is, the set of all
[-continuous linear isomorphisms whose inverses are T-l—continuous, where

_l_
A L

(3.7). Let F be sequentially complete. If wu € G.(E, F) ,

[Pallns

v € FF(E, F) , and “””r < Hllu -1 then

(1) u+v € GF(E, F),

-1 -1
) I
T

-1,2
(2) Nlutv) " -u = 2l lE_ Il s
-

1

-1 -
+uTopou |

(3) M) o = 2Tl

=13
[ l
F_l

An immedijate consequence of (3.7) is the following fact.

(3.8). Suppeose that F is sequentially complete and
u: X GI‘(E’ F) . Then, T - lim u(x) = ula) <implies

Another consequence of (3.6) is the TI'-continuity of the composition

map.
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(3.9). ILet I, and T, be composable calibrations for (E, F) and

(F, G) respectively and T = I, 0T, . Then, for the maps

u:X->F. (B, F) and v : X > F, (F, G) ,
r Ty

if

r, - lim u(x) = Uy and F2 - lim v(x) = v_ ,
xa z>a

then

I' = 1im v(x) o u(x) = Y o Uy -
x>a

The projection is always TI'-continuous for some [ .

(3.10). Let w : EX F ~E be the projection. Then, for any
calibration T for (E, F), w € FFQ(EXF, E) for FO = (F, TEJ

From (3.9) and (3.1) we have the following fact.

(3.11). Suppose that E = E_ X E, and PE ig a calibration for

1

(El, E2) . Let u: X~ FTl(Ei’ F) for r, = (r r

B and T : E - El

)
be the projection. Then

T - lim u{x) o7 = Ug O T
xa

if and only <if
r. - lim ulz) = u_ .
L on(z)emla) 0
4., The T-differentiability
Let T be a calibration for (E, F) .

Amap f : X > F is said to be T-differentiable at a € X if there
exists u € FF(E’ F) such that the following condition is satisfied: for

any € > 0 there exists § > 0 such that

pF(f(a+x)—f(a)-u(x)) < epE(x) if a+x €X, pE(x) <8 ,and p €T .

It is easy to see that such u is unique if it exists; we denote it

by f'(a) and call it the T-derivative of f at a .
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We shall use the following notations:

ru(f, a, x) = flatx) - fla) - u(z) ,

and
r(f, a, ) = flatx) - fla) - f'(a)(x) .

It is obvious that, if f and g are TI'-differentiable at a , then
f+g and af are TI-differentiable at a . Hence, the set DF(X’ F) of

all maps of X 1into F which are TI'-differentiable at every point of X

is a linear space.

In [5], the following definition was given: amap f : X > F is said
to be Fréchet differentiable at a € X if there exists a continuous linear

map u : E > F such that
-1
e r(f,a ex) >0 as €0

uniformly on each bounded set; that is,

]
(@]

lim sup p[e_lru(f, a, ex)]
€0 x€B

for any bounded subset B and for any p € P(F) . The properties of this
differentiation have been investigated in [5] in detail. The following

fact makes it possible to use those results in [5].

(4.1). If f:X>F is T-differentiable at a € X , it is Fréchet
differentiable at a with the same derivative.

Proof. We need to show that, if En - 0 and {xn} is a bounded

sequence, then

. -1
lim pF[en r(f, a, ex)| =0 for each p €T .
nreo

Let € >0, and take &§ > 0 in the definition of the
F-differentiability. Then, for each p € I' , since Enxn + 0 , there

i +
exists ny such that g« €%, € X and pE(enxn) < 8 . Hence,
pletn(f, a, ez )| < ep (z)
Fi'n > Tt EVmS 2

which ends the proof.
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Although the Fréchet differentiability did not imply continuity, the
[-differentiability does.

(4.2). If f: X~+F is T-differentiable at a € X , then, for any
€ > 0, there exists § > 0 such that

pp(flara)-r(a)) = (If' (@)l +e)ppla)

if a+zx €X and () <8 . Hence, f ig& T-continuwous at a .
Pg

The proof is obvious.

(4.3). If u ¢ FI‘(E’ F) , then u € DI.(E', F) and u'(x) = u for
every x € F .

