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Abstract

We establish a Hirzebruch–Riemann–Roch-type theorem and a Grothendieck–Riemann–Roch-type theorem for
matrix factorizations on quotient Deligne–Mumford stacks. For this, we first construct a Hochschild–Kostant–
Rosenberg-type isomorphism explicit enough to yield a categorical Chern character formula. Then, we find an
expression of the canonical pairing of Shklyarov under the isomorphism.
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1. Introduction

1.1. Main results

Let k be an algebraically closed field of characteristic zero. The main interest of this paper is a Landau–
Ginzburg model, (X , F), where X is a smooth separated Deligne–Mumford stack of finite type over k
and a regular function w with no other critical values but zero.

By a matrix factorization for (X , F) we mean a pair (%, X%) of a locally free coherent G-graded
sheaf P on X and a curved differential X% whose square is F · id% . Here, G can be either the group Z or
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Z/2 depending on w. There is the notion of the coderived category of matrix factorizations DMF(X , F)
and its differential graded (dg) enhancement defined as the dg quotient of the dg category of matrix
factorizations by the subcategory of coacyclic or equivalently locally contractible matrix factorizations.
Later, we will introduce a Čech-type dg enhancement of DMF(X , F) denoted by MF36 (X , F) which
we are going to use throughout the paper; see [15, 34] and also Definition 4.8.

The goal of this text is to firstly prove a Hochschild–Kostant–Rosenberg (HKR) for the category
of matrix factorizations. The HKR theorem allows us to prove a Hirzebruch–Riemann–Roch (HRR)
theorem and a Grothendieck–Riemann–Roch(GRR) theorem under the HKR-type map. In the rest of
this section, we give an outline of the results, proofs and relations to previous works.

1.1.1. HKR and a Chern character formula

To the dg category MF36 (X , F), one can associate a Hochschild chain complex

MC(MF36 (X , F)).

which is a mixed complex equipped with the bar differential with Conne’s B operator. It has been
expected that MC(MF36 (X , F)) should be quasi-isomorphic to the 3F-twisted de Rham mixed complex
(Ω•�X ,−3F |�X , 3) of the inertia stack �X of X . However, only particular cases have been proven so far.
In this paper, we verify that the expectation is indeed true.

We first introduce some notations. Let P be a matrix factorizations and dX : �X → X be the natural
morphism. Write % |�X and F |�X for d∗

X
% and d∗

X
F respectively. Let

can% |�X ∈ HomMF36 (�X ,F |�X ) (% |�X , % |�X )

be the canonical automorphism of % |�X ; see §3. Next, let

ât(% |�X ) ∈ Ext1 (% |�X , % |�X ⊗ Ω
−3F |�X
�X )

denote the Atiyah class of the matrix factorization % |�X for (�X , F |�X ); see [16, 24, 25] and §5.2.
Finally, tr denotes the supertrace morphism

tr : RHom(% |�X , % |�X ⊗ (Ω
•
�X ,−3F |�X )) → H

∗(�X , (Ω•�X ,−3F |�X )).

Theorem 1.1. Suppose X is smooth and has the resolution property. Then there is an isomorphism

MC(MF36 (X , F)) � RΓ(Ω
•
�X ,−3F |�X , 3)

in the derived category of mixed complexes. Under the isomorphism, the Hochschild homology valued
Chern character ch�� (%) is representable by

tr
(
can% |�X exp(ât(% |�X ))

)

in H∗(�X , (Ω•�X ,−3F |�X )) after the appropriate sense of the exponential operation exp is taken into
account; see §5.2.

The history of related works is very rich. Here, we mention only the case of stacky matrix factor-
izations. In the local case Theorem 1.1 was proved by Polishchuk and Vaintrob [35]. There are works
of Căldărau, Tu and Segal [8, 40] for HKR-type isomorphisms in affine cases with a finite group ac-
tion. The paper [3] of Ballard, Favero and Katzarkov show an HKR-type isomorphism for the graded
cases on linear spaces. This result has also been obtained by Halpern–Leistner and Pomerleano [18,
Remark 3.20] and [17, Corollary 4.6]. We note that there is a difference in the map constructed in the
current text and [17] (see equation (4.5) and Remark 4.15). Theorem 1.1 is proven by Kuerak Chung,
Taejung Kim and the second author in [10], when one considers quotient stacks of the form [-/�],
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where X is a smooth variety with a finite group action. In [25], an HKR-type isomorphism and Chern
character formula including the case for the graded matrix factorizations are obtained by the universal
Atiyah class.

1.1.2. HRR and GRR

Further, assume that the smooth separated Deligne-Mumford stack X is a stack quotient of a smooth
variety by an action of an affine algebraic group and the critical locus of w is proper over k. When
G = Z/2, we shall further assume that the morphism F : X → A1

: is flat. We call the pair (X , F) a
proper Landau-Ginzburg (LG) model. We define the Euler characteristic j(%,&) of the pair (%,&) by
the alternating sum of the dimensions of higher sheaf cohomology:

j(%,&) :=
∑

8∈G

(−1)8 dimR8Hom(%,&).

For a vector bundle E on �X , let at(�) ∈ Ext1(�, � ⊗ Ω1
�X ) denote the usual Atiyah class of E. Let

chCF (�) := tr(can� exp(at(�)) ∈ H∗(�X , (Ω•�X , 0)).

For a virtual vector bundle E, define chCF (�) by linearity. We define the Todd class td()�X ) of )�X by
the formulation of Todd class in terms of the Chern character chCF ()�X ); see §5.2.

Theorem 1.2. Let %∨ denote the matrix factorization (%∨, X∨%) for (X ,−F) dual to (%, X%), let #�X /X
denote the normal bundle of �X to X via dX , let dim�X be the locally constant function for local
dimensions of �X and let _−1(#

∨
�X /X

) be the alternating sum of exterior powers of #∨
�X /X

. Then

j(%,&) =

∫

�X
(−1) (

dim�X +1
2 )ch�� (&) ∧ ch�� (%

∨) ∧
td()�X )

chCF (_−1(#
∨
�X /X

))
. (1.1)

Here, the right-hand side is the composition of the following operations:

− ∧− : H∗(�X , (Ω•�X , 3F |�X )) ⊗ H
∗(�X , (Ω•�X ,−3F |�X )) → H

∗
/ (�X , (Ω

•
�X , 0));

− ∧
td()�X )

chCF (_−1(#
∨
�X /X

))
: H∗/ (�X , (Ω

•
�X , 0)) → H

∗
/ (�X , (Ω

•
�X , 0));

∫

�X
: ⊕?∈Z�

∗
2 (�X ,Ω

?
�X [?])

?A> 942C8>=
−−−−−−−−−→ �0

2 (�X ,Ω
=
�X [=])

tr�X
−−−→ :,

where Z denotes the critical locus of F |�X which is proper, and �∗2 denotes compactly supported
cohomology.

Let (Y , E) be another proper LG model. Consider a proper morphism 5 : X → Y with 5 ∗E = F.
Let  0(A) be the Grothendieck group of the homotopy category of a pretriangulated dg category A,
and let 5! :  0(MF36 (X , F)) →  0(MF36 (Y , E)) be the pushforward induced by f ; see [9, §2]. Let

t̃d()� 5 ) := t̃d()�X )/� 5 ∗ t̃d()�Y ), where

t̃d()�X ) =
td()�X )

chCF (_−1(#
∨
�X /X

))
.
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Let dim� 5 be the function on �X for relative local dimensions of � 5 : �X → �Y , and let

∫

� 5
: H∗(�X , (Ω•�X ,−3F)) → H

∗(�Y , (Ω•�Y ,−3E))

be the pushforward; see §7.0.1.

Theorem 1.3 (=Theorem 6.10). The following diagram is commutative:

 0(MF36 (X , F))

ch��
��

5! //  0(MF36 (Y , E))

ch��
��

H
0 (�X , (Ω•�X ,−3F |�X )) ∫

� 5
(−1)dim� 5 ·∧t̃d()� 5 )

// H0(�Y , (Ω•�Y ,−3E |�Y )).

When G = Z (and hence F = 0), various versions of Riemann–Roch theorems on DM stacks are
proven by Kawasaki [20], Toën [43] and Edidin and Graham [11, 12, 13]. In the context of Hochschild
homology of schemes (and F = 0), Theorem 1.3 was proved by Ramadoss [38]. When w has one critical
point, Theorem 1.2 is proven by Polishchuk and Vaintrob [35].

1.2. On the proofs and pertinent works

1.2.1. HKR

For the computation of Hochschild homology of the category of matrix factorizations, there are at least
three known approaches by (1) finding a suitable flat resolution of the diagonal module [3, 27, 35], (2)
using the quasi-Morita equivalence [5, 8, 10, 14, 40] and (3) using the universal Atiyah classes [24, 25]
which goes back to [7, 31]. In this paper, we take the second approach by constructing a globalization
of Baranovsky’s map [4] closely following the proof of Proposition 2.13 of [18] and [17, Corollary 4.6].
Combining this with a chain-level map from [5, 10], we obtain a boundary-bulk map formula as well as
a Chern character formula; see §5.

1.2.2. HRR

For any proper smooth dg category A, there is a categorical HRR theorem by Shklyarov [41]. Let A>?

denote the opposite category of A. Let 〈, 〉20= be the canonical pairing (or the Mukai pairing in [7]):

〈, 〉20= : ��∗(A) ⊗ ��∗(A
>?) → :.

