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Abstract. We determine the extent to which the collection of �-Euler–Satake
characteristics classify closed 2-orbifolds. In particular, we show that the closed,
connected, effective, orientable 2-orbifolds are classified by the �-Euler–Satake
characteristics corresponding to free or free abelian � and are not classified by those
corresponding to any finite set of finitely generated discrete groups. These results
demonstrate that the �-Euler–Satake characteristics corresponding to free abelian �

constitute new invariants of orbifolds. Similarly, we show that such a classification is
neither possible for non-orientable 2-orbifolds nor for non-effective 2-orbifolds using
any collection of groups �.

2010 Mathematics Subject Classification. Primary 57R20, 57S17; Secondary
22A22, 57P99.

1. Introduction. In a recent paper [9], Christopher Seaton and Carla Farsi
introduced the �-sectors of an orbifold Q, a generalization of the inertia orbifold of Q
that is defined for any finitely generated discrete group �. In this context, the inertia
orbifold (originally defined by Kawasaki in [10]; see also [1, 5]) corresponds to the case
� = �; similarly, the k-multi-sectors of Chen and Ruan (see [1] or [5]) correspond to
the case when � = �k is the free group with k generators.

The �-Euler–Satake characteristic of an orbifold Q, denoted χES
� (Q), is defined to

be the Euler–Satake characteristic of the �-sectors of Q. In [8], it is shown that several
Euler characteristics that have been defined for orbifolds correspond to the �-Euler–
Satake characteristic for a specific choice of �. Hence, the �-sectors offer a framework
in which to generalize the Euler characteristics of Bryan and Fulman (see [3]) and
Tamanoi (see [16, 17]) to closed orbifolds that are not necessarily global quotients. In
particular, the stringy orbifold Euler characteristic defined for global quotients in [6]
and for general orbifolds in [14] corresponds to the case � = �2.

In this paper, we address the question of whether the �-Euler–
Satake characteristics classify closed, connected, two-dimensional orbifolds. The
diffeomorphism-types of all closed 2-orbifolds are well known (see e.g. [18] or [2]).
Here, however, we express this classification in a framework generalizing the familiar
classification of closed 2-manifolds. An additional motivation of this investigation is to
explore the extent to which the �-Euler–Satake characteristics constitute new invariants
for orbifolds. Indeed, from their definition, the degree to which collections of the �-
Euler–Satake characteristics depend on one another is unclear. We will see, however,
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that the characteristics corresponding to abelian � are in some sense independent; the
class of two-dimensional orientable orbifolds is sufficiently large to illustrate this fact.
In this case, each �-Euler–Satake characteristic corresponds to the �′-Euler–Satake
characteristic for an abelain �′. In the future, we will investigate classes of orbifolds
that may indicate the differences between abelian and non-abelian �.

To simplify notation, for a closed orbifold Q, we define

χES
(l) (Q) = χES

�l (Q).

Then for l ≥ 1, these Euler characteristics correspond to the orbifold Euler
characteristics defined for global quotients in [3] (note that our χES

(l) (Q) corresponds
to χl+1(M, G) in [3] when Q is given by the action of a finite group G on a manifold
M). It is observed in [8, Section 4.1] that χES

(l) (Q) also corresponds to the Euler–
Satake characteristic of the lth inertia orbifold of Q and the Euler characteristic of the
(underlying topological space of the) l − 1st inertia orbifold.

If Q is an abelian orbifold (i.e. all isotropy groups of Q are abelian), it is easy to
see that

χES
(l) (Q) = χES

�l
(Q),

where �l denotes the free group with l generators; in particular, this follows from
Lemma 3.14 of this paper. Therefore, χES

(l) (Q) is the Euler–Satake characteristic of the
l-multi-sectors of Q (see [1]).

Of primary interest will be the case of a closed, connected, effective, orientable
2-orbifold Q, for which the χES

(l) (Q) will play a dominant role. Our first main result is a
positive classification of these orbifolds using the χES

(l) .

THEOREM 1.1. Let Q and Q′ be closed, connected, effective, orientable 2-orbifolds
such that χES

(l) (Q) = χES
(l) (Q′) for any infinite set of non-negative integers l. Then Q and

Q′ are diffeomorphic.

It is well known (see e.g. [11]) that closed, connected, orientable, two-dimensional
manifolds are completely characterized by their Euler characteristic. If Q is a manifold,
the �-Euler–Satake characteristic of Q reduces to the usual Euler characteristic for any
�. Hence, Theorem 1.1 constitutes a generalization of this result to orbifolds. However,
this class of orbifolds is large enough to produce the following.

THEOREM 1.2. Let N ≥ 2 be an integer and let G be any finite collection of finitely
generated discrete groups. Then there are distinct closed, connected, effective, orientable
2-orbifolds Q1, Q2, . . . , QN such that for each � ∈ G,

χES
� (Q1) = χES

� (Q2) = · · · = χES
� (QN).

It follows that the classification of Theorem 1.1 cannot be improved upon using
the �-Euler–Satake characteristics. Note that Theorem 3.13 is a slightly more general
version of Theorem 1.2, though clumsier to state.

The outline of this work is as follows. In Section 2, we recall the necessary
definitions and summarize the pertinent preliminary material. We study effective,
orientable 2-orbifolds in Section 3 and prove Theorems 1.1 and 1.2. In Section 4, we
demonstrate through examples that the hypotheses of Theorem 1.1 cannot be relaxed.
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2. Background and definitions. In this section, we briefly introduce the required
definitions and fix notation. For a more thorough background on orbifolds, the
reader is referred to [1] or [4]; see also [2, 12] or [18], and note that the orbifolds
in these latter references correspond to effective orbifolds. We will have the occasion to
consider non-effective orbifolds only in Example 4.1 and only in the form of a global
quotient.

An orbifold Q is most succinctly defined to be a Morita equivalence class of orbifold
groupoids, i.e. proper étale Lie groupoids. Such a groupoid G is called a presentation
of the orbifold Q, and two orbifold groupoids G and G ′ present the same orbifold if
and only if they are Morita equivalent. In this case, their orbit spaces |G| and |G ′| are
naturally homeomorphic, and we say that they are diffeomorphic as orbifolds.