(4.4). Let E = E xE, and T be a calibration for (E, F) such
that T, is a calibration for (E'l, E‘2] . Then every bilinear map
u: B % E, > F which ie T-continuous at (0, 0) is T-differentiable at
avery point, and

u'(a, bz, y) = ula, y) + u(x, b) .
Proof. Wirst, we observe that the linear map v : E > F defined by

'()(xa y) = u(as y) + u(x, b)

is T-continuous at (0, 0) , because, by (3.5), we can take o > 0 such

that

pplulz, y)) = oqul(x)pEz(y) if perl,
so that

pp(v(xs ¥)) = pplula, y)) + py(ulz, b))

= oanl(a)pE2 (y) + apEl(x)pEz(b)

1A

apE,(a, b)pE(x, y) .

Now, let € > 0 , and take § > O such that § < €¢/a . Then, if p €T
and pE,(x, y) <&,

pF(rv(u, (a» b)), (z, y))) pF(u(x, y)) < oszl(x)pEz(y)

A

apE(x, y)2 < aGpE(x, y) < epE(x, y)
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which ends the proof.
(4.5). Assume that F = F, X F, and Ty is a calibration for
(Fl, F2) . Then amap [ : X~>F, defined by
flz) = (fl(x), fz(x)) s
is T-differentiable at a € X <if and only if fi i8 I‘i-differentiable

at a for each i , where Fi = {I‘E, I‘F] . If this is the case,
7

flla)(z) = (fl'(a)(x), fe'(a)(x)] .

Proof. Let T F Fi be the projections. Then, fi =m0 .
If f is T-differentiable at a , then, by (3.10),

- ' . P .
u, =m0 f'(a) € Fri(E, Fi) , and u; 1is the Fi derivative of fi at a

for each 7 , because

2
) pple(sy @y 2) = I pp [z, (7 a0 9] -
=1 "1\ 7E
Conversely, if fi is Fi—differentiable at a for each 7 , define
u: E->F by

Ha) (@)

Then, u € FF(E’ F) and it is the TI'-derivative of f at a Dbecause of a
similar equality as (¥*).

Next we prove the first order chain rule.

(4.6). Let r, and I'2 be composable calibratione for (E, F) and
(F, G) respectively and T = r,ol,. If f:X~F is
Fl-differentiable at a €X and g : Y > G 1is I‘g—differentiable at

b = fla) , where f(X)c Y, then g o f is T-differentiable at a and
(gof)'(a) = g'(b) o f'(a) .

Proof. We put u = g'(b) o f'(a) ; then, by (3.6), u € FF(E’ G) ,

and
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r (g°f, a, @) = g'(B)(»(F, a, 2)) + r(g, b, flarz)-f(a)) .
Now let € > 0 , and take 61 > 0 such that
pF(r(f, a, x)) < spE(x) if a+x €X, pE(m) < 61 , and p € Fl R
and
qglr(g, b, y)) < eqply) it b+y €Y, quly) <& , and q €T, .
By (k.2), there exists & > 0 such that [“f’(a)“Y1+€)6 < 61 and
pF[f'(aﬂc)-f(a)) < 61 if a+x €X, pE(x) <8, and p € Fl .

Hence, for every pogq €T , if pE(x) <8 and g+ x € X , we have

A

aglg' B (2(f, a, )] + qglrle, by flate)-fla))})
lg' @)y pple(fs as 2)) + epp(flare)-fla)
e(llg’ ®)p, I (@)l +e)pylx) ,

a4z, (gof s a, x))

A

A

which shows that g o f is T-differentiable at a and (gof)'(a) = u .

As we have shown in [6], [7], and [§], most of the existing
differentiabilities behave very badly when the differentiability of the
inverse map is involved. For the I-differentiability, we do not have such

difficulty.

(4.7). Let f : X+ F be a bijection onto an open set f(X) ,
I-differentiable at a € X , and f'(a) be a T-isomorphism. Then the

inverse map g of f <s T ‘-differentiable at b = fla) if and only if
g is I continuous at b . If this is the case,
g'®) = )7t

Proof. Assume that g is F_l—continuous at b , and let € >0 .

We can assume that ¢ < Hf'(a)' H-ll . Then, there exists 61 >0 such
r-

that

pF(r(f, a, x)) < epp(e) if a+x €X, pyle) <& ,and p el

and there exists &§ > 0 such that
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pE(g(b+y)-g(b)) < 61 if b +y € flx) , pF(y) <8 ,and p €T .