Then the categorical HRR theorem is the equality

j(%,&) = 〈Ch�� (&),Ch�� (%
∨)〉20= ∀%,& ∈ A.

There is a characteristic property of the canonical pairing in terms of the Chern character of diagonal
bimodule; see, for example, §6.1.2. LetA be the dg category of matrix factorizations for (X , F) localized
by coacyclic matrix factorizations. When X is local, using the characteristic property Polishchuk and
Vaintrob [35] show that the canonical pairing becomes up to sign the residue pairing under their HKR
type isomorphism. In the nonstacky local case, there is also a work of Brown and Walker [6] identifying
the canonical pairing with the residue pairing under the HKR type isomorphism.

When X is a smooth variety, using the deformation to the normal cone as well as the characteristic
property of the canonical pairing, the second author [23] shows that the canonical pairing becomes a trace
map under the HKR-type isomorphism up to a Todd correction term. When X is stacky, furthermore
using the deformation to the normal cone for local immersions [26, 45] and the Chern character formula
in Theorem 1.1, we are able to prove Theorem 1.2.
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1.2.3. GRR

The proper morphism f in Theorem 1.3 induces a dg functor from MF36 (X , F) to MF36 (Y , E). The
induced homomorphism

��∗(MF36 (X , F)) → ��∗(MF36 (Y , E))

in Hochschild homology has a description §6.1.1 in terms of the canonical pairing of MF36 (X ×
Y ,−F ⊗ 1 + 1 ⊗ E) and the categorical Chern character of the matrix factorization associated to the
graph morphism Γ 5 : X → X × Y .

Under the HKR isomorphisms, the deformation to the normal cone allows us to interpret the descrip-
tion as the pushforward by f on H0(�X , (Ω•�X ,−3F |�X ) up to a Todd correction term.

1.3. Conventions and notations

Let the ground field k be an algebraically closed field of characteristic zero. Let `A denote the group of
r-th roots of unity over the field k. Throughout this paper, let X be a finite type separated DM stack over
k. We denote by �X the inertia stack of X . Let

dX : �X → X

denote the natural representable morphism, which is finite and unramified [1, §3]. For a group G, �̂
shall denote its character group Hom(�,G<). Let G be a finite group which acts on a scheme Y of finite
type over k. For a quotient stack [./�], let

�. := {(6, H) ∈ � × . : 6H = H} := � × . ×.×. Δ.

so that � [./�] = [�./�].
For a local immersion (i.e., an unramified representable morphism) 5 : X → Y between DM stacks,

we denote �X /Y be the normal cone to X in Y; see [26, 45]. If f is a regular local immersion, then we
write # 5 or #X /Y for the vector bundle �X /Y on X .

For a vector bundle E, we often write 1� for the identity morphism id� of E. For a dg category A,
its homotopy category is denoted by [A].

The label ∼ on an arrow indicates the arrow is a quasi-isomorphism.

2. Mixed Hochschild complexes and Chern characters

Unless otherwise stated, we follow notation and conventions of [5, 10] for curved dg (in short CDG)
categories A, the mixed Hochschild complexes of A and the category of mixed complexes. We briefly
recall the notations therein and some foundational facts which we are going to use later.

2.1. Mixed Hochschild complexes

For a CDG category A, we use the following notation:

◦ � (A) (MC(A)): (mixed) Hochschild complex.
◦ � (A) (MC(A)): (mixed) normalized Hochschild complex.
◦ � � � (A) (MC� � (A)): (mixed) Hochschild complex of the second kind.

◦ �
� �
(A) (MC

� �
(A)): (mixed) normalized Hochschild complex of the second kind.

For notational convenience, we let � ′ denote either �,�, � � � or �
� �

and MC′ denote either MC,MC,

MC� � , or MC
� �

. The normalized negative cyclic complex is denoted by � (A) [[D]], where u is a
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formal variable of degree 2. For a mixed complex (�, 1, �), we simply write � [[D]] for the complex
(� [[D]], 1 + D�).

2.2. Foundational facts frequently in use

2.2.1. Invariance under the natural projections

The projection MC(D) → MC(D) for a dg category D and the projection MC� � (A) → MC
� �
(A) for

a CDG category A are quasi-isomorphisms [5, 36].

2.2.2. (Quasi-)Morita invariance

If a dg functor D → D′ is Mortia-equivalent (i.e., the induced functor � (D) → � (D′) of derived
categories of D and D′ is an equivalence), then the induced morphism MC(D) → MC(D′) of mixed
complexes is a quasi-isomorphism [21]. If A → A′ is a pseudo-equivalence of CDG categories, then

the induced morphism MC
� �
(A) → MC

� �
(A′) is a quasi-isomorphism [36]. This invariance is dubbed

as quasi-Morita invariance.

2.2.3. Localization in cyclic homology

If A→ B → C be an exact sequence of exact dg categories, then it induces an exact triangle of mixed
complexes

"� (A) → MC(B) → MC(C) → MC(A) [1];

see [22, §5.6].

2.2.4. Local description of the inertia stack

Let G be a finite group acting on a k-scheme X, and let �/� denote the set of conjugacy classes of G.
Then the following holds � [-/�] � ⊔6∈�/� [-6/C� (6)].

2.2.5. Invariants and coinvariants

Let G be a group with a linear action upon V a not-necessarily finite-dimensional vector space. Define
the invariant space +� := Hom� (:,+) and the coinvariant space +� := : ⊗� + . If G is a finite group,
then the composition of the natural homomorphisms +� → + → +� is an isomorphism.

2.3. Categorical Chern characters

For % ∈ A, the cycle class represented by the identity morphism 1% in the normalized Hochschild
complex� (A) (resp. the normalized negative cyclic complex� (A) [[D]]) of A is denoted by Ch�� (%)
(resp. Ch�# (%)).

3. The canonical central automorphism

3.1. The central embedding

The inertia stack has a decomposition:

�X = ⊔∞A=1�`AX .

An object of �`AX over a k-scheme T is a pair (b, U) of an object b ∈ X ()) and an injective morphism of
group-schemes U : `A ×) → ADC) (b); see [1, §3]. Note that, for all but finitely many r, �`AX is empty.
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An automorphism of the pair (b, U) in �`AX is by definition an automorphism 5 ∈ ADC) (b) such that

5 ◦ U ◦ 5 −1 = U.

In other words, the automorphism group-scheme ADC) (b, U) of (b, U) over T is the centralizer of U
in ADC) (b). We have a canonical central embedding c : `A × ) → ADC) (b, U). This gives a natural
morphism

`A × ) → ) ×�`AX ) ; (b, C) ↦→ (C, C, c(b, C)).

3.2. The central automorphism

Let ) → �`AX be an étale surjection, and let ?A8 : ) ×�`AX ) → ) be the i-th projection. A vector
bundle E on �`AX amounts to a vector bundle F on T with an isomorphism q� ∈ Isom) (?A∗1�, ?A

∗
2�)

satisfying the cocycle condition. By pulling back the isomorphism q� to `A ×) , we obtain a morphism
of group-schemes `A ×) → Aut) (�). Here, Aut) (�) denotes the group of automorphisms of F fixing
T. Since c is central, the homomorphism descends to a homomorphism `A → Aut�`AX (�). Denote by

can� ∈ Aut�`AX (�)

the image of the chosen r-th root 42c8/A of unity.
According to the action `A upon E, the bundle E is decomposable into eigenbundles

⊕

j∈̂̀A
�j,

where ̂̀A is the character group of `A . Then we have

can� =
⊕

j∈̂̀A
j(42c8/A )id�j ∈ Hom�`AX (�, �).

3.3. The local description

Locally the central automorphisms can can be described as follows. Suppose that X = [-/�], where
G is a finite group and X is a scheme. Let 6 ∈ � with order r, and write C� (6) for the centralizer of
g in G. For the component [-6/C� (6)] of �`AX and a C� (6)-equivariant sheaf E on -6, we have an
isomorphism

(6−1)∗�
i�6
−−→ �

from the equivariant structure of E. Since g acts trivially on -6, (6−1)∗� = � . And hence, i�6 is an
automorphism of E, which is the automorphism can� . Since any element of C� (6) commutes with g,
the homomorphism i�6 is C� (6)-equivariant. Thus, i�6 ∈ Hom�`AX (�, �). For any C� (6)-equivariant
sheaf � ′ on -6 and any C� (6)-equivariant O-6 -module homomorphism 0 : � → � ′, note that
i�

′

6 ◦ 0 = 0 ◦ i�6 .

3.4. )�X � �)X

In this subsection, let X be smooth over k. We prove that there is a natural isomorphism )�X � �)X .
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Consider a commuting diagram of natural morphisms

�)X
q

##●
●

●

●

!!

$$

)X |�X //

��

)X

��
�X // X ,

where the square is a fiber square.

Lemma 3.1. The morphism q induces an isomorphism �)X � )�X .

Proof. First, note that it is enough to check the isomorphism over the étale site of the coarse moduli
space of X . Since X is separated, then X is étale locally a quotient of a nonsingular variety Y by a finite
group G action. Hence, we may assume that X = [./�]. Since

)[. /� ] � [). /�] and � [./�] �
⊔

6∈�/�

[.6/C� (6)],

we have

�)[. /� ] �
⊔

6∈�/�

[(). )
6/C� (6)] and )� [. /� ] �

⊔

6∈�/�

[). 6/C� (6)] .