Fix a proper étale Lie groupoid G with space of objects G0 and space of arrows
G1. For each x ∈ G0, there is a neighbourhood Vx ⊆ G0 of x diffeomorphic to �n such
that if Gx denotes the isotropy group of x, then there is a Gx-action on Vx, and the
restriction G|Vx is isomorphic as a Lie groupoid to the translation groupoid Gx � Vx.
We let πx : Vx → |G| denote the quotient map into the orbit space of G. In this way,
the definition of an orbifold in terms of orbifold charts is recovered, as {Vx, Gx, πx}
gives an orbifold chart for Q near the point representing the orbit of x. Note that we
can always take x to correspond to the origin in �n and Gx to act linearly; we then
refer to {Vx, Gx, πx} as a linear chart. If y is another point in G0 in the orbit of x, then
Gy and Gx are isomorphic. Hence, if p ∈ |G| denotes the orbit of x, then we can define
Gp to be (the isomorphism class of) Gx. The point p ∈ |G| is a non-singular point if Gp

is trivial and a singular point otherwise.
We say that the orbifold Q is effective if G is an effective groupoid, or equivalently

if the local Gx-actions on the Vx are effective. The orbifold Q is closed if it does
not have boundary as an orbifold, i.e. G0 is a manifold without boundary, and the
orbit space |G| is a compact topological space. By connected, we mean that |G| is a
connected topological space. The orbifold is oriented if G0 is equipped with a G1-
invariant orientation; if G admits an orientation, we say that Q is orientable. Note that
each of these qualities is preserved under Morita equivalence so that they describe the
orbifold Q as well as the presentation G.

If Q is a closed, connected, effective, two-dimensional orbifold and x ∈ G0, then
Gx is a finite subgroup of O(2) (with respect to any inner product on Vx). It follows
that Gx is either a cyclic group acting as rotations, a group isomorphic to �/2� acting
as reflection through a line, or a group isomorphic to a dihedral group whose action is
generated by reflections through two lines (see [18]). The singular points associated to
these actions are referred to as cone points (or elliptic points), reflector lines and corner
reflectors, respectively. Only the first of these three preserves an orientation of �2;
hence, if we assume further that Q is orientable, then the singular points are isolated
cone points with cyclic isotropy. By the order of the cone point, we will mean the
order of the isotropy group. It follows that the underlying space is homeomorphic to
a closed, connected orientable surface, and the set of singular points corresponds to a
finite collection {p1, p2, . . . , pk} of cone points.

A closed, connected, effective, orientable, two-dimensional orbifold, then, is
determined by the genus g of the underlying space, a non-negative integer k
indicating the number of cone points and an integer mi ≥ 2 for i = 1, 2, . . . , k with
m1 ≤ m2 ≤ · · · ≤ mk, indicating the order of each cone point. We will use the notation
�g(m1, . . . , mk) to denote this orbifold. Note that we will often refer to the genus of
the underlying space of Q simply as the genus of Q.
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Let Q be an orbifold. For each finitely generated discrete group �, we associate
to Q an orbifold Q̃� called the �-sectors of Q. We recall this construction briefly (see
[9] for more details). Let S�

G denote the space of groupoid homomorphisms from �

into G or equivalently group homomorphisms from � into an isotropy group Gx of G.
Then S�

G has the structure of a smooth manifold, possibly with connected components
of different dimensions. There is a natural G-action on S�

G by pointwise conjugation,
and the groupoid G� = G � S�

G is a presentation of the orbifold of �-sectors Q̃�.
If {Vx, Gx, πx} is a linear chart for Q and φx : � → Gx is a homomorphism, then
{V 〈φx〉

x , CGx (φx), πφx
x } is a linear chart for Q̃� near φx, where V 〈φx〉

x denotes the subspace
of Vx fixed by the image of φx, CGx (φx) is the centralizer of the image of φx in Gx,
and π

φx
x denotes the quotient map of the CGx (φx)-action. The connected component

Q̃(1) of Q̃� corresponding to the identity homomorphism (into any isotropy group)
is diffeomorphic to Q. We denote the connected component of a homomorphism
φx : � → Gx by Q̃(φ). Note that the �-sectors correspond to the inertia orbifold, and
the �l-sectors correspond to the l-multi-sectors (see [7]; see also [1] or [5] for the
definitions).

In the case that Q is presented by M � G where G is a finite group acting on
the smooth manifold M, then our description of the �-sectors corresponds to that of
Tamanoi in [16, 17], where

Q̃� =
∐

(φ)∈HOM(�,G)/G

M〈φ〉
� CG(φ). (1)

Here, the union is over conjugacy classes (φ) of homomorphisms φ ∈ HOM(�, G). In
this case, we use (M; G)(φ) to denote M〈φ〉

� CG(φ). Note that this description coincides
with ours more generally for G a Lie group with certain restrictions on the action (see
[7, Section 3]).

The Euler–Satake characteristic was first defined in [15], then called the Euler
characteristic as a V-manifold. Satake’s definition generalizes directly to the non-
effective case. Given a simplicial decomposition T of the underlying space of Q such
that the order of the isotropy group Gσ on the interior of each simplex σ ∈ T is constant
(which always exists; see [13] or [8]), we define

χES(Q) =
∑
σ∈T

(−1)dim σ

|Gσ | .

The Euler–Satake characteristic clearly reduces to the usual Euler characteristic in the
case that each isotropy group of Q is trivial, i.e. in the case of a manifold.

Given a finitely generated discrete group, we define the �-Euler–Satake
characteristic of Q to be the Euler–Satake characteristic of the �-sectors of Q; i.e.

χES
� (Q) = χES(Q̃�).

The Euler–Satake characteristic of a disconnected orbifold is of course equal to the sum
of the Euler–Satake characteristics of the connected components. See [8] for properties
of the Euler–Satake characteristic and �-Euler–Satake characteristics.

3. The �-Euler–Satake characteristics of effective, orientable 2-orbifolds. In this
section, we restrict our attention to closed, connected, effective, orientable 2-orbifolds.
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In Section 3.1, we determine a formula for the lth Euler–Satake characteristics in
this case and use this formula to prove Theorem 1.1. In Section 3.2, we construct for
each finite collection of non-negative integers l an arbitrarily large (finite) collection
of orbifolds such that the lth Euler–Satake characteristics coincide. In Section 3.3, we
generalize to arbitrary �, proving Theorem 1.2.

