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Abstract

Let a, b, c be relatively prime positive integers such that a2 + b2 = c2. In 1956, Jeśmanowicz conjectured
that for any positive integer n, the only solution of (an)x + (bn)y = (cn)z in positive integers is (x, y, z) =

(2, 2, 2). In this paper, we consider Jeśmanowicz’ conjecture for Pythagorean triples (a, b, c) if a = c − 2
and c is a Fermat prime. For example, we show that Jeśmanowicz’ conjecture is true for (a, b, c) =

(3, 4, 5), (15, 8, 17), (255, 32, 257), (65535, 512, 65537).
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1. Introduction

Let a, b, c be relatively prime positive integers such that a2 + b2 = c2 with 2 | b.
Clearly, the Diophantine equation

(na)x + (nb)y = (nc)z (1.1)

has the solution (x, y, z) = (2, 2, 2). In 1956, Sierpiński [7] showed that there is no
other solution when n = 1 and (a, b, c) = (3, 4, 5); and Jeśmanowicz [2] proved that
when n = 1 and (a, b, c) = (5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61), then the only
solution of (1.1) is (x, y, z) = (2, 2, 2). Moreover, he conjectured that for any positive
integer n, (1.1) has no solution other than (x, y, z) = (2, 2, 2). In [1], Deng and Cohen
showed that Jeśmanowicz’ conjecture is true for (a, b, c) = (3, 4, 5). In [8], the authors
of this paper proved that Jeśmanowicz’ conjecture is true for (a, b, c) = (15, 8, 17). For
related problems, see [5, 6].

In this paper, we obtain the following results.
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[2] Jeśmanowicz’ conjecture revisited 487

T 1.1. Let k be a positive integer. If Fk = 22k
+ 1 is a Fermat prime, then for

any positive integer n, the Diophantine equation

((Fk − 2)n)x + (22k−1+1n)y = (Fkn)z (1.2)

has no solution (x, y, z) satisfying z < min{x, y}.

T 1.2. Let k ≤ 4 be a positive integer and Fk = 22k
+ 1. Then, for any positive

integer n, (1.2) has no solution other than (x, y, z) = (2, 2, 2).

2. Proofs

L 2.1 [4]. The only solution of the Diophantine equation (4m2 − 1)x + (4m)y =

(4m2 + 1)z is (x, y, z) = (2, 2, 2).

L 2.2 [1, Lemma 2]. If z ≥max{x, y}, then the Diophantine equation ax + by =

cz, where a, b and c are any positive integers (not necessarily relatively prime) such
that a2 + b2 = c2, has no solution other than (x, y, z) = (2, 2, 2).

L 2.3 [3]. If the Diophantine equation (na)x + (nb)y = (nc)z (with a2 + b2 = c2)
has a solution (x, y, z) , (2, 2, 2), then x, y, z must be distinct.

P  T 1.1. By Lemma 2.1, we may suppose that n ≥ 2 and that (1.2) has
one solution (x, y, z) with z < min{x, y}. By Lemma 2.3, it is sufficient to consider the
following two cases.

Case 1. x < y. By (1.2),

nx−z((Fk − 2)x + 2(2k−1+1)yny−x) = Fz
k. (2.1)

If gcd(n, Fk) = 1, then by (2.1) and n ≥ 2 we have x = z, a contradiction. If gcd(n, Fk) =

Fk, then write n = Fr
kn1, where r ≥ 1 and gcd(Fk, n1) = 1. By (2.1),

nx−z
1 Fr(x−z)

k ((Fk − 2)x + 2(2k−1+1)yny−x
1 Fr(y−x)

k ) = Fz
k.

Noting that
gcd(2(2k−1+1)yny−x

1 Fr(y−x)
k + (Fk − 2)x, Fk) = 1,

we have 2(2k−1+1)yny−x
1 Fr(y−x)

k + (Fk − 2)x = 1, which is also impossible.

Case 2. x > y. By (1.2),

ny−z(2(2k−1+1)y + (Fk − 2)xnx−y) = Fz
k. (2.2)

If gcd(n, Fk) = 1, then by (2.2) and n ≥ 2 we have y = z, a contradiction. If gcd(n, Fk) =

Fk, then write n = Fr
kn1, where r ≥ 1 and gcd(Fk, n1) = 1. By (2.2),

ny−z
1 Fr(y−z)

k ((Fk − 2)xFr(x−y)
k nx−y

1 + 2(2k−1+1)y) = Fz
k.
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Noting that (Fk − 2)xFr(x−y)
k nx−y

1 + 2(2k−1+1)y > 1 and

gcd((Fk − 2)xFr(x−y)
k nx−y

1 + 2(2k−1+1)y, Fk) = 1,

we have another contradiction.
This completes the proof of Theorem 1.1. �

P  T 1.2. We know that F0 = 3 and Fk (1 ≤ k ≤ 4) are Fermat primes, so
by Theorem 1.1 and Lemmas 2.2 and 2.3, it is sufficient to prove that if k ≤ 4 then (1.2)
has no solution (x, y, z) satisfying y < z < x or x < z < y.