Then if b +y € f(X) , q € rt , and x = g(b+y) - g(b) , then

a+x €X , and

4,(9 (b+y)g(b)-f" (@)1 (y))

tA

llf"(a)'lllr_lqp(f‘(f, a, @) < ellf’(a)'lllr_lqE(x)

1A

ellf'(a)'lllr_qu(y)/ ||f'<a)‘1n;il—e :

because, since f'(a)_1 is F-l—continuous,
[Hf'(a)_lﬂ;il-EJQE(x) = qF(f(a+x)-f(a)] .

Hence g is F_l-differentiable at b and g'(b) = f'(a)-l .

5. The mean value theorem

Various forms of mean value theorems have been given in §1.3 of [5].

In particular, the following form follows from (1.3.3)2° there.

(5.1). Let f ¢ DF(X’ F) . Then for each p €T and each x € E
such that a + & € X i1f 0 <E =<1, there exists 6 € (0, 1] such that
pp(fla+e)-fla)) = |If' (a+ex)llpg(x)

It follows immediately from (5.1) that amap f : E > F is constant
if and only if f € D.(E, F) and f'(x) =0 for all =z €E , and
f e FI‘(E’ F) if and only if f € DF(E’ F), f(0) =0 and f'(x) does
not depend on x .

In [5, p. 9], we have defined that f : X > F is said to be Gateaux
differentiable at a € X 1if there exists a continuous linear map

u : E > F such that

lim e'lru(f, a, €x) =0
>0

for each x € E . If this is the case, we denote u by f'(a) .
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The Fréchet differentiability, and hence the TI'=differentiability,

implies the G&teaux differentiability.

(6.2). Let X be convex and f : X » F be Giteaux differentiable
at every point of X . If f' (X)c FF(E’ F) and f' : X~ FI‘(E’ F) 1is
T-continuous at a € X , then f is T-differentiable at a .

Proof. Let € >0 , and take &8 > 0 which is determined by the
l-continuity of f' : X ~» FI..(E, F) . Then, if a+x € X , pE(x) <$§,
and p € T , it follows from (5.1) that

pp(fasz)-fa)-f' (@) (@) = If' (a+6x)-f" (@)l py(z) < epg(z) ,

which means that f'(a) is the [-derivative of f at a .
(5.3). Let X be convex, £, € DI.(X, F) , and the following
conditions be satisfied:

(1) {fn} converges to f : X~ F wniformly;
(2) {f;l} converges to g : X > F.(E, F) uniformly.
Then f € DI‘(X’ F) and f'(x) = glz) for all = € X.

Proof. Let € > 0 . By (2) there exists n, such that

“fr't(x)—f';l(x)llr < %e if my,n=zn, and & €X.

Now let a € X and take & > 0 such that

pF(r(fno, a, x)) < epple) if a+x €X, pylx) <8 ,and p €T .

By (5.1), if p €T and mynzng,

1A

pp(f,(a+x)-f, (a)-f, (a+z)+f, (a)) = |If, (a+6z)-f, (a+6z)|| p (=)

< zepp()
if a+x € X and pE(x) < 8 . Hence, by the assumption (1),
pp(fla+e)-fla)-f, (a+x)+f, (a)) = jepy(x)

if a+x€X, nZno,and p €' . Therefore, if a + x € X and

per,
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pp(flare)-fla)-g(a)(z)) = py(flate)-fla)-f, (a+x)+f, (a))

+ PF(P(fno, a, z)) + pF(f,;O(a)(x)-g(a)(x)) < eppla)

vhich means that g(a) is the TI-derivative of f at a .

6. The continuous T-differentiability
Let ' %be a calibration for (E, F) .

Amap f : X > F is said to be continuously T-differentiable on X
if f € DF(X’ F) and f' : X~ FF(E’ F) is T-continuous. The set of all

continuously [I'-differentiable maps of X into F will be denoted by
CF(X’ F) , which is obviously a linear space.

It follows from (5.2) that, when X is convex, f € CF(X’ F) if and
only if f is Glteaux differentiable at every point of X with

l-continucus derivatives and f' : X > FF(E’ F) 1is TI'-continuous.

(6.1}. Assume that F = F, x F, and o is a calibration for

(7). F2] and f : X > F has the following form:
flz) = (£ (=), f(a)) .

Then f € CF(X’ F) if and only if fé € Cri[X, Fi) » where r. = [FE’ ka]

for each 1 .