3.1. The classification for free Abelian �. Let Q be a closed, connected, effective,
orientable 2-orbifold. As mentioned in Section 2, Q is of the form �g(m1, . . . , mk) for
some non-negative integers g and k and integers 2 ≤ m1 ≤ m2 ≤ · · · ≤ mk. Let G be an
orbifold groupoid presenting Q. We begin by describing Q̃� in this case.

Given a finitely generated discrete group �, a homomorphism φx : � → G
corresponds to a choice of a point x in an orbifold chart {Vx, Gx, πx} for Q and a
homomorphism � → Gx, which we also denote φx. If φx is trivial so that its image is the
trivial group, then it is on the same connected component as all such homomorphisms,
and Q̃(φ) is diffeomorphic to Q. Otherwise, πx(x) = pi is one of the singular points of Q,
and φx corresponds to a non-trivial homomorphisms into �/mi� acting on Vx = �2

by rotations. It follows that the (Im φx)-fixed-point subset of �2 consists of a single
point x, and φx is the only point in the connected component Q̃(φ) of Q̃�. A chart
for Q̃(φ) is of the form {V 〈φx〉

x , CG(φx), πφx
x } = {{x}, �/mi�, π

φx
x }, so that Q̃(φ) is a point

equipped with the trivial action of �/mi�. As the local groups of Q are abelian, and
as the singular points of Q are isolated, the G-orbits of non-trivial homomorphisms
φx are trivial. Hence, for each cone point pi with isotropy group �/mi�, there are
exactly |HOM(�, �/mi�)| − 1 connected components corresponding to pi with trivial
�/mi�-action.

We use these observations to derive the following, which gives a formula for the
lth Euler–Satake characteristic of a closed, connected, effective, orientable 2-orbifold.

PROPOSITION 3.1. Let Q = �g(m1, . . . , mk) be a closed, connected, effective,
orientable 2-orbifold with notation as above. Then for each integer l ≥ 0,

χES
(l) (Q) = 2 − 2g − k +

k∑
i=1

ml−1
i . (2)

Proof. Let T be a simplicial decomposition of Q subordinate to the singular
strata (see [13] or [7]); in this context, this means simply that each singular point pi

corresponds to a vertex of T . Then∑
σ∈T

(−1)dim σ = χtop(Q)

= 2 − 2g,

where χtop(Q) denotes the usual Euler characteristic of the underlying space of Q. It
follows that

χES
(0) (Q) = χES(Q)

=
∑
σ∈T

(−1)dim σ − k +
k∑

i=1

1
mi

= 2 − 2g − k +
k∑

i=1

1
mi

.
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Now, let l ≥ 0 be an integer. Each cone point pi of order mi corresponds
to |HOM(�l, �/mi�)| − 1 = ml

i − 1 identical �l-sectors, each given by a single
point equipped with the trivial action of �/mi�. It follows that the Euler–Satake
characteristic of the corresponding �-sector is 1

mi
, and hence

χES
(l) (Q) = 2 − 2g − k +

k∑
i=1

1
mi

+
k∑

i=1

(
ml

i − 1
) 1

mi

= 2 − 2g − k +
k∑

i=1

ml−1
i ,

completing the proof. �
Note that as χES

(0) (Q) = χES(Q), the case l = 0 of equation (2) coincides with
[18, Equation 13.3.4] for orientable orbifolds (which do not have corner reflectors).

It is easy to see that distinct 2-orbifolds may have the same Euler–Satake
characteristic even when they have homeomorphic underlying spaces, as illustrated
with the following.

EXAMPLE 3.2. Let g ≥ 0 be an integer and Q the orbifold with underlying space
�g and nine cone points, each of order 3. Let Q′ be the orbifold with underlying space
�g and eight cone points, each of order 4. Then

χES(Q) = −4 − 2g

= χES(Q′).

However, there can be only finitely many orbifolds with the same Euler–Satake
characteristic.

LEMMA 3.3. Let Q be a closed, connected, effective, orientable 2-orbifold of genus g.
Then there are only finitely many closed, connected, effective, orientable 2-orbifolds with
the same Euler–Satake characteristic.

Proof. We let Q = �g(m1, . . . , mk) as above and m = mk = max
i=1,...,k

mi. Then

2 − 2g − k + k
m

= (2 − 2g − k)m + k
m

≤ χES(Q).

Let Q′ = �g′(m′
1, . . . , m′

k′ ) be another orbifold such that χES(Q) = χES(Q′). Then as
each m′

i ≥ 2,

(2 − 2g − k)m + k
m

≤ χES(Q′)

= 2 − 2g′ − k′ +
k′∑

i=1

1
m′

i

≤ 2 − 2g′ − k′

2
≤ 2 − 2g′. (3)
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It follows that

g′ ≤ g + k(m − 1)
2m

,

implying that there are only a finite number of possible values of g′ ≥ 0. Using the
estimate [(2 − 2g − k)m + k]/m ≤ 2 − 2g′ − k′/2 from equation (3), it follows that

k′ ≤ 4g − 4g′ + 2k(m − 1)
m

,

implying that for each possible value of g′, there is a finite number of possible values
of k′ ≥ 0.

To complete the proof, we fix values of g′ and k′ and show that there are a
finite number of possibilities for the orders m′

1, . . . , m′
k′ . Note that if k′ = 0, there is

nothing to prove, so assume k′ > 0. Without loss of generality, we assume as above
that m′

1 ≤ m′
2 ≤ · · · ≤ m′

k′ . As χES(Q) = χES(Q′), we have

2(g′ − g) + k′ − k +
k∑

i=1

1
mi

=
k′∑

i=1

1
m′

i
. (4)

Let C1 = 2(g′ − g) + k′ − k + ∑k
i=1

1
mi

denote the left side of this equation. If C1 ≤ 0,
then as k′ > 0, there are no solutions for the m′

i, so assume that C1 > 0. Then as

C1 =
k′∑

i=1

1
m′

i
≤ k′

m′
1

,

we have that

m′
1 ≤ k′

C1
,

and hence that there is a finite number of possibilities for m′
1. Fixing one such m′

1 and
returning to equation (4), we let C2 = 2(g′ − g) + k′ − k − 1

m′
1
+ ∑k

i=1
1

mi
and then

C2 =
k′∑

i=2

1
m′

i
≤ k′ − 1

m′
2

.