Since (). )6 � ). 6 , we conclude the proof. �

Note first that there is a natural short exact sequence of vector bundles

0→ )�X → d∗X)X → #dX → 0.

In fact, this sequence splits. The reason is that according to the canonical automorphism of d∗
X
)X there

is a decomposition of d∗
X
)X into the fixed part and the moving part, which are naturally isomorphic

to )�X and #dX , respectively. #dX is in particular a vector bundle. For a detailed discussion on local
embeddings, see [45, §1.20]).

Remark 3.2. When X is the global quotient [./�] by a finite group G, #dX � [#. 6/. /C� (6)].

4. Hochschild–Kostant–Rosenberg for stacky matrix factorizations

We introduce the main object of this paper.

Definition 4.1. A LG model is a pair (X , F) of a smooth separated DM stack X over k and a regular
function w on X . We further assume that X satisfies the resolution property. We assume that the critical
value is over 0. If G = Z, then F = 0. If G = Z/2, then we furthermore assume that F : X → A1 is flat.
The pair (X , F) will be called a proper LG model if the critical locus of w is proper over k.

Remark 4.2. We note that if X is a smooth quotient stack which satisfies the resolution property, it
follows from [44, Theorem 1.1] that X is a quotient stack.

4.1. Matrix factorizations and their derived categories

Whenever an LG model (X , F) is given, we consider a sheaf of curved differential graded (CDG for
short) algebra (OX ,−F) overX . It is concentrated in degree 0 with zero differential and a curvature −F.
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Definition 4.3. A quasi-differential graded module (QDG-module for short) over (OX ,−F) is a pair
(%, X%) of an OX -module P and an OX -linear degree 1 endomorphism X% . We say a QDG module is

◦ (quasi-)coherent if P is (quasi-)coherent,
◦ locally free if P is locally free,
◦ matrix quasi-factorization if P is locally free of finite rank.

We denote the category of QDG modules over (OX ,−F) by @Mod(X , F). It is a CDG category
whose morphisms and differentials are

Hom@Mod ((%, X%), (&, X&)) =
(
HomOX

(%,&), X
)
,

X( 5 ) = X& ◦ 5 − (−1) | 5 | 5 ◦ X% .

The curvature element ℎ (?, X%) of (%, X%) is defined as X2
% + d−F ∈ End(%), where d−F is the multipli-

cation map by −F.

Definition 4.4. A QDG-module (%, X%) is called a factorization if its curvature is zero. We define
(quasi-)coherent or locally free factorizations as in 4.3. In particular, we call it a matrix factorization if
P is locally free of finite rank.

By definition, factorizations form a dg subcategory inside @Mod(X , F) denoted by Mod(X , F). We
denote a full dg subcategory of (quasi-) coherent and matrix factorizations by QCoh(X , F), Coh(X , F)
and MF(X , F), respectively.

We recall constructions of the derived category of factorizations following [37]. Let [QCoh(X , F)]
be the homotopy category of QCoh(X , F). Denote by AbsAcyc(X , F) the smallest triangulated sub-
category containing the totalizations of all short exact sequences in /0QCoh(X , F). Its object is called
absolutely acyclic factorizations. Also, denote by CoAcyc(X , F) the smallest triangulated subcategory
containing the totalizations of all acyclic factorizations which is closed under infinite direct sum; its
object are called a coacyclic factorizations.

Definition 4.5. The absolute derived category of QCoh(X , F) is the Verdier quotient

Dabs (QCoh(X , F)) := [QCoh(X , F)]/AbsAcyc(X , F).

The coderived category of QCoh(X , F) is the Verdier quotient

Dco(QCoh(X , F)) := [QCoh(X , F)]/CoAcyc(X , F).

We define an absolute/coderived category of Coh(X , F) and MF(X , F).

Definition 4.6. The derived category of of matrix factorizations denoted by DMF(X , F) is the smallest
full triangulated subcategory of Dco(QCoh(X , F)) which contains Dabs(MF(X , F)).

Remark 4.7. Relations between various categories are well known. We only recall a few facts we will
be going to use later. If X is smooth, then it is known that Verdier localization Dabs (QCoh(X , F)) →
Dco (QCoh(X , F)) is an equivalence, and an image of Dabs(Coh(X , F)) consists of compact generators
inside Dco (QCoh(X , F)) (see [37, §3.6]). If X has the resolution property, then Dabs (MF(X , F)) →
Dabs (Coh(X , F)) is an equivalence. (See [34].)

4.2. Čech model

In this subsection, we recall the Čech type dg enhancement of DMF(-, F) as in [10].
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Fix an affine étale surjective morphism p : U → X from a k-scheme U. Let UA denote the r-th fold
product of U over X , and let pA : UA → X denote the projection. For a vector bundle E on X , let
Č
A
(�) = pA∗p

∗
A� and

Č(�) :=

(⊕

A ≥1

Č
A
(�), 3Čech

)
=

[
0→ ?1∗?

∗
1� → ?2∗?

∗
2� → · · ·

]

a Čech complex.
Now, let (�, X� ) be a matrix quasi-factorization over (OX ,−F). Observe that Č(OX ) can be viewed

as a sheaf ofOX -algebras equipped with an Alexander–Whitney product. By projection formula Č(�) =
� ⊗OX

Č(OX ) and Č(�) carries a natural Č(OX )-module structure. We equip Č(�) with a curved
differential

XČ(�) := X% ⊗ 1 + 1 ⊗ 3Čech.

We regard (Č(�), XČ(�) ) as a QDG-module over (Č(OX ), F). Notice that the curvature of (Č(�), XČ(� )

coincides with the curvature of E under the canonical map EndOX
(�) → EndČ(OX )

(Č(�)).

Definition 4.8. For a fixed affine étale open cover U, a Čech model CDG category @MF36 (X , F) is a
CDG category whose objects are matrix quasi-factorizations and its G-graded Hom spaces are defined
as usual

Hom@MF36 (%,&) :=
(
HomOX

(Č(%), Č(&)), X
)

(4.1)

X = XČ(%′) ◦ 5 − (−1) | 5 | 5 ◦ XČ(%) . (4.2)

Similarly, we define a Čech model dg category MF36 (X , F) of matrix factorizations for (X , F) as a full
dg subcategory of @MF36 (X , F) consisting of matrix factorizations for (X , F). When it is necessary
to specify the covering U, we write MF36 (X , F;U) for MF36 (X , F).

In the following lemma, we show that MF36 (X , F) is equivalent to the dg-quotient dg enhancement
of DMF(X , F).

Lemma 4.9. The natural functor

n : [MF36 (X , F)] → Dco(QCoh(X , F))

% ↦→ Č(%)

is fully faithful, and its essential image is equal to DMF(X , F).

Proof. To show that the essential image of n is as claimed, one can check Cone(%→ Č(%)) is coacylic
so that P is isomorphic to Č(%) in DMF(X , F) (see [9, equation 2.1]).

To prove fully faithfulness, we need to show HomQCoh(X ,F) (Č(%), Č(&)) ≃

HomDMF(X ,F) (Č(%), Č(&)). Using Cech filtration on the second argument, it is enough to show that

HomQCoh(X ,F) (Č(%), 9∗ 9
∗&) ≃ HomDcoQCoh(X ,F) (Č(%), 9∗ 9

∗&)

for any open étale affine open 9 : + → X . Consider the following diagram:

HomQCoh(X ,F) (Č(%), 9∗ 9∗&) //

?1

��

HomDcoQCoh(X ,F) (Č(%), 9∗ 9∗&)

?2

��
HomQCoh(X ,F) (%, 9∗ 9

∗&)
@ // HomDcoQCoh(X ,F) (%, 9∗ 9

∗&).

(4.3)
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The right vertical ?2 is an isomorphism because %→ Č(%) is an isomoprhism in DcoQCoh. The bottom
horizontal q becomes

HomMF(+ ,F |+ ) ( 9
∗%, 9∗&) → HomDcoQCoh(+ ,F |+ ) ( 9

∗%, 9∗&).

This is known to be an isomorphism for all affine V. To show that the left vertical ?1 is an isomorphism,
it is enough to show that

(
HomQCoh(+ ) (Č

•
( 9∗%<), 9∗&=), X�42ℎ

)
→ HomQCoh(+ ) ( 9

∗%<, 9∗&=)

for all <, = ∈ Z/2. This is nothing but an (unordered) Cech resolution of HomQCoh(+ ) ( 9
∗%<, 9∗&=)

associated to the open cover U ×X + on V, which is an isomorphism because V is affine. The claim
follows. �

Lemma 4.9 is an analogue of the Čech enhancement of [30, §4.1] for Deligne–Mumford stacks.
It follows from the proof of the lemma that the dg-quotient enhancement and the Čech model dg-
enhancement of Definition 4.8 coincide (see [29, §2]).