Proof. This follows from (h4.5) and the relation
2
pp(f'(ara)(y)-f'(a)()) = [ pp (Filare)(y)-fila)(y))
1=1 2

(6.2). Let Iy and P2 be composable calibrations for (E, F) and

(F, G) respectively and T = Fl o F2 . Assume that f € CPI(X’ F) and

g € CFZ(Y’ G) , where f(X)c Y. Then go f € CF(X’ G) .

Proof. By (4.5) we only need to show that the map

(gof)" : x » FL(E, @

is T-continuous. However, this follows immediately from (2.2) and (3.9).
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(6.3). Let F be sequentially complete and let f : X > F be a
bijection onto an open set Y = f(X) . Then, if f € C[.(X, F) and

~1

f'x) < 6(g, F), f ¢ CF_I(Y, E) .

Proof. This is an immediate consequence of (3.8) and (L4.7).

7. The partial T-differentiation
Suppose that I 1is a calibration for (E, F) , E = B x E, , and FE
is a calibration for (E’l, E2] . Suppose also that X = Xl X X2 where Xi
is an open subset of Ei for each % .
Amap f : X > F 1is said to be partially T-differentiable at
(al, a2) € X with respect to the first variable if the partial map

fa2 : Xl + F , defined by

£, @) = £z, a)

az

of Xl into F 1is I‘l—dlfferentlable at al , where Fl = [I’El, I‘F)
The derivative will be denoted by alf(al, a2] , which is an element of

E

1 F) . 1In the same way the partial derivative 32f'(al, a2) of f

Frl[
at (al, a2] can be defined.

(7.1). If f is T-differentiable at a = (al, ae) € X, then
3,F(a;» a2) and aef(al, a,) exist and

f'(al, a2) (ml, xg) = Blf(al, az) (xl] + Bzf(al, az] (xg) .
Proof. There exist linear maps ui : Ei * F such that
f'(al’ ae) (xl’ xz) = ul (xl) + u2 (.’E2)

Since

ppliy (=) = 2, (a5 @) (o5 0)) = IF @I 2, (o) 5

we have U € FI‘ (El, F) .  Furthermore, since
1
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(r

as’ al’ .’B) = I‘(f, Q, (.‘D, 0)) s

r
Ui
we have u, = Blf(al, a2) . In the same way we have u, = Bzf(al, a2) .

(7.2). Let X be convex. Then f € CI‘(X’ F) if and only if

3,f + X~ F, (E;, F) exists and is T-continuous on X for each < .
7

Proof. Assume that [ € CI‘(X’ F) . Then, by (7.1), 31:f exist and,
by (3.9), they are [-continuous.

Conversely, if Bif exist and are I'-continuous, for Lzl, az) € X , put
wleys =) = 0,7lays a) (o) + o,f(a, a)(x)
Then u € FI.(E’, F) and, using the mean value theorem (5.1),
pplflaytey, ayto))-flay, ay)-ule), =)
< pp(flayre, s agre))-flapreys a))-3,flay, a)) (=)))
v pplrlagte, s a)-rlas a)-5 (o, @) (=)
= l2,f(ay*e,, ayv6,2))-0,f (s a))lp,pg, (=)
Hence it follows from the I'-continuity of Bif that u is the TI'-derivative

of f at (al, az] . The T-continuity of f' follows from (3.11).

8. The higher TI-differentiability
Let T %be a calibration for (E, F) .

Amap f : X+ F is said to be twice TI-differentiable at a € X if
f e DI,(X, F) and the map f' : X ~+ FI.(E', F) is T-differentiable at a .

The set of all maps of X into F which are twice TI'-differentisble at

every point of X 1is denoted by DI%(X’ F) . The second I-derivative of
. (2) o 2
f at a will be denoted by f “’(a) , which is an element of FI‘( , F)

Similarly we can define the Kk-times TI'-differentiability, the set
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(

D?(X, F) , and the k-th T-derivative f k)(a) , which is an element of

Fr (&, 7)

Amap f : X+ F is said to be k-times continuously

T-differentiable on X if f € DX, F) and the map F<) & X F (%, A

is T-continuous on X . The set of all such maps is denoted by C?(X, F) .

It is easy to see that the sets D?(X, F) and C?(X, F) are linear

spaces.

(8.1). If f:Xx>F is k-times T[-differentiable at a € X , it is
k-times Fréchet differentiable at a with the same derivative.

From this and (1.8.2) of [51, it follows that f(k)(a)

is, if it
exists, a symmetric k-linear map.

Since FF(E’ F) is a normed space, the following two facts belong to
the normed space calculus and the proofs are omitted.