Hence either C2 ≤ 0, yielding no solution for m′
2, . . . , m′

k′ , or

m′
2 ≤ k′ − 1

C2
.

It follows that there is a finite number of possibilities for m′
2.

Continuing in the same way, we see that given values of m′
1, . . . , m′

i for some i < k′,
there is a finite number of possibilities for m′

i+1, completing the proof. �
This is no longer the case for the higher Euler–Satake characteristics χES

(l) . For
instance,

χES
(1) (Q) = 2 − 2g
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coincides with the usual Euler characteristic of the underlying space (note that this is
the case in arbitrary dimension; see [8]). It follows that this characteristic coincides for
any orbifolds with the same underlying space. For l > 1, infinite families of orbifolds
whose lth Euler–Satake characteristics coincide can be constructed.

EXAMPLE 3.4. Fix integers j, l ≥ 2 with j odd. For each odd integer k ≥ 1, the
orbifold Qk of genus gk = 1

2 k(jl−1 − 1) with k cone points, each of order j, satisfies

χES
(l) (Qk) = 2 − 2gk − k + jl−1k

= 2.

It is clear, then, that none of the lth Euler–Satake characteristics classify this class
of 2-orbifolds. However, as stated in Theorem 1.1, any infinite collection of the lth
Euler–Satake characteristics is sufficient for classifying this class of orbifolds. We have
the following technical result before proceeding to the proof of Theorem 1.1.

LEMMA 3.5. Let L be a set of non-negative integers. Suppose Q and Q′ are closed,
connected, effective, orientable 2-orbifolds such that

χES
(l) (Q) = χES

(l) (Q′)

for l ∈ L. Suppose Q and Q′ both have at least one cone point of order m. If Q is the
orbifold formed by removing a cone point of order m from Q and Q′ the orbifold formed
by removing a cone point of order m from Q′, then

χES
(l) (Q) = χES

(l) (Q′)

for l ∈ L.

Proof. We simply note that

χES
(l) (Q) = χES

(l) (Q) + 1 − ml−1

= χES
(l) (Q′) + 1 − ml−1

= χES
(l) (Q′),

for each l ∈ L. �

Proof of Theorem 1.1. Assume Q and Q′ are distinct, connected, effective, orientable
2-orbifolds such that χES

(l) (Q) = χES
(l) (Q′) for every l in some infinite set L of non-negative

integers. Let Q = �g(m1, . . . , mk) and Q′ = �g′(m′
1, . . . , m′

k′) as above. If k = 0 or
k′ = 0, then the result is trivial, so assume not. By Lemma 3.5, we can assume without
loss of generality that mk > m′

k′ .
For each l ∈ L, we have by Proposition 3.1 that

2 − 2g − k +
(

k∑
i=1

ml−1
i

)
= 2 − 2g′ − k′ +

(
k′∑

i=1

(m′
i)

l−1

)
.
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Noting that the right-hand side is zero for at most one value of l, it follows that for
l ∈ L sufficiently large,

2 − 2g − k +
(

k∑
i=1

ml−1
i

)

2 − 2g′ − k′ +
(

k′∑
i=1

(m′
i)

l−1

) = 1.

Based on the order relationships between the mi and m′
i, we have that

2 − 2g − k +
(

k∑
i=1

ml−1
i

)

2 − 2g′ − k′ +
(

k′∑
i=1

(m′
i)

l−1

) ≥

(
k∑

i=1

ml−1
i

)
− k − 2g

2 +
k′∑

i=1

(m′
i)

l−1

≥ ml−1
k − k − 2g

(m′
k′ )l−1 + k′(m′

k′ )l−1

= ml−1
k

(k′ + 1)(m′
k′)l−1

− k + 2g
(k′ + 1)(m′

k′ )l−1

= 1
k′ + 1

(
mk

m′
k′

)l−1

− k + 2g
(k′ + 1)(m′

k′ )l−1
.

However, as mk > m′
k′ , it follows that

lim
l→∞

1
k′ + 1

(
mk

m′
k′

)l−1

− k + 2g
(k′ + 1)(m′

k′)l−1
= ∞,

a contradiction. It follows that Q = Q′. �

3.2. Negative classification results for � free abelian. In this section, we
demonstrate that Theorem 1.1 cannot be improved upon in the case of closed,
connected, effective, orientable 2-orbifolds. For any finite collection of the lth Euler–
Satake characteristics, we construct an arbitrarily large (finite) collection of orbifolds
whose lth Euler–Satake characteristics coincide. Specifically, the goal of this section is
to prove the following, which will be used to prove Theorem 1.2 and Theorem 3.13. In
particular, the perhaps mysterious conditions of the orders of the cone points imposed
throughout this section will allow us to extend to the �-Euler–Satake characteristics
for arbitrary � in Section 3.3.

PROPOSITION 3.6. Let L ≥ 0 and N ≥ 1 be integers. Then there are N distinct closed,
connected, effective, orientable 2-orbifolds Q1, Q2, Q3, . . . , QN such that for each l =
0, 1, . . . , L,

χES
(l) (Q1) = χES

(l) (Q2) = · · · = χES
(l) (QN).
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The common genus of these orbifolds can be taken to be any non-negative integer g.
Moreover, if R is any collection of 2L−2 integers ≥ 2, then the orders of the cone points of
the Qj can be taken to be elements of the set {2q + 1, 2q2 + q, q + 2, 2q + q2 : q ∈ R}.

First, we establish a number of results and constructions that will simplify the
arguments and notation in this section.

DEFINITION 3.7. Let Q = �g(m1, . . . , mk) and Q′ = �g(m′
1, . . . , m′

k′ ) be two
orbifolds with the same genus. For any integer s ≥ 1, we let

s � Q = �g(sm1, . . . , smk)

denote the orbifold with the same genus and number of cone points as Q such that the
order of each cone point is multiplied by s. For any integer t ≥ 1, we let

t � Q = �g

( t︷ ︸︸ ︷
m1, . . . , m1,

t︷ ︸︸ ︷
m2, . . . , m2, . . . ,

t︷ ︸︸ ︷
mk, . . . , mk

)

denote the orbifold with the same genus as Q and each cone point of Q occurring t
times. We let

Q � Q′ = �g(m1, . . . , mk, m′
1, . . . , m′

k′ )

denote the orbifold with the same genus as Q and Q′ and the combined k + k′ cone
points of both Q and Q′.