Remark 4.10. We view HomMF36 (%,&) as a Z×Z/2 -graded bicomplex. This complex is not bounded
above in Z-direction because a Čech cover U of a stack is genuinely unordered. One can go around the
subtleties by taking a suitable truncation. Suppose (�, X� ) is a matrix factorization. Define

gČ(�) := g≤dimX

(⊕

A ≥1

Č
A
(�), 3Čech

)
,

where gA ≤dimX denotes the truncation. Note that under the assumptions in this text all stacks have finite
cohomological dimension, hence the truncated one does compute the sheaf cohomology of the quasi-
coherent sheaf E since the map to the coarse moduli X → X is cohomologically affine. Therefore, the
induced map between the spectral sequences associated to Čech filtrations

Hom(Č(%), Č(&)) → Hom(gČ(%), Č(&)) ← Hom(gČ(%), gČ(&))

are isomorphisms on the first page and, hence, are quasi-isomorphisms themselves. Also, notice that
gČ(�) → Č(�) is a quasi-isomorphism in DMF(X , F).

Remark 4.11. In literature, DMF(X , F) is defined as a dg-quotient of DCoh by locally contractible;
see [34] or [18]. Here, P is called locally contractible if there is an open covering V in smooth topology
of X such that % |V is contractible. We note that

1. P is coacyclic if and only if % |U is coacyclic since the natural morphism % → Č(%) is termwise
exact. See [9, Proposition 2.2.6].

2. TFAE: % |U is coacyclic, % |U is absolutely acyclic and % |U is contractible by [37, §3.6];
3. TFAE: % |U is coacyclic, P is locally contractible by [9, Proposition 2.2.6] and (1).

Therefore, if % ∈ MF36 (X , F) represents a coacyclic object in DMF(X , F) if and only if P is locally
contractible.

Remark 4.12. Consider another affine coveringU′→ X . LetU′′ = U′×X U. Then there is a natural dg
functor MF36 (X , F,U′) → MF36 (X , F,U′′), which is a quasi-equivalence. The induced chain map
MC′(MF36 (X , F,U)) → MC′(MF36 (X , F,U′′)) between mixed complexes are quasi-isomorphism.
For the mixed complex of the first kind, it follows from Morita invariance. For that of either kind,
consider the Hochschild complex � ′(MF36 (X , F)) filtered by Čech degree. Since the filtration is
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bounded (see 4.10), we may apply the Eilenberg–Moore comparison theorem ([46, Theorem 5.5.11])
to check that the induced chain map is a quasi-isomorphism. A similar argument shows that the natural
chain map

MC′(@MF36 (X , F,U)) → MC′(@MF36 (X , F,U
′′))

is also a quasi-isomorphism.

4.3. Twisting

For a morphism from a scheme U to X , write �* for the fiber product * ×X �X . Following Toën,
Halpern–Leistner and Pomerleano [18], we consider the assignments

* ↦→ � ′(@MF36 (�*, F |�* ,U ×X �*))

for all étale morphisms * → X . They form a presheaf of mixed complexes on the small étale site X ,
which we denote by

MC′(@MF�X ,F (−)).

Denote the associated cochain complex by � ′(@MF�X ,F (−)). There is a natural morphism of mixed
complexes

=0C : MC′(@MF36 (�X , F)) → (Γ(X ,MC′(@MF�X ,F (−))),

where the Čech model @MF36 (�X , F) uses the affine cover U ×X �X → �X .
In Section 3.2, we defined a canonical twist for every coherent sheaf on �X . In turn, this gives

an automorphism can% of P for every object P of MF36 (�X , F). It is a morphism in the category
MF36 (�X , F).

Note that

can%′ ◦ 0 = 0 ◦ can% ∀0 ∈ Hom�X (%, %
′). (4.4)

Hence, the assignments % ↦→ can% yield a natural transformation can between the identity functor
id : MF36 (�X , F) → MF36 (�X , F). We will often drop the subscript P in can% for simplicity.

Define a k-linear map tw : � ′(@MF36 (�X , F)) → � ′(@MF36 (�X , F)) associated to can by

00 [01 | · · · |0=] ↦→ 00 [01 | · · · |can ◦ 0=] .

Note that by equation (4.4) 1 ◦ tw = tw ◦ 1, that is, tw is a chain automorphism of the Hochschild
complex � ′(@MF36 (�X , F)).

Consider the composition g′ of a sequence of chain maps

� ′(@MF36 (X , F))
?D;;102:
−−−−−−−−→ � ′(@MF36 (�X , F))

tw
−−→ � ′(@MF36 (�X , F))

=0C
−−−→ Γ(X , � ′(@MF�X ,F (−))). (4.5)

Proposition 4.13. The chain map g� � is a quasi-isomorphism when X is of form [Spec�/�] for some
commutative k-algebra A with a finite group G action.
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A proof of the above proposition will be given §4.4 and §4.5. For simplicity, we will often write g
for g′ when there is no risk of confusion.

4.4. Local case

LetX = [Spec�/�], and letF ∈ �� a G-invariant element of A as in Proposition 4.13. Let MF�36 (�, F)
denote the dg category of G-equivariant factorizations P for (�, F) which are projective as A-modules.
The Hom space from P to Q is the G-invariant part of Hom�(%,&) of G-graded A-module homo-
morphisms. Likewise, we have the CDG category @MF�36 (�, F) of G-equivariant quasi-modules for

(�, F) which are projective as A-modules. In fact, these coincide with the Čech models MF36 (X , F)
and @MF36 (X , F) with respect to the natural choice of an affine cover: Spec�→ X .

Let �6 be the ideal of A generated by 0 − 60 for all 0 ∈ �. Denote �6 := �/�6 and F6 := F |�6 ∈ �6.
We regard the pair (�, F) (resp. (�6, F6)) as a CDG algebra A (resp. �6) with zero differential and
curvature w (resp. F6).

The algebra A has the induced left G-action. Note that for 0, 1 ∈ � and 6, ℎ ∈ �,

6(0 ℎ(1)) = 6(0) 6ℎ(1).

The cross product algebra � ⋊ � := � ⊗ : [�] has the multiplication defined by (0 ⊗ 6) · (1 ⊗ ℎ) =
06(1) ⊗ 6ℎ. We also view � ⋊ � as a right A-module with a left G-action by

(0 ⊗ 6) · 1 = 06(1) ⊗ 6 and ℎ · (0 ⊗ 6) = 0 ⊗ 6ℎ−1.

Equivalently, � ⋊ � is a right � ⋊ �-module by the multiplication

(0 ⊗ 6) · (1 ⊗ ℎ′) = 06(1) ⊗ 6ℎ′.

Note that the curvature of � ⋊ � with zero differential as a right quasi-module over (� ⋊ �, F ⊗ 1) is
−F ⊗ 1.

Denote by {(� ⋊ �,−F ⊗ 1)} the full subcategory of @MF36 (� ⋊ �, F ⊗ 1) consisting of the
indicated object � ⋊� with zero differential and curvature −F ⊗ 1. The embedding {(� ⋊�,−F)} ↩→
@MF36 (�⋊�, F⊗1) is called a quasi-Yoneda embedding. It is a pseudo-equivalence; see [36]. Consider
the embedding @MF36 (� ⋊�, F ⊗ 1) ↩→ @MF�36 (�, F), which is also a pseudo-equivalence; see [10].
Hence, by the quasi-Morita invariance the induced morphism of mixed complexes

MC
� �
(� ⋊ �,−F) → MC

� �
(@MF�36 (�, F))

is a quasi-isomorphism.
Consider an embedding {(�6 ⋊ �,−F6 ⊗ 1)} ↩→ @MF36 (�6, F6). This is a pseudo-equivalence

since (�6,−F6) is a direct summand of (�6 ⋊ �,−F6 ⊗ 1) as a right quasi-module over (�6,−F6).
Hence, by the quasi-Morita invariance the induced morphism of mixed complexes

MC
� �
(End�6 (�6 ⋊ �),−F6 ⊗ 1) → MC

� �
(@MF36 (�6, F6))

is a quasi-isomorphism.
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We have a diagram of chain maps

�
� �
(@MF�

36
(�, F ) )

g //
(⊕6�

� �
(@MF36 (�6, F6 ) ) )

�
=0CDA0;

�

//
(⊕6�

� �
(@MF36 (�6, F6 ) ) )�

�
��
(� ⋊�, −F ⊗ 1)

?�

∼

OO

g |�⋊� //

|� |·k�

∼

))❘❘
❘
❘
❘
❘
❘
❘
❘
❘
❘
❘
❘
❘

(⊕6�
� �
(End�6 (�6 ⋊�) , −F6 ⊗ 1) )�

?�

∼

OO

Tr

∼

tt✐✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

(⊕6�
� �
(�6, −F6 ) )� ,

(4.6)

where:

◦ two vertical chain maps are quasi-isomorphisms as explained already;
◦ the middle horizontal map g |�⋊� is induced from the composition =0CDA0; ◦ g;
◦ k� is the quasi-isomorphic chain map defined by Baranovsky [4, page 799], Segal[40], and

Căldăraru and Tu [8, Proof of 6.3];
◦ Tr is the generalized trace map.

Lemma 4.14. The triangle in equation (4.6) is commutative. Hence, g |�⋊� is a quasi-isomorphism.