(8.2). Let I, and T, be composable calibrations for (E, F) and

2
(F, G) regpectively and T = rpor,. Then the map

comp : FFI(E’ F) x FFZ(F’ G) ~» FF(E’ G) ,
defined by
comp(u, v) =v O u,
18 k-times differentiable at every point for every k . In particular
comp'(uo, vo](u, v) = comp (u, vo] + comp(uo, v)

(8.3). The map

inv : GF(E’ F) - Gr'l(F, E),

defined by inv(u) = ut s 18 k-times differentiable at every point for
every k .

Now we state the k-versions of (L4.5), (4.6), and (L.7).
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(8.4). Under the same assumptions as in (4.5),
(1) f is k-times T-differentiable at a <if and only if f;

is k-times Fi—différentiable at a for each 1 , and

f(k)(a)(xl, cees xk) = fﬁk)(a)(xl, cees xk), fék)(a)(xl, ey xk) H

(2) fecXx, F) if and only if f. € K (x, P.) for each i .
r 7 r. 7

1
Proof. In view of (4.5) we can start the proof by assuming that this
statement holds up to k - 1 and f is k-times TI-differentiable at a .
Then, by (3.10),

u; = 0 £FE 4y FF[Ek, Fi] ,

because the calibrations here are compcsable. Then, since by the

assumption

k-1)

pp[r'[f(

, @, x](xl, cees Ty

)
= -il pF-(ru.(fék-l), a, x](xl, e xk—l)] s

z z

(k-1)

u; is the Fi—derivative of f at a for each 7 .

The converse can be proved in a similar way as in (6.1).

(8.5). Under the same assumptions as in (4.6),

(1) if f is k-times T, -differentiable at a and g “ts
k-times F2—différentiable at fla) , then g o f is
k-times T-differentiable at a ;

(2) if f ¢ C?l(X, F) and g € C?z(Y, G) , then
gOfECII..((X,G).

Proof. 1In view of (L4.6) we can start the proof by assuming that the

statement holds up to k - 1 and the assumptions are satisfied. Then

g' o f i X~ FiE, 6)
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is (k-1)-times T-differentiable at g . Hence, by (8.4), the map of X
into F. (E, F) x F, (F, G) , defined by
I 'y

= (f'(x), g'(Ffx)) ,

is (k-1)-times [-differentiable at a . Therefore, by (8.2), the map

(gof)' & X > FL(E, €)

is (k-1)-times T-differentisble at a , which means that g o f is

k-times T-differentiable at a .

If we replace "T-differentiable at a " by "continuously

T-differentiable on X ", then we have the proof for (2).

) for the Fréchet differentiation
can be found in (1.8.3) of [5]; it also holds for the T-differentiation
by (8.1).

The expansion formula for (gof)(k

(8.6). Under the same assumptions as in (L.T),

(1) 2f f is k-times T-differentiable at a , then f’l ig

k-times T ‘-differventiable at fl(a) ;
(2) if F is sequentially complete, [ € C?(X, F) , and

£ € GulE, F) 5 then 1€ CF_(p0), B)
-

Proof. Again we prove by induction. For g = f’l R
g'(f(x)) = inv(f'(x)) = (invof')(zx) .

Hence, by (8.3) and (8.5), g' 1is (k~1)-times Il gifferentiable at
f(a) , and hence g is k-times I gifferentiable at fla) .

The proof of (2) follows from (6.3) and the same argument as above,
where "I _differentiable at a " is replaced by "continuously

I ldifferentiable on f(X) ".

9. Implicit function theorems

The aim of this section is to present our version of the implicit
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function theorem by interpreting the proof for the case of Banach spaces
into our language. We shall start with the inverse mapping theorem.

(9.1). Let E or F be sequentially complete and f € C?(X, F) .
If, for some a € X, f'(a) is a T-isomorphism, then f is a local
C?—diffeomorphism; that is, there exist open neighbourhoods U and V of

a and fla) respectively such that f is a T-homeomorphism of U onto
V.