Note that � is clearly commutative and associative, and

t � Q =
t︷ ︸︸ ︷

Q � · · · � Q .

Moreover, 1 � Q = 1 � Q = Q. In the case that the genus of Q and Q′ is zero, Q � Q′

corresponds to the connected sum (defined in the same way as manifolds with the
additional assumption that the disks removed contain no singular points) so that t � Q
corresponds to the t-fold connected sum of Q with itself.

LEMMA 3.8. Let L, s and t be non-negative integers. Suppose Q and Q′ are closed,
connected, effective, orientable 2-orbifolds with the same number of cone points such that

χES
(l) (Q) = χES

(l) (Q′)

for l ≤ L. Then if Q and Q′ have the same genus,

χES
(l) (t � Q) = χES

(l) (t � Q′)

and

χES
(l) (s � Q) = χES

(l) (s � Q′)

for each l ≤ L.

Proof. Assume Q = �g(m1, . . . , mk) and Q′ = �g(m′
1, . . . , m′

k). The result then
follows from direct computations and application of Proposition 3.1. �
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LEMMA 3.9. Let L be a non-negative integer, and let Q1, Q′
1, . . . , QN, Q′

N be closed,
connected, effective 2-orbifolds. Assume that for each j = 1, . . . , N, Qj and Q′

j have the
same genus and number of cone points, and

χES
(l) (Qj) = χES

(l) (Q′
j)

for each l ≤ L. Then there are closed, connected, effective, orientable 2-orbifolds
Q1,Q′

1, . . . ,QN,Q′
N all with the same number of cone points such that for each

j = 1, . . . N,

Qj = tj � Qj

and

Q′
j = tj � Q′

j

for integers tj ≥ 1, and

χES
(l) (Qj) = χES

(l) (Q′
j)

for each l ≤ L.

Proof. For each j = 1, . . . N, let kj be the common number of cone points of Qj

and Q′
j. Then set

tj =
N∏

i=1,i 
=j

ki,

Qj = tj � Qj

and

Q′
j = tj � Q′

j.

By Lemma 3.8,

χES
(l) (Qj) = χES

(l) (Q′
j)

for each l ≤ L. Moreover, each Qj and Q′
j has tjkj = ∏N

i=1 ki cone points. �
In the following lemma, we establish an infinite family of pairs of orbifolds with the

same lth Euler–Satake characteristic for l = 0, 1, 2 and a number of other properties,
each of which being required for constructions in the sequel.

LEMMA 3.10. For each integer q ≥ 2 and each g ≥ 0, let

Q[g, q] = �g(2q + 1, 2q + 1, 2q2 + q)

and

Q′[g, q] = �g(q + 2, q2 + 2q, q2 + 2q).
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Then

χES
(l) (Q[g, q]) = χES

(l) (Q′[g, q])

for l = 0, 1, 2. The orbifolds {Q[g, q], Q′[g, q] : g ≥ 0, q ≥ 2} are all distinct. Moreover,
if Q and s � Q are elements of {Q[g, q], Q′[g, q] : g ≥ 0, q ≥ 2} for some orbifold Q and
integer s, then s = 1.

Proof. Applying Proposition 3.1, for each integer q ≥ 2 we have

χES
(0) (Q[g, q]) = 1

q − 1 − 2g

= χES
(0) (Q′[g, q]),

χES
(1) (Q[g, q]) = 2 − 2g

= χES
(1) (Q′[g, q])

and

χES
(2) (Q[g, q]) = 1 − 2g + 5q + 2q2

= χES
(2) (Q′[g, q]).

That these orbifolds are all distinct is obvious; it is impossible that Q[g, r] =
Q′[g, q], as Q[g, r] has two smaller- and one larger-order cone point, while Q′[g, q] has
one smaller and two larger. Moreover, Q[g, r] = Q[g, q] implies that 2r + 1 = 2q + 1
so that r = q, and similarly Q′[g, r] = Q′[g, q] implies that r + 2 = q + 2 so that r = q.
The remaining claim is clear. �

LEMMA 3.11. For each non-negative integer L and any genus g, there is a pair
of distinct, closed, connected, effective, orientable 2-orbifolds Q and Q′ with the same
number of cone points such that χES

(l) (Q) = χES
(l) (Q′) for each l ≤ L. The common genus of

Q and Q′ can be taken to be any non-negative integer g. Moreover, if R is any collection
of 2L−2 integers ≥ 2, then the orders of the cone points of Q and Q′ can be taken to be
elements of the set {2q + 1, 2q2 + q, q + 2, 2q + q2 : q ∈ R}.

Proof. Throughout, we assume all orbifolds have a fixed genus g; note that the
constructions in this proof hold for any value of g.

Let L ≥ 3 be an integer, and let q : {1, 2, . . . , 2L−2} → {2, 3, . . .} be the order-
preserving function whose image is R; that is, q(j1) < q(j2) whenever j1 < j2. For j =
1, . . . 2L−2, let Qj,2 = Q[g, q(j)] and Q′

j,2 = Q′[g, q(j)] be the orbifolds constructed in
Lemma 3.10. Here, the subscript 2 indicates that the Qj,2 and Q′

j,2 have the same lth
Euler–Satake characteristic for l ≤ 2. To summarize what follows, we construct from
these 2L−2 pairs of orbifolds whose lth Euler–Satake characteristics coincide for l ≤ 2 a
collection of 2L−3 pairs of orbifolds whose lth Euler–Satake characteristics coincide for
l ≤ 3. Continuing recursively, we construct a pair of orbifolds Q = Q1,L and Q′ = Q′

1,L
whose lth Euler–Satake characteristics coincide for l ≤ L.