Proof. This will be clear since g acts on �6 trivially. Note that the following diagram commutes

00 ⊗ 60 [01 ⊗ 61 | · · · |0= ⊗ 6= ]
✤

g |�⋊� //
❴

|� |·k�

��

⊕
6 00 ⊗ 60 [01 ⊗ 61 | · · · |0= ⊗ 6=6

−1 ]
❴

Tr

��
|� | · 00 [60 (01) | · · · |60 · · · 6=−1 (0=) ]

⊕
6: 6=60 ···6=

|� | · 00 [60 (01) | · · · |60 · · · 6=−16
−1 (0=) ],

(4.7)

where 0 denotes the element in �6 associated to a. Here, the right-bottom corner is meant to have the
g-th component

{
|� | · 00 [6001 | · · · |60 · · · 6=−16

−10=] if 6 = 60 · · · 6=
0 otherwise.

�

Remark 4.15. Note that for for example, when � = : with a nontrivial G, diagram (4.7) is not
commutative without the twisting tw insertion in the definition of g.

4.5. Proof of Proposition 4.13

Due to Remark 4.12 and the compatibility of the map g with Čech differentials, the proof follows from
Lemma 4.14.

4.6. The role of can at the level of category

As we have already remarked, the insertion of central automorphism tw was essential. We would like
to sketch how it appears naturally in the computation of Hochschild invariants to clarify its role. The
proof of Proposition 4.13 can be interpreted as a two-step process.

The first step is purely categorical. Suppose a k-linear category C carries a strict G-action of a finite
group G. We still denote corresponding endofunctors by 6 : C → C, 6 ∈ �. We also denote its category
of G-equivariant objects by C� . Its object consists of a pair (�, q�6 ), where E is an object of C and q�6
is an isomorphism q�6 : � ≃ 6� satisfying a cocycle condition. The morphism is defined as usual.
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There is a natural functor

˜ : C → C�

called linearization which is defined on objects as

�̃ =

(⊕

ℎ∈�

ℎ�, q�̃6

)
, q�̃6 :

⊕

ℎ∈�

ℎ� =
⊕

ℎ∈�

6(ℎ�) ≃
⊕

ℎ∈�

(6ℎ)�.

It is not hard to see that the linearization is a both left and right adjoint to the forgetful functor. Its
essential image generates C� and

HomC� (�̃1, �̃2) ≃ HomC (�̃1, �̃2)
� .

This fact leads to the following simple description of Hochschild homology of C� . (See [33].)

��∗(C�) ≃ (
⊕

6∈�

��∗(C, 6))
� ≃

⊕

6∈Conj(�)

��∗(C� (6) , 6). (4.8)

Here,��∗ (C, 6) denotes Hochschild homology with coefficient g, where the endofunctor g is considered
as a bimodule.

The second observation is geometric. For simplicity, let C = � (-) be a dg category of coherent
sheaves on a smooth affine scheme - = Spec(�) acted on by a finite group G. One can easily extend
the discussion to the case of matrix factorizations. Each component of equation (4.8) has a simpler
description:

��∗(�� (6) (-), 6)
∼
−−→
res

��∗(�� (6) (-
6), 6). (4.9)

Notice that the action of g on -6 is trivial. If (�, {q�ℎ }ℎ∈�) is a G-equivariant sheaves on X, then

i�6 =
(
q�6

)−1
restricts to the central automorphism can� |-6 of � |-6 . In fact, any � (6)-equivariant

object (�, {q�ℎ }ℎ∈� (6) ) on -6 carries a distinguished automophism can� =
(
q�6

)−1
. This assignment

is viewed as a natural transformation between identity functors or an element of zeroth Hochschild
cohomology;

[can] ∈ ��0(�� (6) (-
6)).

The map tw on Hochschild chains is a cap product with [can].
Lastly, observe that �� (6) (-6) is generated by O-6 . Notice that g-action on O-6 is trivial, so can

could be ignored. This implies

��∗(�6)
� (6) ∼−−→

inc
��∗(�� (6) (-

6), 6). (4.10)

4.7. Mixed complex case

In general, the map g is not a morphism of mixed complexes. In this subsection, we modify g to get a
morphism of mixed complexes.

For j ∈ ˆ̀A , let @MFj
36
(�`AX , F) be the full subcategory of @MF36 (�`AX , F) consisting

j-eigenobjects of @MF36 (�`AX , F). The map tw restricted to the subcomplex � (@MFj
36
(�`AX , F)),
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denoted by twj, is nothing but the multiplication by j(42c8/A ). Hence,

twj : MC(@MFj
36
(�`AX )) → MC(@MFj

36
(�`AX ))

is an automorphism of the mixed Hochschild complex.
Consider the composition g< of a sequence of morphisms of mixed complexes

g< :MC
� �
(@MF36 (X , F))

?D;;102:
−−−−−−−−→ ⊕A ,jMC

� �
(@MFj

36
(�`AX , F))

⊕twj
−−−−→ ⊕A ,jMC

� �
(@MFj

36
(�`AX , F))

=0C
−−−→ ⊕AΓ(�`AX ,MC

� �
(@MF�`AX ,F (−))),

where the natural map =0C is defined by setting

=0C

(∑

j

0
j
0 [0

j
1 | . . . |0

j
= ]) = (* ↦→

∑

j

0
j

0 |�*
[0
j

1 |�*
| . . . |0

j

= |�*
]

)
.

Remark 4.16. While the cochain map

� � � (@MF36 (�`AX , F))
Tr
−→ ⊕j�

� � (@MFj
36
(�`AX , F))

is an isomorphism, �
� �
(@MF36 (�`AX , F))

Tr
−→ ⊕j�

� �
(@MFj

36
(�`AX , F)) is not an isomorphism in

general but a quasi-isomorphism from the facts that � � � → �
� �

is a quasi-isomorphism and the above
Tr is an isomorphism.

Proposition 4.17. Suppose that X is of form [Spec�/�] as in Proposition 4.13. The morphism g< in
the category of mixed complexes is a quasi-isomorphism.

Proof. By the definition, we need to show that g< is a quasi-isomorphism between Hochschild-type

chain complexes. Replacing g by g< and �
� �

by MC
� �

in diagram (4.6) we conclude the proof. �

4.8. Global case

Let X denote the coarse moduli space of X . For an étale map + → X , let X+ := + ×X X . We take the

sheafification MC
� �
(@MF36 (X , F)) (resp. MC

� �
(@MF�X ,F )) of the presheaf

+ ↦→ MC
� �
(@MF36 (X+ , F)) resp. (+ ↦→ Γ(�X+ ,MC

� �
(@MF�X ,F (−)))

both on the étale site of X . We take the sheaf homomorphism g< induced from g<

g< : MC
� �
(@MF36 (X , F)) → MC

� �
(@MF�X ,F (−)).

Lemma 4.18. Suppose that X is smooth over k. Then the induced morphism RΓ(g<) fits into a diagram
of isomorphisms in the derived category of mixed complexes:

MC(MF36 (X , F))

∼

��

RΓ(MC
� �
(O�X ,−F |�X ))

∼

��

RΓMC
� �
(@MF36 (X , F))

∼

RΓ(g<)
// RΓMC

� �
(@MF�X ,F (−)).

(4.11)
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Proof. The right vertical map is a quasi-isomorphism by the quasi-Morita invariance and the fact
that for each étale morphism * → �X the Yoneda embedding (O�X (*),−F) → @MF�X ,F (*) is a
pseudo-equivalence; see [5, Proposition 3.25] and [36]. It remains to show that the left vertical map is
a quasi-isomorphism. Let c : X → X be the coarse moduli space. By [17, Corollary 4.6], the presheaf

(+ ↦→ � (MF36 (+ ×X X , F)) is a sheaf on the étale site of X . It is thus enough to show that the left
vertical map is a quasi-isomorphism when X = [-/�] for a smooth variety X and a finite group G
which follows from [10, Theorem 6.9]. �

Theorem 4.19. Suppose that X is smooth over k. Then the isomorphism

MC(MF36 (X , F)) � RΓ(MC
� �
(O�X ,−F |�X )) (4.12)

in the derived category of mixed complexes induces an isomorphism

MC(MF36 (X , F)) � RΓ(Ω
•
�X ,−3F |�X , D3).

Proof. The proof follows from Lemma 4.18 and the HKR-type isomorphism ([8, 40]) for affine orbifolds.
�

5. Chern character formulae

Let X be a smooth separated finite-type DM stack over k, and let F : X → A1
: be an algebraic function

on X with only critical value 0.

5.1. A formula via Čech model and Chern–Weil theory

We fix an affine étale surjective morphism p : U → X from a k-scheme U as in §4.2. Since U is an
affine scheme over k, every � |U has a connection

∇� |U : � |U → � |U ⊗ Ω1
U
.

Define a connection

∇� |UA : � |UA → � |UA ⊗ Ω1
UA

by letting ∇� |UA = ?∗1∇� |U , where ?1 is the first projection UA → U. This gives rise to a connection

∇� : Č(�) → Ω1
X ⊗ Č(�),

where Č(�) := (
⊕

A ≥0 Č
A
(�), 3Čech) and Č

A
(�) = pA∗p

∗
A� . For every E, fix such a connection once and

for all.
Let �U denote the affine scheme U ×X �X . Using this affine covering of �X , we have the Čech

resolution Č(� |�X ) and the connection

∇� |�X : Č(� |�X ) → Ω1
�X ⊗ Č(� |�X ).

In general, for every vector bundle F on �X , we can choose a connection ∇� : Č(�) → Ω1
�X ⊗ Č(�).