Proof. By considering the map

zv f'(a)7t

[flatz)-fla)] ,

we can assume that E=F, a=0, f(0)=0,and F'(0)=1 (the

identity map on E ). Furthermore, we can assume I = (T, T) .
Since f' : X~ FF(E’ E) is T-continuous at zero, there exists
§ > 0 such that

||f'(x)—1||r<% if x€X, plx)<8 and p €T .,

We can choose a continuous semi-norm q on E such that g(x) < §

implies @« € X . Since I induces the topology of F ,

for some a; €T (1=1=mn). Let

U

[x €E: qz(z) <6 (1=7= n)}

and A =1~ f . Then, by the mean value theorem (5.1),
p(r(x)) < lp(x) if x €U and p €T .
Hence x € U implies #A{x) € %U ; that is, % maps U into %U .
To prove that h 1is onto, let y € %U , and consider the map

hy(x) =y + hix) .

Then the sequence {yn} , defined by

yp = y) end g, =h(y, ) .
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is a Cauchy sequence. Let xo be the 1limit. Then, since & is
continuous, we have Yy = f(xo) . Moreover, since
Y -7
ply,) = [,Z 2 ]p(y> ,
J=0

we have

1A
B

qiﬂxo) < 2qi(y) <8 (L =1

which means that xo ey .

Now let x. € U (¢=1,2) and p €T . Then, by (5.1),

IA

p(fle)-rlz,)) + p(fe)R(m,)
Sp(f(xl)-f(xg)) + 'ilp(xl-xg] ’

P ()-%,)

which implies

1

Ep(xl_xg) = p(f(xl)_f(xg}) .
It follows from this inequality that f maps U onto %U and f , when
it is restricted to U , is injective. Hence, if we put

_1(

= 1 =1
Uo-f EU)ﬂU and VO_EU,

f 1is a bijection of UO onto VO

-1

Now by (6.3}, f ~ ¢¢C 1(VO’ UO) , which shows that f : U ->7V. is
-

0 0
a C?—diffeomorphism.

The implicit function theorem is deduced from the inverse mapping
theorem; the proof is omitted.

(9.2). Suppose that E = E, xE F 1is sequentially complete, T

2 2

is a calibration for (E, F) , and I, is a calibration for (El, Ez)

Let Fi = [FEi’ FF]

Assume that f € C?(X, F), f(al, a2] =0, and
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82f(al, a2) € GFZ[EE, F) . Then there is an open neighbourhood U x V of

, k
(al, az) in X and g € CFE(U, V) such that g(al) =a, and

7

If this is the case,

0) n (uxV) = {(x, g{x)) :+ = €U} .

g'(z) = - Bzf(al, az)_lJ o Blf(al, a2) .

The split versions of the above theorem can alsoc be proved under

similar assumptions.

10. Remarks

1. As we have seen in the above discussions, once the
I-differentiability of the map under consideration is established, the
remainder of the proof consists of checking the suitability of the
calibration and paraphrase of the proof of Banach space case. In other
words, as far as the fundamental properties, such as developed above, are
concerned, we have generalizations in simple forms, and the easiest way to

find the suitable calibration is to use (5.2).

Naturally, finding a suitable calibration becomes much easier if F
is a normed space, which includes the case of functionals. Let us denote

by Eb the space E equipped with the topology defined by a single
continuous semi-norm p on F , and let Fp be the set of all continuous
semi-norms ¢q such that ¢ =2 p . Obviously Fp is a calibration for

E .

(10.1). Let F be a normed space. If f : X > F is differentiable

at a € X in the ordinary sense as a map of Eb into F , then f 1is

Fp-différentiable at a .

Proof. Let ¢ > 0 . Then, by the assumption, there exists &§ > O
such that

le(fs a5 x)| < eplx) if a+x € X and plz) <8 ,

where the derivative f'(z) satisfies the following condition:
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If'(@)(x)! = ap(x) for some o >0 and all x € E .

It is obvious that these two inequalities are satisfied when p is

replaced by any q € Fp . This means that f is Fp—differentiable at
a .

As an immediate consequence, we have a criterion for the

l-differentiability of semi-norms.
(10.2). 4 continuous semi-norm p on E is Fp-différentiable on

EN0} if and only if p 1is a differentiable semi-norm on Eb\{o} .

This fact will be a basis of the study of the TI'-smoothness of locally

convex spaces, which will be treated in a subsequent note.

2. Since we have various forms of the inverse mapping theorem, we
also have their consequences. For instance, if the TI'-Fredholm maps are
suitably defined, Smale's version [4] of Sard's Theorem can be

generalized to locally convex spaces.

3. Instead of the reals, we could take the complex numbers as the
coefficient field. Then it will lead to the theory of T[I'-analytic maps,
the fundamental theory of which will be developed in the next note.
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