(i) By Lemma 2.1, we may suppose that n ≥ 2 and (1.2) has one solution (x, y, z)
with y < z < x. By (1.2),

2(2k−1+1)y = nz−y(Fz
k − (Fk − 2)xnx−z). (2.3)

If gcd(n, 2) = 1, then by (2.3) and n ≥ 2 we have y = z < x, a contradiction.
If gcd(n, 2) = 2, then write n = 2rn1, where r ≥ 1 and gcd(2, n1) = 1. By (2.3),

2(2k−1+1)y = nz−y
1 2r(z−y)(Fz

k − (Fk − 2)x2r(x−z)nx−z
1 ).

Then (2k−1 + 1)y = r(z − y) and n1 = 1. Thus,

Fz
k − (Fk − 2)x2r(x−z) = 1. (2.4)

We have Fz
k ≡ 1 (mod 3), z ≡ 0 (mod 2). Write z = 2z1; by (2.4),

( k−1∏
i=0

Fi

)x

2r(x−z) = (Fk − 2)x2r(x−z) = (Fz1
k − 1)(Fz1

k + 1).

Noting that gcd(Fz1
k − 1, Fz1

k + 1) = 2, and Fk−1 is a Fermat prime, we have F x
k−1 |

Fz1
k + 1 or F x

k−1 | F
z1
k − 1. Moreover,

F x
k−1 = (22k−1

+ 1)x > (22k−1
+ 1)2z1 > Fz1

k + 1,

a contradiction.
(ii) By Lemma 2.1, we may suppose that n ≥ 2 and (1.2) has one solution (x, y, z)

with x < z < y. By (1.2),

( k−1∏
i=0

Fi

)x

= nz−x(Fz
k − 2(2k−1+1)yny−z). (2.5)

If gcd(n,
∏k−1

i=0 Fi) = 1, then by (2.5) and n ≥ 2 we have x = z, a contradiction.
If gcd(n,

∏k−1
i=0 Fi) > 1, then the form of n must be one of the following cases.
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Case 1. gcd(n,
∏k−1

i=0 Fi) = Fλ, where λ ∈ {0, . . . , k − 1}.
For fixed λ ∈ {0, . . . , k − 1}, let n = Fα

λn1, where α ≥ 1 and gcd(
∏k−1

i=0 Fi, n1) = 1.
Let

T1 =

k−1∏
i=0
i,λ

Fi.

By (2.5),

T x
1 = Fz

k − 2(2k−1+1)yFα(y−z)
λ . (2.6)

Subcase 1.1. k = 1. We have T1 = 1 and Fλ = 3, so 2z ≡ 1 (mod 3), z ≡ 0 (mod 2).

Subcase 1.2. k = 2, 3, 4. We have T1 ≡ 3, 5 or 7 (mod 8). By (2.6), T x
1 ≡ 1 (mod 8),

so x ≡ 0 (mod 2). Moreover, T x
1 ≡ 2z (mod Fλ). Noting that x ≡ 0 (mod 2), by

calculation, we have z ≡ 0 (mod 2).
Write z = 2z1, x = 2x1 (so, in particular, x1 = 0 if k = 1). By (2.6),

2(2k−1+1)yFα(y−z)
λ = (Fz1

k − T x1
1 )(Fz1

k + T x1
1 ).

Noting that
gcd(Fz1

k − T x1
1 , Fz1

k + T x1
1 ) = 2,

we have
2(2k−1+1)y−1 | Fz1

k − T x1
1 , 2 | Fz1

k + T x1
1 ,

or
2 | Fz1

k + T x1
1 , 2(2k−1+1)y−1 | Fz1

k − T x1
1 .

Then
2(2k−1+1)y−1 > 2(2k−1+1)2z1 > (Fk + Fk − 2)z1 > Fz1

k + T x1
1 ,

a contradiction.

Case 2. gcd(n,
∏k−1

i=0 Fi) = FλFµ, where λ, µ ∈ {0, . . . , k − 1} and λ < µ.
In this case, k = 2, 3, 4. For fixed λ, µ ∈ {0, . . . , k − 1}, let n = Fα

λFβ
µn1, where

α, β ≥ 1 and gcd(
∏k−1

i=0 Fi, n1) = 1. Let

T2 =

k−1∏
i=0

i,λ,µ

Fi.