The following describes the recursive step in detail. Let n ≥ 3 and 1 ≤ j ≤ 2L−n

with j odd, and assume that there are orbifolds Qj,n = �g(a1, a2, . . . , ak), Q′
j,n =

�g(b1, b2, . . . , bk), Qj+1,n = �g(c1, c2, . . . , ck), and Q′
j+1,n = �g(d1, d2, . . . , dk) with
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a1, a2, . . . , ak, b1, b2, . . . , bk, c1, c2, . . . , ck, d1, d2, . . . , dk ≥ 2 integers such that

χES
(l) (Qj,n) = χES

(l) (Q′
j,n)

and

χES
(l) (Qj+1,n) = χES

(l) (Q′
j+1,n)

for each l = 0, 1, 2, . . . , n. Note that this implies that

k∑
i=1

al−1
i =

k∑
i=1

bl−1
i (5)

and

k∑
i=1

cl−1
i =

k∑
i=1

dl−1
i (6)

for each l = 0, 1, 2, . . . , n.
If χES

(n+1)(Qj,n) = χES
(n+1)(Q

′
j,n), then the recursive step is unnecessary for this

pair, so set Q(j+1)/2,n+1 = Qj,n and Q′
(j+1)/2,n+1 = Q′

j,n. Similarly, if χES
(n+1)(Qj+1,n) =

χES
(n+1)(Q

′
j+1,n), then set Q(j+1)/2,n+1 = Qj+1,n and Q′

(j+1)/2,n+1 = Q′
j+1,n. Otherwise, define

δ1 =
k∑

i=1

an
i −

k∑
i=1

bn
i

and

δ2 =
k∑

i=1

dn
i −

k∑
i=1

cn
i .

Note that if δ1 = 0 then χES
(n+1)(Qj,n) = χES

(n+1)(Q
′
j,n), so we can assume by switching the

roles of Qj,n and Q′
j,n if necessary that δ1 > 0. Similarly, we assume with no loss of

generality that δ2 > 0.
We construct the orbifolds Q(j+1)/2,n+1 and Q′

(j+1)/2,n+1 as follows. Let

Q(j+1)/2,n+1 = (δ2 � Qj,n) � (δ1 � Qj+1,n)

and

Q′
(j+1)/2,n+1 = (δ2 � Q′

j,n) � (δ1 � Q′
j+1,n).

That is, Q(j+1)/2,n+1 is given by

�g

⎛⎝ δ2︷ ︸︸ ︷
a1, . . . , a1,

δ2︷ ︸︸ ︷
a2, . . . , a2, . . . ,

δ2︷ ︸︸ ︷
ak, . . . , ak,

δ1︷ ︸︸ ︷
c1, . . . , c1,

δ1︷ ︸︸ ︷
c2, . . . , c2, . . . ,

δ1︷ ︸︸ ︷
ck, . . . , ck

⎞⎠ ,

https://doi.org/10.1017/S001708951000042X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951000042X


568 WHITNEY DUVAL ET AL.

and Q′
(j+1)/2,n+1 is given by

�g

⎛⎝ δ2︷ ︸︸ ︷
b1, . . . , b1,

δ2︷ ︸︸ ︷
b2, . . . , b2, . . . ,

δ2︷ ︸︸ ︷
bk, . . . , bk,

δ1︷ ︸︸ ︷
d1, . . . , d1,

δ1︷ ︸︸ ︷
d2, . . . , d2, . . . ,

δ1︷ ︸︸ ︷
dk, . . . , dk

⎞⎠.

Then we can express χES
(n+1)(Q(j+1)/2,n+1) − χES

(n+1)(Q
′
(j+1)/2,n+1) as(

2 − 2g − (δ2k + δ1k) + δ2

k∑
i=1

an
i + δ1

k∑
i=1

cn
i

)
−

(
2 − 2g − (δ2k + δ1k) + δ2

k∑
i=1

bn
i + δ1

k∑
i=1

dn
i

)
,

yielding

δ2

(
k∑

i=1

an
i −

k∑
i=1

bn
i

)
+ δ1

(
k∑

i=1

cn
i −

k∑
i=1

dn
i

)
= δ2δ1 + δ1(−δ2)

= 0.

It follows that

χES
(n+1)(Q(j+1)/2,n+1) = χES

(n+1)(Q
′
(j+1)/2,n+1).

Moreover, for each non-negative integer l ≤ n, we can express χES
(l) (Q(j+1)/2,n+1) −

χES
(l) (Q′

(j+1)/2,n+1) as(
2 − 2g − (δ2k + δ1k) + δ2

k∑
i=1

al−1
i + δ1

k∑
i=1

cl−1
i

)

−
(

2 − 2g − (δ2k + δ1k) + δ2

k∑
i=1

bl−1
i + δ1

k∑
i=1

dl−1
i

)
,

resulting in

δ2

(
k∑

i=1

al−1
i −

k∑
i=1

bl−1
i

)
+ δ1

(
k∑

i=1

cl−1
i −

k∑
i=1

dl−1
i

)
= 0

by equations (5) and (6).
For each n ≥ 3, we apply this construction for each odd j with 1 ≤ j ≤ 2L−n,

forming 2L−n−1 orbifold pairs Q(j+1)/2,n+1 and Q′
(j+1)/2,n+1; note that these are indexed

as Qr,n+1, Q′
r,n+1 for r = 1, 2, . . . , 2L−n−1. For each r, Qr,n+1 and Q′

r,n+1 have the
same number of cone points; hence, we can apply Lemma 3.9 to the collection of
{Qr,n+1, Q′

r,n+1 : r = 1, . . . , 2L−n−1} to assume that they all have the same number of
cone points, which is required in the next recursive step. The result is a pair of orbifolds
Q = Q1,L and Q′ = Q′

1,L with the desired properties. It remains only to show that Q
and Q′ are distinct.

While not all of the Qj,2 and Q′
j,2 may have been used in this construction (if it

happens that χES
(n+1)(Qj,n) = χES

(n+1)(Q
′
j,n) or χES

(n+1)(Qj+1,n) = χES
(n+1)(Q

′
j+1,n) for some j),
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but note that both Q and Q′ have at least three cone points each. Fix the smallest value
of j such that Q and Q′ have cone points arising from Q[g, q(j)] and Q′[g, q(j)]. While
the roles of these two may have switched to ensure that δ1 and δ2 are positive, only one
of Q and Q′ can have cone points of order q(j) + 2 from Q′[g, q(j)]. As q(j) ≥ 2 for all j
and q(j) is strictly increasing, it follows that all other cone points of the two orbifolds
must have order strictly greater than q(j) + 2, and hence that Q and Q′ are distinct
orbifolds. �

LEMMA 3.12. Let L be a non-negative integer. Suppose Q and Q′ are distinct, closed,
connected, effective, orientable 2-orbifolds with the same genus and same number of cone
points such that

χES
(l) (Q) = χES

(l) (Q′)

for l ≤ L. For any integer N ≥ 2, there is a collection Q1,Q2, . . .QN of distinct closed,
effective, orientable 2-orbifolds such that

χES
(l) (Q1) = χES

(l) (Q2) = · · · = χES
(l) (QN)

for l ≤ L. Moreover, the orders of cone points of each Qj are those of Q and Q′ only.