For each % ∈ @MF36 (�X , F)), choose a connection ∇% as above once and for all. Let ' = D∇2
∇
+

[∇% , XČ(%) ] a kind of the total curvature of ∇% . By a straightforward generalization of the definition of
a chain map tr∇ in [10] to the stacky case, we obtain a : [[D]]-linear map

tr∇,�X : � (@MF36 (�X , F)) [[D]] → Γ(Č(Ω•�X )) [[D]]
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mapping 00 [01 | · · · |0=] for 08 ∈ EndČ(%) (%), % ∈ @MF36 (�X , F)) to

∑

( 90 ,..., 9=): 98 ∈Z≥0

(−1) | 90+···+ 9= |tr(00'
90 [∇% , 01]'

91 [∇% , 02] · · · [∇% , 0=]'
9= )

(= + | 90 + · · · + 9= |)!
.

It is clear how to map an arbitrary element of � (@MF36 (�X , F)) [[D]]. By the same proof in [10,
Appendix B], the map tr∇,�X is a chain map. Likewise, we have a chain map

tr∇ : �
� �
(@MF�X ,F ) [[D]] → ?∗Č(Ω

•
�X ) [[D]],

where ? : �X → X is the natural morphism.
Consider a diagram of chain maps in negative cyclic type complexes

� (@MF36 (X , F)) [[D]]

��

tw◦d∗
X // � (@MF36 (�X , F)) [[D]]

tr∇,�X // Γ(Č(Ω•�X )) [[D]]

��
RΓ�

� �
(@MF36 (X , F)) [[D]]

∼

RΓ(g<)
// RΓ�

� �
(@MF�X ,F ) [[D]]

RΓ(tr∇)
// RΓ(Č(Ω•�X )) [[D]] .

(5.1)

Note that the diagram is commutative, and all arrows may possibly be quasi-isomorphisms but the two
top horizontal arrows are quasi-isomorphisms. Hence, we have the following corollaries.

Corollary 5.1. The chain map

tr∇,�X ◦ tw ◦ d
∗
X : � (@MF36 (X , F)) [[D]] → Γ(Č(Ω•�X )) [[D]]

is a quasi-isomorphism.

Corollary 5.2. Under the isomorphism in equation (4.11), the Chern character ch�# (%) of % ∈
MF36 (X , F) is the class represented by Čech cocycle

tr
(
can% |�X ◦ exp(−D∇2

% |�X
− [∇% |�X , X% |�X + 3Čech])

)

in �̌ (�U, (Ω•�X ,−3F |�X )).

Example 5.3. Consider a DM stack X of the form [-/�] with X quasi-projective and G a linearly
reductive group. Then there is a finite collection U = {*8}8∈� of G-invariant affine open subset *8 of X
such that

⋃
8*8 = - . On the other hand, there is a finite subset S of G such that

�X = ⊔6∈( [-
6/C� (6)] .

Note that �U = {*
6
8 : 8 ∈ �, 6 ∈ (}. Instead of affine étale covering, we may use the affine smooth

covering U for a Čech model of @MF36 (X , F) and the chain map tr∇,�X . Since G is linearly reductive,
each % |*8 has a G-equivariant connection, which in turn gives a C� (6)-equivariant connection ∇8,6
on % |*6

8
. This is because of the surjection of the canonical map Hom�

O-
(�, � (�)) → Hom�

O-
(�, �)

induced from the jet sequence

0→ Ω1
- ⊗O- � → � (�) → � → 0.

We have

ch�# (%) = ⊕6∈(tr
(
6 ◦ exp(−DΠ8∈�∇

2
8,6 − [Π8∈�∇8,6, X% |*6 + 3Čech])

)
.
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When X itself is affine, then the formula simplifies to

ch�# (%) = ⊕6∈(tr
(
6 ◦ exp(−D∇2

6 − [∇6, X% |*6 ])
)
,

taking into account the fact that [∇6, 3Čech] = 0.

Let 0 ∈ ⊕8R8End(%), then it determines a class in �∗(�X , (Ω•�X ,−3F |�X )) under the HKR isomor-
phism. Denote the class by g(0). The assignment 0 ↦→ g(0) is called the boundary-bulk map.

Corollary 5.4 (The boundary-bulk map formula).

g(0) = tr
(
0 ◦ can% |�X ◦ exp(−[∇% |�X , X% |�X + 3Čech])

)
.

5.2. A formula via Atiyah class

Let % ∈ MF36 (X , F), and let

Ω−3FX := [ Ω1
X

0 --
OX

−3F∧
mm ]

be the matrix factorization for (X , 0) located at amplitude [−1, 0]. The Atiyah class ât(%) defined in
[16, Appendix B] is a suitable element of

Ext1(%, % ⊗ Ω−3FX ).

When F = 0, we have the decomposition

Ext1 (%, % ⊗ Ω−3FX ) = Ext0(%, %) ⊕ Ext1(%, % ⊗ Ω1
X )

and let

at(%) = ?A> 9 ◦ ât(%) ∈ Ext1(%, % ⊗ Ω1
X ),

where ?A> 9 is the projection. For example, when P is a vector bundle F and X is nonstacky, then at(�)
is the usual Atiyah class [2]. In this case ât(�) = 1� + at(�).

Definition 5.5. Taking into account the convention of the exponential exp of %̂ as explained in [16, 24],
we define a naive Chern character of P by

ch(%) := tr
(
exp(ât(%))

)
∈ �∗(X , (Ω•X ,−3F)).

For simplicity, we abuse notation writing exp(ât(%)) for exp(ât(%)).

The correct formula for ch�� (%) in [25] is

ch�� (%) = tr
(
can% |�X ◦ exp(ât(% |�X ))

)
(5.2)

= ch(%) + twisted part .

We note that this formula agrees with the formula in Corollary 5.2 since Atiyah class ât(% |�X ) is
representable as

(id% ,−[∇% |�X , X% |�X + 3Čech]) ∈ Γ(�X ,End(% |�X ) ⊗ Ω−3FX ⊗ Č(O� - ))
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in Čech cohomology �̌ (�U,Ω•�X ,−3F |�X ) (see [24, Proposition 1.3]) and

exp(id% ,−[∇% |�X , X% |�X + 3Čech]) = exp(−[∇% |�X , X% |�X + 3Čech]).

The boundary bulk map formula can also be written in terms of the Atiyah class:

g(0) = tr
(
0 ◦ can% |�X ◦ exp(ât(% |�X ))

)
.

Definition 5.6. For a vector bundle E on �X , we define

chCF (�) := tr(can� exp(at(�))

and Todd class tdCF (�) of E by the expression of Todd class in terms of the Chern character chCF (�).
For example, tdCF ()�X ) is defined. Since )�X is fixed under the canonical automorphism, we simply
write td()�X ) for tdCF ()�X ).

5.3. Proof of Theorem 1.1

The first statement of Theorem 1.1 is Theorem 4.19. The second statement follows from equation (5.2).

5.4. Compactly supported case

Let Z be a closed substack of X proper over k. Let P be a matrix factorization for (X , F) which is
coacyclic over X − / . Note that

ât(% |�X ) ∈ Ext1(% |�X , % |�X ⊗ Ω
−3F |�X
�X ) = Ext1� / (% |�X , % |�X ⊗ Ω

−3F |�X
�X ).

To emphasize that ât(% |�X ) can be considered as an �/-supported extension class, write ât/ (% |�X )
for ât(% |�X ). Let MF36 (X , F))/ be the full subcategory of MF36 (X , F) consisting of all matrix
factorization for (X , F) that are coacyclic over X − / .

Corollary 5.7. There is an isomorphism

MC(MF36 (X , F))/ � RΓ/ (Ω
•
�X ,−3F |�X , 3)

in the derived category of mixed complexes. Under the isomorphism ch/�� , (%) is equal to

tr
(
can% |�X exp(ât/ (% |�X ))

)

in H∗� / (�X , (Ω
•
�X ,−3F |�X )).

Proof. The first statement immediately follows from Theorem 1.1. The second statement follows from
a concrete chain map for the Hochschild-type chain complexes; see [10, §6.2] for some details. �

6. Riemann–Roch for stacky matrix factorizations

6.1. The categorical HRR

The results in this subsection are taken from [35, 41] with a weaker condition on a dg category A.
Instead of assuming that A is saturated, we assume that A is locally proper and smooth.
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Definition 6.1. Let A be a locally proper dg category: That is, for every G, H ∈ A, the dimension∑
8∈G dim�8HomA(G, H) of total cohomology of HomA(G, H) is finite. Let

〈, 〉20= : ��∗(A) × ��∗(A
>?) → :

be the canonical pairing of A defined by Shklyarov. It is a k-linear pairing.

6.1.1. Transformations by bimodules

Definition 6.2. For a dg category C, we take the projective model structure on the category Mod(C)
of right C-modules. The cofibrant objects are exactly the summands of semifree dg-modules. A right
C-module N is called perfect if N is a cofibrant object which is compact in the derived category � (C)
of right C-modules. Let Mod36 (C) be the dg category of right C-modules. Let Perf (C) be the full
subcategory of Mod36 (C) consisting of all perfect C-modules. We call a dg category C is smooth if the
diagonal bimodule ΔA is a perfect bimodule.

From now on, let A and B be locally perfect and smooth dg categories unless otherwise stated.