By (2.5),

T x
2 = Fz

k − 2(2k−1+1)yFα(y−z)
λ Fβ(y−z)

µ . (2.7)

Subcase 2.1. k = 2. We have T2 = 1, so 2z ≡ 1 (mod 3), z ≡ 0 (mod 2).
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Subcase 2.2. k = 3, 4. If T2 ≡ 3, 5 or 7 (mod 8), then by T x
2 ≡ 1 (mod 8), we have x ≡

0 (mod 2). If T2 ≡ 17 (mod 32), then by T x
2 ≡ 1 (mod 32), we have x ≡ 0 (mod 2).

Moreover, T x
2 ≡ 2z (mod Fλ). Noting that x ≡ 0 (mod 2), by calculation, we have

z ≡ 0 (mod 2).
Write z = 2z1, x = 2x1 (so, in particular, x1 = 0 if k = 2). By (2.7),

2(2k−1+1)yFα(y−z)
λ Fβ(y−z)

µ = (Fz1
k − T x1

2 )(Fz1
k + T x1

2 ). (2.8)

As in the proof of Case 1, we know that (2.8) cannot hold.

Case 3. gcd(n,
∏k−1

i=0 Fi) = FλFµFν, where λ, µ, ν ∈ {0, . . . , k − 1} and λ < µ < ν.
In this case, k = 3, 4. For fixed λ, µ, ν ∈ {0, . . . , k − 1}, let n = Fα

λFβ
µFγ

νn1, where
α, β, γ ≥ 1 and gcd(

∏k−1
i=0 Fi, n1) = 1. Let

T3 =

k−1∏
i=0

i,λ,µ,ν

Fi.

By (2.5),
T x

3 = Fz
k − 2(2k−1+1)yFα(y−z)

λ Fβ(y−z)
µ Fγ(y−z)

ν . (2.9)

Subcase 3.1. k = 3. We have T3 = 1, so 2z ≡ 1 (mod 3), z ≡ 0 (mod 2).

Subcase 3.2. k = 4. If T3 = 3 or 5, then by T x
3 ≡ 1 (mod 8), we have x ≡ 0 (mod 2).

If T3 = 17, then by T x
3 ≡ 1 (mod 32), we have x ≡ 0 (mod 2). If T3 = 257, then by

T x
3 ≡ 1 (mod 512), we have x ≡ 0 (mod 2). Moreover, T x

3 ≡ 2z (mod Fλ). Noting
that x ≡ 0 (mod 2), by calculation, we have z ≡ 0 (mod 2).

Write z = 2z1, x = 2x1 (so, in particular, x1 = 0 if k = 3). By (2.9),

2(2k−1+1)yFα(y−z)
λ Fβ(y−z)

µ Fγ(y−z)
ν = (Fz1

k − T x1
3 )(Fz1

k + T x1
3 ). (2.10)

As in the proof of Case 1, we know that (2.10) cannot hold.

Case 4. gcd(n,
∏k−1

i=0 Fi) = FλFµFνFω, where λ, µ, ν, ω ∈ {0, . . . , k − 1} and λ < µ <

ν < ω. In this case, k = 4. Let n = Fα
λFβ

µFγ
νFδ

ωn1, where α, β, γ, δ ≥ 1 and
gcd(

∏k−1
i=0 Fi, n1) = 1. By (2.5),

Fz
k − 2(2k−1+1)yFα(y−z)

λ Fβ(y−z)
µ Fγ(y−z)

ν Fδ(y−z)
ω = 1.

Thus, 2z ≡ 1 (mod 3), z ≡ 0 (mod 2). With z = 2z1,

2(2k−1+1)yFα(y−z)
λ Fβ(y−z)

µ Fγ(y−z)
ν Fδ(y−z)

ω = (Fz1
k − 1)(Fz1

k + 1). (2.11)

As in the proof of Case 1, we know that (2.11) cannot hold.
This completes the proof of Theorem 1.2. �
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[6] Jeśmanowicz’ conjecture revisited 491

Acknowledgements

I sincerely thank Dr Graeme Cohen for his many valuable suggestions concerning
our first manuscript. I am also grateful to the referee for valuable comments.

References

[1] M. J. Deng and G. L. Cohen, ‘On the conjecture of Jeśmanowicz concerning Pythagorean triples’,
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[2] L. Jeśmanowicz, ‘Several remarks on Pythagorean numbers’, Wiad. Mat. 1 (1955/56), 196–202.
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