Proof. It is obvious that Q and Q′ must have singular points, as otherwise χES
(0) (Q) =

χES
(0) (Q′) implies that Q = Q′. By this observation and Lemma 3.5, we may assume

without loss of generality that Q has r cone points of order m for some m ≥ 2, and Q′

does not have a cone point of order m. Let k be the common number of cone points of
Q and Q′.

For j = 1, 2, . . . , N, we define

Qj =
N−j︷ ︸︸ ︷

Q � · · · � Q �
j−1︷ ︸︸ ︷

Q′ � · · · � Q′ .

Then each Qj has exactly (N − j)r cone points of order m so that the Qj are distinct.
Now, let Q = �g(a1, . . . , ak) and Q′ = �g(b1, . . . , bk) (so that in particular, ai = m

for r choices of i), and note that
∑k

i=1 al−1
i = ∑k

i=1 bl−1
i for each l ≤ L. For each

0 ≤ l ≤ L and 1 ≤ j ≤ N, we compute

χES
(l) (Qj) = 2 − 2g − (N − 1)k + (N − j)

k∑
i=1

al−1
i + (j − 1)

k∑
i=1

bl−1
i

= 2 − 2g − (N − 1)k + (N − j)
k∑

i=1

al−1
i + (j − 1)

k∑
i=1

al−1
i

= 2 − 2g − (N − 1)k + (N − 1)
k∑

i=1

al−1
i .

As χES
(l) (Qj) does not depend on j, we are done. �
Proof of Proposition 3.6. By Lemmas 3.10 and 3.11, there exists a pair of orbifolds

with the desired properties. By Lemma 3.12, there are N such orbifolds. �
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3.3. Negative classification results for general �. Let G be a set of finitely
generated discrete groups, and let A = {�/[�,�] : � ∈ G} denote the collection of
abelianizations of elements of G. Then each �/[�,�] is of the form �l ⊕ G uniquely
for l ≥ 0 and G finite by the Fundamental Theorem of Finitely Generated Abelian
Groups. Let F denote the set of G that appear in this decomposition for elements of A;
that is

F = {G : �l ⊕ G ∈ A}.

Let P denote the set of primes p such that there is a G ∈ F and g ∈ G with |g|
divisible by p. In this section, we prove the following.

THEOREM 3.13. Let N ≥ 2 be an integer. Let G be a non-empty set of finitely
generated discrete groups such that the ranks of the elements of A are bounded, and
P is finite. Then there are distinct, closed, connected, effective, orientable 2-orbifolds
Q1, Q2, . . . , QN such that for each � ∈ G,

χES
� (Q1) = χES

� (Q2) = · · · = χES
� (QN).

The common genus of the Qj can be chosen to be any non-negative integer.

In particular, note that the hypotheses of Theorem 3.13 are obviously satisfied
for G finite; hence Theorem 1.2 is a trivial consequence. First, we have the following.
Recall that an abelian orbifold is an orbifold Q such that every isotropy group of Q is
abelian.

LEMMA 3.14. Let Q be an abelian orbifold and � a finitely generated discrete group.
Then Q̃� and Q̃�/[�,�] are diffeomorphic. In particular, if Q is closed, then

χES
� (Q) = χES

�/[�,�](Q).

Proof. Let ρ : � → �/[�,�] denote the quotient map. For each local group Gx of
Q, it is easy to see that as Gx is abelian, the correspondence φx �→ φx ◦ ρ is a bijection
between HOM(�/[�,�], Gx) and HOM(�, Gx). It clearly follows that

eρ : S�/[�,�]
G −→ S�

G
: φx �−→ φx ◦ ρ

is a bijective. See [8, Section 3.3] for a more general treatment of maps on sectors
induced by group homomorphisms, of which eρ is an example.

Recall that if {Vx, Gx, πx} is a linear chart for G at x, then {V 〈φx〉
x , CGx (φx), πφx

x }
is a linear chart for S�

G at φx. As, Im φx = Im φx ◦ ρ ≤ Gx, it follows that eρ is simply
the identity on charts and hence a G-equivariant diffeomorphism. It hence induces an
isomorphism of orbifold groupoids between G� and G�/[�,�]. �

It follows that, for abelian orbifolds Q and Q′,

χES
� (Q) = χES

� (Q′) ∀ � ∈ G

if and only if

χES
� (Q) = χES

� (Q′) ∀ � ∈ A.
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Proof of Theorem 3.13. Suppose L is the maximum rank of the elements of A.
If P is empty, then A contains only free abelian groups, and the result follows from
Proposition 3.6. So assume P 
= ∅.

Let P = {p1, p2, . . . , pr}, and define

q : {1, 2, . . . , 2L−1} −→ {2, 3, . . .}

: j �−→ j

(
2

r∏
i=1

pi

)
− 1.

Then q is order-preserving, and q(j) ≥ 2 for each j. Moreover, for each i and j, q(j) ≡ −1
mod pi. Hence 2q(j) + 1 ≡ −1 mod pi, and q(j) + 2 ≡ 1 mod pi. It follows that q(j),
2q(j) + 1, and q(j) + 2 are not divisible by any element of P.

By Proposition 3.6, for any choice of genus, there are orbifolds Q1, . . . , QN such
that χES

(l) (Q1) = χES
(l) (Q2) = · · · = χES

(l) (QN) for each l ≤ L. Moreover, we can choose the
Qj so that their cone points all have orders q(j) + 1, 2q(j)2 + q(j), q(j) + 2, 2q(j) + q(j)2

for values of j ∈ {1, 2, . . . , 2L−1}; in particular, we use the function q defined above in
the proof of Lemma 3.11.