Lemma 6.3. The total dimension of Hochschild homology ��∗(A) of A is finite. The dg category
Perf (A ⊗ B) is locally perfect and smooth.

Proof. The first claim amounts ΔA ⊗
L

A>?⊗A
ΔA is a perfect dg k-module, which follows from tensor-

hom adjunction and the conditions on A. The second claim follows from [30, Lemma 2.13, 2.14, 2.15]
since k is a field. �

For a right A>? ⊗ B-module M, there is a dg functor )" : Perf (A) → Mod36 (B) sending N to
# ⊗A " . If M is representable, then )" factors though Perf (B) since A is locally proper. Hence, this
is the case for every perfect A>? ⊗ B-module M.

Let " ∈ Perf (A>? ⊗ B), and let Ch(") =
∑
8 W8 ⊗ W

8 under the Künneth isomorphism
��∗(Perf (A>? ⊗ B)) � ��∗(Perf (A>?)) ⊗ ��∗ (Perf (B)). Let �� ()" ) : ��∗(Perf (A)) →
��∗(Perf (B)) be the homomorphism induced by )" : Perf (A) → Perf (B).

Proposition 6.4. If 〈, 〉20= denotes the canonical pairing of Perf (A>? ⊗ B), then for every f ∈
��∗(Perf (A)) we have

�� ()" ) (f) =
∑

8

〈f, W8〉20=W
8 .

6.1.2. The characteristic property

There are natural isomorphisms

��∗(Perf (A>? ⊗ A)) � ��∗(A
>? ⊗ A) � ��∗(A

>?) ⊗ ��∗(A)

by the Morita invariance and the Künneth isomorphism. Write

Ch�� (ΔA) =
∑

8

) 8 ⊗ )8 ∈ ��∗(A
>?) ⊗ ��∗(A).

Then by Proposition 6.4 we obtain this.

Corollary 6.5. The canonical pairing 〈, 〉20= is characterized by two conditions: (1) it is nondegenerate
and (2) it satisfies the ‘diagonal decomposition’ property:

∑

8

〈W, ) 8〉〈)8 , W
′〉 = 〈W, W′〉

for every W ∈ ��∗(A), W′ ∈ ��∗(A>?).
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6.1.3. The Cardy condition

Consider objects G, H ∈ A. Let a and b be closed endomorphisms of x and y, respectively. Let

!1 ◦ '0 : HomA(G, H) → HomA (G, H), (−1) |0 | |2 | ↦→ 1 ◦ 2 ◦ 0.

Theorem 6.6. We have

tr(!1 ◦ '0) = 〈[1], [0]〉20=.

For the identities 0 = 1G , 1 = 1H , it is specialized to

j(G, H) = 〈Ch�� (H),Ch�� (G)〉20=.

6.2. On MF36 (X , F)

Consider two proper LG models (X , F) and (Y , E). We want to show that MF36 (X , F) is locally proper,
smooth; and the following (†) and (★) hold:
(†) There is a natural dg functor

MF36 (X × Y , F ⊞ E) → Perf (MF36 (X , F) ⊗MF36 (Y , E)) defined by

� ↦→ Ψ(�) : G ⊗ H ↦→ HomMF36 (X×Y ,F⊞E) (G ⊠ H, �).

Here, F ⊞ E denotes F ⊗ 1 + 1 ⊗ E.
(★) The triangulated category [MF36 (X × Y , F ⊞ E)] is the smallest full triangulated subcate-

gory containing all exterior products closed under finite coproducts and summands. Here, an ob-
ject of [MF36 (X × Y , F ⊞ E)] is called an exterior product if it is isomorphic to G ⊠ H for some
G ∈ MF36 (X , F), H ∈ MF36 (Y , E).

Lemma 6.7.

1. (★) implies (†).
2. (†) implies that the smoothness of MF36 (X , F).

Proof. (1) is clear. Let Δ : X → X 2 be the diagonal morphism. Then (2) follows from the fact that
Ψ(ΔOX ) is quasi-isomorphic to the diagonal bimodule. �

Since MF36 (X , F) is clearly locally proper, it is enough to show (★). We check this when X is a
stack quotient [-/�] of a smooth variety by an action of an affine algebraic group G. When G = Z,
then F = 0. Note that (★) holds by Theorem 2.29 and Corollary 4.21 of [3]. When G = Z/2, then
w is a G-invariant function on X, not identically zero on any component of X. Note that (★) holds by
Theorem 2.29 and Lemma 4.23 of [3].

6.3. A geometric realization of the diagonal module

Consider two proper LG models (X , F), (Y , E). Suppose that X , Y are stack quotients of smooth
varieties by actions of affine algebraic groups. Let 5 : X → Y be a proper morphism with 5 ∗E = F. We
call 5 : (X , F) → (Y , E) an proper LG morphism. Choose an affine étale cover U → X and U′ → Y .
Denote

A := MF36 (X , F), B := MF36 (Y , E).

They are locally proper and smooth as seen in §6.2.
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Let −F ⊞ E := −F ⊗ 1 + 1 ⊗ E, and let MF36 (X × Y ,−F ⊞ E) be the Čech dg model of the matrix
factorizations for (X × Y ,−F ⊞ E) with respect to the affine cover U × U′ → X × Y . Then by (†) we
have a natural dg functor

Ψ : MF36 (X × Y ,−F ⊞ E) → Perf (A>? ⊗ B).

Let � : A>? → MF36 (X ,−F) be the duality functor. Then we have a commuting diagram of isomor-
phisms

��∗(MF36 (X × Y ,−F ⊞ E))

HKR

��

�� (Ψ) // ��∗(Perf (A>? ⊗ B))

HKR◦�� (�) ⊗id◦Künneth

��
H
−∗ (Ω•�X×�Y , 3 (F ⊞ −E)) Künneth

// H−∗(Ω•�X , 3F) ⊗ H
−∗(Ω•�Y ,−3E),

(6.1)

where HKR and Künneth are the HKR-type isomorphisms in §4.8 and the Künneth isomorphisms,
respectively.

Consider a matrix factorization K for (X ×Y ,−F⊞E). For example, we have a coherent factorization

OΓ 5 := (Γ 5 )∗OX for (X × Y ,−F ⊞ E).

Since X ×Y satisfies the resolution property by [3, Theorem 2.29], OΓ 5 is quasi-isomorphic to a matrix
factorization.

For all G ∈ A, H ∈ B, there is a natural quasi-isomorphism

RHom(H, @∗( ⊗ ?
∗G)) ∼@8B> HomMF36 (X×Y ,−F⊞E) (G

∨
⊠ H,  )

functorial under the morphisms in the categories B and A. This shows the following, which will be used
later.

Lemma 6.8. For easy notation, write ) for )Ψ( ) . Then:

1. The transformation ) : Perf (A) → Perf (B) is a dg enhancement of the Fourier–Mukai transform
[A] → [B] attached to the kernel K. In particular, )OΓ 5

represents R 5∗ : [A] → [B].

2. The bimodule Ψ(OΓid ) and the diagonal bimodule ΔA are quasi-isomorphic.

The second statement in the above lemma is also in Lemma 5.24 of [3].

6.4. An explicit realization of the canonical pairing

Theorem 6.9. Let (X , F) be a proper LG model. Assume that X is a smooth quotient DM stack which
satisfies the resolution property. Then the canonical pairing coincides with the pairing defined by

∫

�X
(−1) (

dim�X +1
2 ) · ∧ · ∧

td()�X )

chCF (_−1(#
∨
�X /X

))
, (6.2)

where dim�X is the locally constant dimension function of �X .

Proof. We prove the characteristic property in Corollary 6.5 for the pair (6.2). The nondegeneracy
follows from Serre duality [32] as argued in [16, §4.1]. By Lemma 6.8 the ‘diagonal decomposition’ is

∑

8

∫

�X
W · C8 · t̃d()�X )

∫

�X
C8 · W′ · t̃d()�X ) =

∫

�X
(−1) (

dim�X +1
2 )W′′ · t̃d()�X ), (6.3)
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where
∑

8

C8 ⊗ C8 = ch�� (Δ∗OX ) ∈ H
∗(�X , (Ω•�X ,−3F |�X )) ⊗ H

∗(�X , (Ω•�X , 3F |�X ))

W ∈ H∗(�X , (Ω•�X , 3F |�X )), W
′ ∈ H∗(�X , (Ω•�X ,−3F |�X ))

t̃d()�X ) :=
td()�X )

chCF (_−1(#
∨
�X /X

))
. (6.4)

To show equation (6.3), we use the deformation to the normal cone.
Over P1, there is a deformation stack M◦ to the normal cone #X /X 2 : The general fiber is X 2 and

the special fiber, say over∞, is the vector bundle stack #X /X 2 � )X . It comes with a natural morphism

ℎ : M◦ → X 2, a flat morphism ?A : M◦ → P1, and a morphism Δ̃ : X × P1 → M◦ such that
(ℎ, ?A) ◦ Δ̃ = Δ × idP1 . Consider the fiber square diagram

X × 0 //

Δ

��

X × P1

Δ̃

��

X ×∞oo

X

��
X 2 // M◦ )Xoo

�X 2 //

d
X2

OO

�M◦

dM◦

OO

�)X .

d)X

OO

oo

Here, we use facts that �X 2
� �X × �X and )�X � �)X by Lemma 3.1.

Let

cX : )X → X and c�X : )�X → �X

be the projections from vector bundles. Then left-hand side of equation (6.3) becomes

∫

#
�X/�X2

c∗�X (W
′′) (chCF (Ld

∗
)X
X∗OX )) · c

∗
�X (t̃d�X )

2 (6.5)

by the Tor independence of the pair (X × P1,M◦ ×P1 ?) over M◦ for ? = 0,∞ and the base change
II in §7.0.1; for details, see the proof of [23, §3.3]. Let f be the diagonal section of the vector bundle
c∗
X
)X on )X , and let Kos(f) denote the Koszul complex associated to the section f. Then equation

(6.5) becomes

∫

#
�X/�X2

c∗�X (W
′′) (chCF (d

∗
)X

Kos(f))) · c∗�X (t̃d�X )
2,

which equals, by the functoriality and the projection formula §7.0.1,

∫

�X

(
(W′′ · t̃d()�X )

∫

c�X

(chCF (d
∗
)X

Kos(f))) · c∗�X (t̃d�X )

)
. (6.6)

Let �f be the diagonal section of the vector bundle c∗�X)�X on )�X . From the short exact sequence in
§3.4.2, we have a short exact sequence

0→ c∗�X)�X
]
−→ c∗�X ()X |�X ) → c∗�X#�X /X → 0; (6.7)

with ](�f) = c∗�Xf
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and an equality

)X |
fixed
�X = )�X . (6.8)

Then equation (6.6) becomes, by equations (6.7) and (6.8),

∫

�X

(
(W′′ · t̃d()�X ))

∫

c�X

ch(Kos(�f))c∗�X td()�X )

)

which becomes, by §7.0.2,

∫

�X
(−1) (

dim�X +1
2 )W′′ · t̃d()�X ).

This completes the proof. �

6.5. Proof of Theorem 1.2

This follows from Theorems 6.6 and 6.9.

6.6. GRR

Consider a proper morphism 5 : X → Y with 5 ∗E = F as in §6.3. Let  0(A) be the Grothendieck
group of the homotopy category of a pretriangulated dg category A. Denote 5! :  0(MF36 (X , F)) →
 0(MF36 (Y , E)) be the homomorphism in the Grothendieck groups induced from R 5∗.

Theorem 6.10 (=Theorem 1.3). The diagram

 0(MF36 (X , F))

Ch��
��

5! //  0(MF36 (Y , E))

Ch��
��

��∗(MF36 (X , F))

�� '

��

�� (R 5∗) // ��∗(MF36 (Y , E))

�� '

��
H
−∗(�X , (Ω•�X ,−3F |�X )) ∫

� 5
(−1)dim� 5 ·∧t̃d()� 5 )

// H−∗(�Y , (Ω•�Y ,−3E |�Y ))

is commutative. Here, t̃d()� 5 ) := t̃d()�X )/� 5 ∗ t̃d()�Y ) and dim� 5 = dim�X − dim�Y , where t̃d()?) is

t̃d for )? in equation (6.4).

Proof. The proof is parallel to that of Theorem 3.6 of [23]. The upper rectangle is clearly commutative.
We show the commutativity of the lower rectangle. For W ∈ ��∗(MF36 (X , F)), let U := �� ' (W),
U′ := �� ' (�� (R 5∗) (W)), and let

ch(Ψ(OΓ 5 )) =
∑

8

) 8 ⊗ )8 ∈ H
∗(�X , (Ω•�X , 3F |�X )) ⊗ H

∗(�Y , (Ω•�Y ,−3E |�Y )),

then by Proposition 6.4 and Theorem 6.9 we have for V ∈ H−∗(�Y , (Ω•�Y , 3E |�Y ))

∫

�Y
U′ ∧ V ∧ t̃d()�Y ) =

∑

8

∫

�X
(−1) (

dim�X +1
2 )U ∧ ) 8 ∧ t̃d()�X )

∫

�Y
)8 ∧ V ∧ t̃d()�Y ). (6.9)
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Let c denote the projection � 5 ∗)�Y → �X , and let s be the diagonal section of c∗� 5 ∗)�Y on � 5 ∗)�Y .
Then the deformation argument for Γ 5 : X → X × Y as in the proof of Theorem 6.9 shows that

right-hand side of equation (6.9)

=

∫

�X×�Y
(−1) (

dim�X +1
2 ) (U ⊗ V) ∧ ch(OF⊟E

Γ 5
) ∧ (t̃d()�X ) ⊗ t̃d()�Y ))

=

∫

5 ∗)�Y

(−1) (
dim�X +1

2 )c∗(U ∧ � 5 ∗V ∧ t̃d(� 5 ∗)�Y ) ∧ t̃d()�X )) ∧ ch(Kos(B))

=

∫

�X
(−1) (

dim� 5 +1

2 )U ∧ 5 ∗V ∧ t̃d()�X ) =

∫

�Y
(

∫

� 5
(−1) (

dim� 5 +1

2 )U ∧ t̃d()�X )) ∧ V.

This completes the proof. �

Remark 6.11. We briefly discuss how the GRR for Δ would compute the canonical pairing, which
shows some relationship between GRR and the canonical pairing.

Consider the Riemann–Roch map

chg :  0(X , F) → H
∗(�X , (Ω•�X ,−3F))

� ↦→ ch�� (�) t̃d()�X ).

Suppose that we have a GRR type theorem for the diagonal map Δ : X → X 2:

Δ∗chg (O- ) = chg (Δ∗OX ) =
td(�X 2)ch�� (Δ∗OX )

chCF (#�X 2/X 2 )
. (6.10)

This yields a formula

ch�� (Δ∗(OX )) = Δ∗

(
chF (#�X /X )

td(�X )
ch�� (OX )

)
= Δ∗

chF (#�X /X )

td(�X )

since ch�� (OX ) = 1. Denote t̃d = t̃d)�X . Then

∫

�X
(−1) (

dim�X +1
2 )W · C8 · t̃d

∫

�X
(−1) (

dim�X +1
2 ) C8 · W

′ · t̃d

=

∫

�X 2
W ⊗ W′ · Δ∗

chF (#�X /X )

td(�X )
· t̃d ⊗ t̃d =

∫

�X
(−1) (

dim�X +1
2 )W · W′ · t̃d,

which is the characteristic property of the canonical pairing. Thus, equation (6.10) implies that the

canonical pairing is
∫
�X
(−1) (

dim�X +1
2 ) · ∧ · ∧t̃d()�X ).

7. Pushforward in Hodge cohomology

We introduced an operation
∫
�X

to formulate Theorem 6.9. In this subsection, we recall its definition
and the basic properties we used.

7.0.1. Basic properties

In this section, all stacks are assumed to be smooth separated DM stacks of finite type over k. Let
5 : X → Y be a morphism. Assume that they are pure dimensional, and let d be dimX − dimY .
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Definition 7.1. Once we have the right adjoint functor 5 ! of R 5∗, as in [23] we can define

∫

5
: �@

♯1
(X ,Ω

?
X
) → �

@−3

♯2
(Y ,Ω

?−3
Y
),

where (♯1, ♯2) is either (2, 2) or (2 5 , ∅). When Y is Spec : , write
∫
X

for
∫
5
.

The following can be straightforwardly proven as in [23, §3.6].

1. (Base change I) Consider a Cartesian diagram (7.1) below. Assume that f is a flat, proper and locally
complete intersection morphism. Then

∫

X ′
E∗(W) = D∗

(∫

5
W

)
.

2. (Base change II) Consider a Cartesian diagram (7.1) below. Assume that f is a flat morphism, Y is a
connected one-dimensional smooth scheme, and u is the embedding of a closed point Y ′ of Y . Then

∫

X ′
E∗(W) = D∗

(∫

5
W

)
∈ :.

3. (Functoriality) Let X
5
−→ Y

6
−→ Z be morphisms. Then

∫

6◦ 5
=

∫

6
◦

∫

5
.

4. (Projection formula) Let X
5
−→ Y be a morphisms. Then

∫

5
( 5 ∗f ∧ W) = f ∧

∫

5
W

for W ∈ �3
2 5
(X ,Ω3

X
) and f ∈ �@ (Y ,Ω?

Y
).

Remark 7.2. In the construction of
∫
5
, Nagata’s compactification and the resolution of singularities

were used. In our separated DM stack setup, both are known by [39] and [42], respectively. Also, the
existence of 5 ! is also proven for proper morphism 5 : X → Y between Deligne–Mumford stacks in
[32].

Remark 7.3. The base change formula I and II relies on the following form of a base change formula;
suppose that we have a tor-independent Cartesian diagram of DM stack

X ′
E //

6

��

X

5

��
Y ′

D // Y

(7.1)

such that f is proper. One can ask whether the canonical base change map

V : E∗ 5 ! → 6!D∗.

is an isomorphism. It is known to be true in scheme cases and generalized to stacks when u is repre-
sentable affine. (See [19, §2, §3] [28]).
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7.0.2. Computation

Let E be a vector bundle on X of rank n, let c : � → X be the projection and let s be the diagonal
section of c∗� . Since c is representable, we have

∫

c
ch(Kos(B))td(c∗�) = (−1) (

=+1
2 )

by the base change I in §7.0.1 and the computation of [23, §3.6.6].
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