Fix some j, let q = q(j), and let G ∈ F. For any homomorphism φ : G → �/(2q +
1)� and each g ∈ G, the order |g| must be divisible by the order |φ(g)|, which must
divide 2q + 1. However, |g| and 2q + 1 are relatively prime by construction so that
|φ(g)| = 1 and g ∈ Ker φ. Hence, φ is the trivial homomorphism. The same argument
applies to homomorphisms into �/(2q2 + q)�, �/(2q + q2)�, and �/(q + 2)�.

It follows that for any homomorphism φ : �l ⊕ G → �/m�, where m = 2q +
1, 2q2 + q, 2q + q2, or q + 2, each g ∈ G is in the kernel, so that

χES
�l⊕G(Qj) = χES

(l) (Qj)

for each �l ⊕ G ∈ A and each j, completing the proof. �

4. Other classes of orbifolds. In this section, we demonstrate that the hypotheses
of Theorem 1.1 cannot be relaxed to include non-effective nor non-orientable orbifolds.
Note that in the case of a global quotient, it is convenient to describe the �-sectors
globally as originally given in [16]. See equation (1) and [7, Section 3.1] for the
equivalence of these definitions.

EXAMPLE 4.1. Let �/6� = 〈a〉 act on S2 so that a acts as a rotation through π/3, and
let Q denote the resulting quotient orbifold. Then Q is effective, has underlying space
homeomorphic to S2 and has two cone points, both with isotropy �/6�. Similarly,
let �/6� = 〈b〉 act on S2 where b acts by a rotation through 2π/3. Then the quotient
orbifold Q′ has two cone points with isotropy �/6�, and every other point has isotropy
�/3�. Let np, sp ∈ S2 denote the two fixed points of each of these actions. We claim
that χES

� (Q) = χES
� (Q′) for every finitely generated discrete �.

Let ι : a �→ b denote the obvious isomorphism and fix � finitely generated and
discrete. Then φ �→ ι ◦ φ of course defines a bijection between HOM(�, 〈a〉) and
HOM(�, 〈b〉). We note the following.
� If Im φ = 〈1〉, then (S2; 〈a〉)(φ) = S2

� 〈a〉, diffeomorphic to Q, has Euler–Satake
characteristic 1

3 and (S2; 〈b〉)(ι◦φ) = S2
� 〈b〉, diffeomorphic to Q′, has Euler

characteristic 1
3 .
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� If Im φ = 〈a〉 or 〈a2〉, then (S2; 〈a〉)(φ) = {np, sp} � 〈a〉 has Euler–Satake
characteristic 1

3 and (S2; 〈a〉)(ι◦φ) = {np, sp} � 〈b〉 has Euler characteristic 1
3 .

� If Im φ = 〈a3〉, then (S2; 〈a〉)(φ) = {np, sp} � 〈a〉 has Euler–Satake characteristic 1
3

and (S2; 〈a〉)(ι◦φ) = S2
� 〈b〉, diffeomorphic to Q′ has Euler characteristic 1

3 .
It follows that

χES

(
(̃Q)(φ)

)
= χES

(
(̃Q′)(ι◦φ)

)
for each φ ∈ HOM(�, 〈a〉), and hence that

χES
� (Q) = χES

� (Q′).

Therefore, there is no finitely generated discrete � such that χES
� distinguishes between

Q and Q′.

EXAMPLE 4.2. Let Q and Q′ be orbifolds homeomorphic as topological spaces to the
cylinder S1 × [0, 1], with S1 × {0, 1} singular and S1 × (0, 1) non-singular as explained
below. Let B0 = S1 × {0} and B1 = S1 × {1} denote the connected components of the
singular set of Q, and similarly let B′

0 and B′
1 denote the components of the singular set

of of Q′. Both orbifolds have four corner reflectors as follows, where D2n denotes the
dihedral group of order 2n. The orbifold Q has corner reflectors modeled by �2/D6

and �2/D10 on B0; and �2/D14 and �2/D22 on B1. The orbifold Q′ has corner reflectors
modeled by �2/D6 and �2/D14 on B′

0; and �2/D10 and �2/D22 on B′
1. By examining

the components of the singular sets, it is clear that Q and Q′ are not diffeomorphic.
As all dihedral groups under consideration have an odd number of rotations and

hence the centralizer of an element of order 2 is precisely the group generated by that
element, it is easy to see that the �-sectors of Q for each finitely generated discrete
group � all occur in the following list:
� an orbifold diffeomorphic to Q,
� a circle with trivial �/2�-action and
� a point with trivial �/n�-action, where n = 3, 5, 7, or 11.
Similarly, the �-sectors of Q′ are of the form
� an orbifold diffeomorphic to Q′,
� a circle with trivial �/2�-action and
� a point with trivial �/n�-action, where n = 3, 5, 7, or 11.
There is an obvious bijection between homomorphisms from � into the local groups
of Q and homomorphisms from � into the local groups of Q′. This bijection preserves
the diffeomorphism class of the corresponding sector in every case except that of the
trivial homomorphism, corresponding to the unique sectors diffeomorphic to Q and
Q′. However, by [18, Equation 13.3.4],

χES(Q) = − 1
2

(
4 − 1

3 − 1
5 − 1

7 − 1
11

)
= −1867

1155

= χES(Q′),

and it follows that χES
� (Q) = χES

� (Q′) for every finitely generated discrete �.
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Finally, we note that the constructions of orbifolds whose �-Euler–Satake
characteristics coincide given above can be used to construct orbifolds of arbitrary
even dimension with the same properties.

COROLLARY 4.3. Let N, n ≥ 2 be integers with n even. Let G be a non-empty collection
of finitely generated discrete groups such that, with the notation as in Section 3.3, the
ranks of the elements of A are bounded, and P is finite. Then there are distinct closed,
connected, effective, orientable n-dimensional orbifolds Q1, Q2, . . . , QN such that for
each � ∈ G,

χES
� (Q1) = χES

� (Q2) = · · · = χES
� (QN).

Proof. Since the �-Euler–Satake characteristic is multiplicative (see [8,
Section 4.1]), we need only apply Theorem 3.13 and take the product of each 2-orbifold
with Sn−2. �
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